1.

VIA C3 Nehemiah Hardware Random Number Generator
Linux Driver & Test Utility Usage Guide

Version 0.8, April 13, 2004
Copyright (C) 2003, 2004 VIA Technologies, INC.

Summary

The high-performance hardware-based random number generator (RNG) function is
implemented in the VIA C3 Nehemiah processor (with stepping 3, single RNG
engine), the VIA C5P processor (with stepping 8, two RNG engines) and later
versions of the VIA C3 Nehemiah processors. The kernel starts supporting the driver
of RNG from version 2.4.23-preX, and 2.6.0-testX. This document describes how to
update and patch the kernel and then make use of the RNG in Red Hat Linux 9 and
Fedora Linux Core 1.0. Also, a test utility is offered with source code for users’
immediate evaluation. The information and the utility in this document are provided

“AS IS,” without guarantee of any kind.

File description

The package requires 7 files as described below.

330 04-28-03 16:55 sample/relnote utility release note

37,187 04-29-03 16:58 sample/bin/rngtest utility binary

921 04-28-03 16:57 sample/bin/help help file

10,027 04-29-03 15:22 sample/src/rngtest.c utility source code

2,732 09-29-03 09:43 patch_2.4_kernel patch file for 2.4 kernel

3,247 09-29-03 09:43 patch_2.6_kernel patch file for 2.6 kernel
Readme this file

Users are advised to directly download the kernel source package version
2.4.23-prel, 2.6.0-testl or later from http://www.kernel.org.

Update kernel

2% <6

Note: The RNG function is implemented in the “stepping 3”, “stepping 8” and later
versions of the VIA C3 Nehemiah processors. Users can check the “cpuip” in
“system Information” when booting up or check “stepping” in /proc/cpuinfo

file. The “cpuip” must be “069x”, and the “x” must be equal or greater than 3.

The following procedures should work on most Linux distributions, though we
tested only on Red Hat Linux 9.0 and Fedora Linux Core 1.0. Both 2.4.22-prel and
2.6.0-test] or above kernels have RNG function implemented. Kernel 2.6.0-test5 is

used and users can use any compatible kernel that has RNG function implemented.

(1) Install the kernel source

Run the following command to decompress the kernel source code.

tar xjf Tinux-2.6.0-test5.tar.bz?2

(2) Configure the kernel
Change the current directory to “linux-2.6.0-test5”.
#cd 1inux-2.6.0-test5
We also provide patch files for speeding up the generative rate of RNG

#patch -p0 < patch_2.6_kernel
patching file drivers/char/hw_random.c

Then run the following command to configure the kernel.
make menuconfig (xconfig or config)

There are some situations that may need your special attention.

(a) Enable “vIiA c3-2 (Nehemiah)” under “Processor type and features”. And if
your platform is not a dual-processor system or above, disable “symmetric

multi-processing support”.

(b) Enable “Intel/amp/VIA Hw Random Number Generator support” under

“character device”, by selecting the built-in or module mode.

In case you see the following message, this is because the system built-in
module tool cannot load the newly added module in 2.5 and 2.6 kernel

series.

#modprobe hw_random
modprobe : QM_MODULES: Function not implemented
modprobe : Can’ t locate module hw_random

Download and install “module-init-tools-x.y.z.tar.gz”’ (x.y.z the version)

from URL: http://www.kernel.org/pub/linux/kernel/people/rusty/modules/.

(3) Rebuild the kernel
Run the following command to rebuild the kernel.
make dep clean bzImage modules modules_install

Next, copy the newly built kernel to /boot/.

#cp arch/i386/boot/bzImage /boot/vmlinuz-test

If using the GrRuB boot loader, add the following two lines to the

/boot/grub/menu. st file. Note you may need to modify the “hdal” according to
your actual system settings.

Title Tinux-test
kernel /boot/vmlinuz-test ro root=/dev/hdal

On the other hand, if using the LIL0 boot loader, add the following four lines to
the /etc/1i70. conf file. Note you may need to modify the “hdal” according to
your actual system settings.

image=/boot/vmlinuz-test
Label=Tinux-test
read-only

root=/dev/hdal

Run “1i10” and let the newly added boot configuration take into effect. On the

screen you should be able to see a message like below.

Added Tinux *
Added Tinux-test

Finally, reboot the system and test the new kernel.

4. Verify success of driver enhancement

Reboot the system and choose the newly added “Tinux-test” label to boot. If

/dev/hwrandom does not exist, run the following command to create one.

#mknod -m 644 /dev/hwrandom c 10 183

Next, run the following commands to confirm whether the RNG driver has been
loaded into kernel. If not, verify if you have re-built the kernel correctly or if you
have the right CPU model.

#dmesg | grep “hw_random”
hw_random hardware driver 1.0.0 Toaded

We also offer a test utility for users’ immediate evaluation. For example, run the

following command to generate 1MB of random data with silent mode.

#./rngtest -b 1048576 -s

The following tables show how long each RNG driver spend to generate 1MB of

random data in different linux distributions and kernels.

Run 1 Run 2 Run 3 AVG

Original RNG driver

. . 3 min 27 sec | 3 min 27 sec | 3 min 28 sec | 3 min 27 sec
(1byte per instruction)

Patched RNG driver <=1 sec <=1 sec <=1 sec <=1 sec

Note: Red Hat Linux 9.0 and kernel 2.6.0-test5 were used.

Original RNG driver
. . 4min6sec | 4min6sec | 4min 6sec | 4 min 6 sec
(1byte per instruction)
Patched RNG driver <=1sec <=1sec <=1 sec <=1 sec
Note: Red Hat Linux 9.0 and kernel 2.4.23-pre4 were used.
Original RNG driver
. . 3 min 27 sec | 3 min 28 sec | 3 min 27 sec | 3 min 27 sec
(1byte per instruction)
Patched RNG driver <=1 sec <=1 sec <=1 sec <=1 sec
Note: Fedora Core Linux 1 and kernel 2.6.5 were used.
Original RNG driver
. . 4min4dsec | 4min3sec | 4min4sec | 4 min 4 sec
(1byte per instruction)
Patched RNG driver <=1sec <=1sec <=1 sec <=1 sec
Note: Fedora Core Linux 1 and kernel 2.4.25 were used.
In the test utility, we add a new option, FIPS 140-1 test (*).
#./rngtest -f
FIPS 140-1 Test Result
Monobit Test (Passed if between 9654 and 10346)
PASS! There are 10131 bit 1 and 9869 bit 0!
Poker Test (Passed if between 1.03 and 57.4)
PASS! Poker value = 16.998400
Runs Test
ones Result | Zzeros Result
1: 2451 PASS | 2479 PASS (Required Interval 2267-2733)
2: 1213 PASS | 1277 PASS (Required Interval 1079-1421)
3: 662 PASS | 614 PASS (Required Interval 502-748)
4: 319 PASS | 291 PASS (Required Interval 223-402)
5: 146 PASS | 159 PASS (Required Interval 90-223)
6+: 179 PASS | 150 PASS (Required Interval 90-223)
Test Result: PASS!

Long Run Test

PASS! No a run of Tength 34 or more of either Os or 1s.

For more information of FIPS 140-1 test, refer to section 4.11.1 in the site

http://www.itl.nist.gov/fipspubs/fip140-1.htm.

5. Test configuration

The following configuration was used for test.

Motherboard |[EPTA-M10000 (CLE266+VT8235)

CPU VIA C3 Nehemiah CPU 1 GHz (133x7.5)

System Memory [128MB DDR RAM

HDD Quantum LM20500AT 20GB HDD

oS Red Hat Linux 9.0

Kernel 2.4.22 plus 2.4.23-pre4 patch 2.6.0-test5

Motherboard |EPIA-M10000 (CLE266+VT8235)

CPU VIA C5P CPU 1.4 GHz (133x10.5)

System Memory [128MB DDR RAM

HDD Maxtor 6Y120P0 120GB ATA/133

oS Fedora Core Linux 1.0

Kernel 2.4.25 2.6.5

