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COOPERATIVE FLASH MEMORY CONTROL

[0001] This disclosure claims priority to U.S. Provisional
Patent Application No. 61/757,464, filed on Jan. 28, 2013 on
behalf of inventors Andrey V. Kuzmin, Mike Jadon and Rich-
ard M. Mathews for a “Cooperative Flash Memory Control-
ler;” the aforementioned provisional patent application is
hereby incorporated by reference.

[0002] This disclosure relates to storage systems and, more
specifically, to the architecture of storage systems that utilize
flash memory. Still more particularly, the present disclosure
relates to flash management techniques that facilitate more
efficient integration and utilization of flash-based solid-state
drives in network- and direct-attached storage systems.

BACKGROUND

[0003] Flash memory is a type of non-volatile storage
medium. It is characterized by being partitioned into storage
areas called erase units (EU). Different portions of an EU can
be written (programmed) at different times, but each portion
can only be written once without erasing the particular EU in
its entirety. Once an EU is erased, all portions of that EU are
again available for writing. Erase units can be large relative to
many file system operations. For example, NAND flash
memory features programming units of “pages” with each
erase unit consisting of a large number of pages. This asym-
metry in programming and erasing data is referred to as
program-erase (P/E) asymmetry. Flash memory can be
embodied in different forms, for example, solid-state drives
(SSDs) that utilize NAND flash memory devices. “Flash
memory” as used herein includes other technologies that
share these asymmetries or the other control functions men-
tioned below, e.g., the term can include other forms of non-
volatile memory.

[0004] A flash memory controller is typically used to man-
age operations within flash memory. Other types of memory,
for example random access memory (RAM) and hard disk
drives (HDDs), also utilize controllers dedicated to managing
operations within those types of memory. The use of a
memory controller independent from a host is often desirable
particularly for flash memory because without such a scheme
the host would be encumbered with a number of management
functions unique to, or characteristic of, flash memory. Such
functions typically include caching of write data to reduce
frequency of programming operations, wear leveling, bad
block management and space reclamation. These tasks are
typically managed by a flash memory controller using a flash
translation layer (FTL), which keeps records of logical-to-
physical translations, wear count, bad blocks and so forth
using RAM that is built-in to the flash memory controller. For
example, owing to P/E asymmetry and typically large erase
block size, a flash memory controller can use this RAM as a
cache to help reduce the frequency of P/E operations. That is,
to minimize the frequency of flash programming operations,
pages of data from flash memory can be temporarily stored in
the RAM and only occasionally programmed into flash
memory. This helps reduce write counts and thus dilutes wear,
effectively extending useful flash life. Some flash memory
controllers also use wear leveling to help mitigate wear
caused by accumulated writes to particular locations of flash
memory. That is, to avoid disproportionate wear associated
with frequently-written logical addresses, wear leveling is
employed to shuffle memory contents to new physical loca-
tions within flash memory, to distribute (and thereby level)
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wear for each specific logical address across different physi-
callocations. A flash memory controller typically handles this
function in a manner transparent to the host and, to this effect,
tracks new physical locations for each logical address using
the FTL; a memory operation from the host that specifies a
logical address is translated to substitute in a physical address
where the desired data can be found. The RAM mentioned
above can be used to store logical-to-physical (I.2P) transla-
tion tables used for this purpose. Note, however, that as
memory capacity grows, the typical table sizes often exceed
RAM capacity, which leads to further complications. The use
of L2P translation built-in to the memory controller helps
present flash memory to the host as ubiquitous memory, such
that a host operating system does not have to concern itself
with the P/E asymmetry or other special issues for flash
memory. Also, as memory cells in flash memory lose their
ability to retain data reliably, portions of physical storage can
be marked as “bad;” some flash memory controllers therefore
also track “bad blocks” and use the FTL to remap valid
memory so as to avoid these bad blocks. The FTL can also be
used to detect when a host attempts to write data to an already-
programmed location (i.e., without an intervening erase
operation); when such an operation is detected, the FTL
remaps the respective logical address to a free EU and marks
“overwritten” space at the original location as stale. Due to
this and other manifestations of the P/E asymmetry, it is
possible to have valuable data stored in one individually
programmable unit of memory, while stale data is stored in
other individually programmable units of memory within the
same erase block. That is, many of the pages (e.g., a hundred
pages or more) of an EU can remain unutilized while a small
subset of the EU still contains data in active use, a problem
which increases with time. To better utilize available storage
space, some flash memory controllers therefore possess logic
that periodically consolidates active data and, in so doing,
frees up (reclaims) stale space, which can then be erased; this
function is sometimes combined with wear leveling.

[0005] Each ofthese functions contributes substantial over-
head and write amplification in flash memory. That is to say,
substantial data and control bandwidth is consumed in imple-
menting these functions, which can both increase the number
of writes to memory (i.e., increase wear) as well as compete
with new writes initiated by a host. The use of search trees or
other L.2P translation functions can also substantially encum-
ber control bandwidth and input/output (IO) latency. For
example, on host read commands, [.2P translation is per-
formed with the logical address provided in a command to
obtain a physical address from which data should be read. At
a 4 KB logical block size, L.2P translation is organized into a
B+-tree that requires extensive space, for example, 2 GB of
space for 1TB flash storage device. Inability to fit a L2P tree
into local (fast) RAM can result in tree blocks being swapped
out to flash memory media, penalizing the address look-up for
the need to load the tree blocks, with high latency. The pos-
sibility of power loss further requires L.2P mapping updates to
be persistent, necessitating update logging or other tech-
niques to provide fault-tolerance. Other techniques in some
flash memory implementations, for example, error protection
schemes such as RAID techniques, can also substantially
encumber control and data bandwidth.

[0006] These encumbrances create unpredictable response
latency in flash memory. In turn, these encumbrances inhibit
the use of flash memory in many applications, particularly in
non-homogenous storage systems (e.g., that include dissimi-
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lar types of memories, such as both flash and magnetic
memory), direct-attached storage systems and storage sys-
tems directed to network-based applications. That is, the abil-
ity of a storage system to operate effectively typically
depends on structured pipelining of memory commands.
Unpredictable latencies often associated with flash memory
can inhibit this pipelining and, further, inhibits the use of flash
memory in multiple drive storage systems, particularly non-
homogenous systems, as the unpredictable latency renders it
difficult to pipeline commands for a flash drive with other
memory types or drives.

[0007] What is needed is a mechanism for improving con-
trol and data bandwidth for flash memory and other forms of
nonvolatile memory. More particularly, a mechanism is
needed that reduces control and data bandwidth encum-
brances created by memory management functions and
thereby decreases the issues referenced above. Still further, a
need exists for a memory management scheme that does not
create excessive write amplification and bandwidth competi-
tion. Finally, a need exists for a flash/nonvolatile memory
architecture that has more consistent latency, is conductive to
structured pipelining of commands, and permits ubiquitous
management of SSDs and other forms of memory in direct-
attached and network storage applications. Techniques pro-
vided by this disclosure satisfy these needs and provide fur-
ther related advantages.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 11is an illustrative diagram of a system having
a memory controller 103, a host 105 and a memory 107.
[0009] FIG. 2 is a block diagram of a solid-state drive
(SSD) having a memory controller and NAND flash memory
207.

[0010] FIG. 3A is a block diagram of a memory controller.
[0011] FIG. 3B is a block diagram of memory controller
logic used in supporting cooperative functions.

[0012] FIG. 4 is a flow diagram that illustrates host tasks in
a cooperative memory management scheme.

[0013] FIG.5 is a flow diagram that illustrates host tasks in
a cooperative memory management scheme.

[0014] FIG. 6 a diagram showing examples of information
that can be kept by a memory controller for each of plural
physical subdivisions of memory.

[0015] FIG. 7 shows a process associated with wear-aware
writes.

[0016] FIG. 8 shows a process associated with a delegated
copy operation.

[0017] FIG. 9 shows a process associated with an explicit

erase operation (or relocation of data and recycling of previ-
ously used memory space).

[0018] FIG. 10A shows a process associated with host-
owned defect management.

[0019] FIG. 10B shows a process associated with shared
defect management.

[0020] FIG.10C shows a process associated with memory-
controller owned defect management.

[0021] FIG. 11A shows a process associated with host-
owned and shared garbage collection.

[0022] FIG. 11B shows a process associated with memory
controller-managed garbage collection.

[0023] FIG. 12A shows a process associated with host-
owned and shared wear leveling.

[0024] FIG. 12B shows a process associated with memory
controller-managed wear leveling.
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[0025] FIG. 13 shows a process associated with assignment
of available space at memory controller, and ensuing reverse
lookup and communication to a host of assigned physical
address(es).

[0026] FIG. 14 illustrates a block diagram of a storage
server having multiple solid state drives (SSDs) and hard disk
drives (HDDs).

[0027] FIG. 15 illustrates a block diagram of functions
performed a storage server operating system.

[0028] FIG. 16 illustrates a block diagram of storage man-
agement tasks used by a storage server.

[0029] FIG. 17 illustrates how space reclamation is applied
to mitigate P/E asymmetry.

[0030] FIG. 18 illustrates a garbage collection process.
[0031] FIG. 19 illustrates a process associated with wear
leveling.

[0032] The subject matter defined by the enumerated

claims may be better understood by referring to the following
detailed description, which should be read in conjunction
with the accompanying drawings. This description of one or
more particular embodiments, set out below to enable one to
build and use various implementations of the technology set
forth by the claims, is not intended to limit the enumerated
claims, but to exemplify their application to certain methods
and devices. The description set out below exemplifies meth-
ods supporting cooperative memory management between a
host and a memory controller, and improved designs for a
memory controller, host, and memory system. While the spe-
cific examples are presented, particularly in the context of
flash memory, the principles described herein may also be
applied to other methods, devices and systems as well.

DETAILED DESCRIPTION

1. Introduction.

[0033] This disclosure provides techniques for cooperative
interaction between a memory controller and host. The tech-
niques call for the memory controller to store information
specific to each of plural subdivisions of memory, and to
make data based on that stored information accessible to the
host to assist with management of the memory. For example,
the memory controller can store a table with information for
each logical unit or physical unit spanning the entire memory
managed by the controller. The data provided to the host can
be the stored information itself, or the result of processing or
filtering performed by the memory controller based on that
information. In detailed embodiments, the memory controller
includes logic that processes host queries and that provides
data back to the host responsive to those queries. Further, the
information stored by the memory controller can include
status information (that is, information regarding the state or
history of either a unit of memory cells, or regarding the state
or history of logic contents of those cells); some non-limiting
examples of such information are depicted in FIG. 6. The data
provided back to the host can either be generated synchro-
nously (in response to host trigger) or asynchronously (i.e.,
only upon satisfaction of a processing condition). Once in
receipt of the data, the host can then electively take action in
dependence on that data.

[0034] In one embodiment, the stored information can
include one or more fields of metadata representing each
erase unit (EU) or physical page of a flash memory. Examples
of data that a memory controller could provide to the host
responsive to this data include (i) extent to which a set of
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constituent pages of a particular EU have been released, (i) a
list of unerased EUs in order of amount of stale space (e.g.,
candidates for space consolidation), and (iii) data represent-
ing frequency of individual page or EU usage; naturally, these
examples are non-limiting. Note that a host within this con-
text can be any integrated circuit or other apparatus (e.g., such
as virtual or actual machine) that is separate from the memory
controller and that transmits a request to the memory control-
ler for some type of processing or response. In one embodi-
ment, the memory controller has interface logic that permits
ahost to request any of these pieces of information by issuing
respective commands. To provide an example of an action a
host could take based on this exemplary information, a host
armed with this information can issue an erase command
directly addressed to a specific EU of memory. Similar
examples exist for garbage collection, space reclamation,
wear leveling and other memory management functions.

[0035] Notethat in one embodiment, this infrastructure can
be employed to substantially eliminate the need for a flash
memory controller to implement a flash translation layer
(FTL). That is, a flash memory controller can maintain per-
subdivision data, which is accessible to the host (e.g., retriev-
able by, or against which the host can issue function calls or
queried). The host uses this information to issue new write
commands that are targeted to specific physical locations in
flash memory, thus substantially avoiding the need for trans-
lation at a memory controller, and reducing the likelihood of
uneven wear. In addition, the host receives alerts, and issues
queries as necessary, to ensure that it is generally apprised of
events that signify the presence of wear, cold data, excessive
“released” space and low available memory space and so
forth. This information is then advantageously used in host-
dictated scheduling of maintenance operations in flash
memory, such that those operations do not interfere with
writes and reads needed by the host. To provide one optional
implementation illustration, in a storage aggregate having
multiple storage drives, maintenance operations can be
scheduled by the host for a first drive (and delegated to a
memory controller for that drive) while the host is occupied
with transactions directed to a second drive, i.e., the mainte-
nance for one drive is “stacked” behind operations in another.

[0036] In embodiments below, a memory controller facili-
tates these actions by maintaining a stored repository of infor-
mation, for each physical subdivision of memory, and updat-
ing this information as memory transactions are processed,
e.g., as pages are released, and other events such as wear and
defects transpire. If supported by the specific implementa-
tion, the host at any time can issue “synchronous” commands
to the memory controller for an immediate return of informa-
tion. Also if supported by the implementation, the host can
issue asynchronous commands, which for example, cause the
memory controller to “automatically respond” if and when a
specified threshold is reached. The host has software which
periodically issues these queries, maintains data necessary
for L.2P translation, and responsively schedules maintenance
operations such as wear leveling and garbage collection. That
is, host commands advantageously equate physical and logi-
cal space from the vantage point of the flash memory control-
ler, because those commands directly address physical pages,
EUs or other unit that are the target of intended operations,
with at most insubstantial address translation in the memory
controller. For example, in an overwrite (copy-on-write sce-
nario), the host is made aware of a new memory location
available for writes and directly writes modified data to the
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new memory location; while the flash memory controller can
keeps track of metadata such as page release status, the host
tracks the updated page address including any logical to
physical translation and therefore can directly address it in the
future (e.g., using the physical address). Note that the flash
memory controller can still perform some mapping and
address translation, even in this scenario as one example, if a
write error occurs, the memory controller can itself remap
logical space on a limited basis to available memory space
(e.g., with or without notifying the host). Even if the host is
not immediately informed of the remapping, the discrepancy
between physical and logical space will eventually be worked
out through garbage collection and bad block management,
and the host ultimately consolidates remapped data in physi-
cal address space that is directly addressed by host com-
mands.

[0037] Employed in the context of flash memory, these
techniques can help mitigate the concerns mentioned above,
and thereby facilitate greater usage of nonvolatile memory in
direct direct-attached and/or network-attached storage envi-
ronments. That is, the techniques presented above can help
reduce flash control bandwidth competition with host-initi-
ated reads and writes and can help minimize write amplifica-
tion. These techniques, in turn, can help substantially elimi-
nate the need for an FTL as conventionally used, which leads
to further efficiencies. By redefining host and/or controller
responsibilities, host-controller management features dupli-
cation and associated disadvantages can also be avoided,
leading to a simpler and less expensive memory controller
design.

[0038] For example these techniques facilitate better pipe-
lining of commands in flash memory systems. In an imple-
mentation where there is no FTL table that must be loaded
into a flash memory controller, and no associated search tree,
flash memory is capable of servicing host read requests more
quickly. The reduction of write amplification and controller-
initiated erase, wear leveling and garbage collection opera-
tions reduces unintended competition with host-initiated
commands, i.e., the host is far less likely to find flash memory
“busy” when it seeks to have a command filled, because the
host is vested with scheduling of the potentially competing
functions. In turn, the better pipelining permits a host to more
easily interact with a storage aggregate having one or more
discrete flash drives, optionally including other types of stor-
age drives (i.e., mixed or non-homogenous memory).

[0039] Inanother embodiment, this disclosure provides for
cooperative interaction between a host and memory control-
ler where the host manages logical to physical (LL.2P) address
translation. The host stores a L2P translation table; when the
host has a need to issue a command to memory, it performs
translation and directly addresses specific storage units in
memory. In this manner, a memory controller (e.g., a flash
memory controller) does not need to perform local address
translation that might add latency in responding to host com-
mands. Optionally, the memory controller of this embodi-
ment uses the stored information for each of multiple subdi-
visions of memory, as referenced above.

[0040] This disclosure therefore also provides storage sys-
tems, hosts, network-ready storage servers, methods, soft-
ware and other implementations consistent with the prin-
ciples introduced above. Generally speaking, the techniques
disclosed herein can be implemented in any one or more of
these components, in a manner where a component can be
designed, manufactured and/or sold for optional inclusion in
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a complete storage system having a host, memory controller
and memory. Consistent with these principles, one imple-
mentation of the techniques referenced above is in a storage
system having at least one memory controller and memory.
Each memory controller and its associated memory can be
bundled together as a storage drive and, in one implementa-
tion, the storage system includes plural storage drives, at least
one of which is a solid-state storage drive (SSD) based in
nonvolatile memory such as flash memory. Each memory
controller maintains the information referenced above for
each associated physical subdivision of memory, in one
embodiment, for each unit of memory representing a smallest
group of memory cells that can be erased in a single operation.
The information maintained for each subdivision by the
memory controller can optionally include one or more of:

[0041] whether the respective subdivision has been marked
as bad;
[0042] whether amemory operation is currently in progress

in the respective subdivision;

[0043] number of erase operations performed on the
respective subdivision;

[0044] a period since data was last programmed within the
respective subdivision;

[0045] number of reads to memory within the respective
subdivision since last erase;

[0046] a logical address for data stored in the respective
subdivision;

[0047] a number of pages released within the respective
subdivision;

[0048] a number of pages used within the respective sub-
division;

[0049] information representing page usage for all pages

within the respective subdivision;

[0050] whether the respective subdivision has been pro-
grammed out of order relative to others of the plural subdivi-
sions; or

[0051] whether the respective subdivision has been
assigned to defect management.

[0052] Other types of information can also be stored by the
memory controller.

[0053] Inone contemplated implementation, each subdivi-
sion is an EU or page of NAND flash memory, and a NAND
flash memory controller can provide a map to the host indi-
cating relative information (e.g., page utilization) for all sub-
divisions of the specific drive or a storage volume spanning
multiple drives. Alternatively, the flash memory controller
can provide filtered or derived information based on such a
map to the host, for example, a listing of EUs best suited for
space consolidation based on some threshold applied by the
flash memory controller. Such a threshold can be defined as a
default and/or can be dynamically programmed by the host
(e.g., by asynchronous command).

[0054] FIG. 1 illustrates a first embodiment of a storage
system 101 and associated memory controller 103, host 105
and memory 107. In the illustrated embodiment, the memory
controller is structured to cooperate with the host 105 in the
control of the memory 107. The memory controller 103 has at
least one first interface 109 to exchange commands and data
with the host. Although two such interfaces and correspond-
ing transmission paths are seen in FIG. 1, these interfaces may
be combined (e.g., with communications occurring via a
packet-based transmission scheme). The commands gener-
ally relate to operations in memory such as read and write
operations, although commands can also be directed to the
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memory controller 103 to assist in memory functions. In one
embodiment, the commands and signaling protocol are com-
patible with one or more standards, for example, with Non-
Volatile Memory Express (NVMe) or the Small Computer
System Interface (SCSI) (in the case of commands) and
Peripheral Component Interconnect Express (PCle) or Serial-
Attached SCSI/Serial ATA (SAS/SATA) (in the case of sig-
naling formats). The memory 107 generally has an array of
memory cells and array control circuitry that may support one
or more planes or banks depending on design. The memory
core in turn has one or more subdivisions of memory cells for
which subdivision-specific usage data will be tracked by the
memory controller 103. In embodiments where the memory
is flash memory and the memory controller a flash memory
controller, each subdivision can include one or more erase
blocks or units (EUs), with each EU having a minimum
number of memory cells that must be erased at once.

[0055] The memory controller tracks subdivision-specific-
usage data using internal storage 111. In one embodiment,
this storage can be volatile memory such as synchronous
random access memory (SRAM); in another embodiment,
this storage can be non-volatile memory, for example an
internal flash array. As denoted by reference numeral 113, the
storage retains information for each subdivision of the
memory governed by the memory controller, in this case, for
a physical subdivision of the memory 107. In embodiments
where the memory 107 is a NAND flash memory, the storage
retains information for each EU or physical page of the flash
memory (e.g., EUs 1-» as indicated by reference numeral
113). Note that for flash memory, each EU can also corre-
spond to multiple pages, as indicated by numeral 115 (e.g.,
pages 1-j). For example, depending on manufacturer and
design, there can be 128-256 pages per EU, with each EU
corresponding to a substrate well, and each page correspond-
ing to an independently controlled wordline for memory cells
tied to that substrate well. The memory controller also has
logic 117 that is operable to send to a host either some or all
of the “raw” information retained in the storage 111, or
derived or processed information based that storage 111. This
logic for example can include circuitry within the memory
controller that is adapted to respond to host commands seek-
ing specific data; alternatively, this logic can also include
circuitry that applies pertinent filters or comparisons and that
notifies the host when a tracked metric meets an assigned
threshold. This information or an alert representing a particu-
lar condition can be transmitted to the host via the at least one
first interface 109, via a dedicated connection or via a back-
plane connection.

[0056] Several configurations are also represented by the
embodiment of FIG. 1. First, as represented by numeral 121,
the memory controller 103 can be designed as a standalone
integrated circuit with the host 105 and the memory imple-
mented as one or more discrete integrated circuits (e.g., the
host in the form of a host processor). Second, as represented
by dashed-line box 123, the memory controller 103 can
instead be co-packaged or otherwise combined with the
memory 107 as a storage subsystem. For example, dashed-
line box 123 can represent a discrete solid-state drive (SSD)
where the memory controller is implemented as an IC and
where the memory is embodied as one or multiple NAND
flash devices. It is also possible (as represented by dotted-line
box 125) to combined the memory controller 103, the host
105 and the memory 107 as a single system, for example, a
network-attached storage system or a storage system adapted
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for connection with another digital system (e.g., via a USB,
PCle, SATA, Ethernet or other standard signaling protocol).
Finally, as represented by reference numeral 127, cooperative
management functions can be embodied as instructions
stored on non-transitory machine readable media, for
example, for use in controlling a host processor, memory
controller or other circuit. That is, software or firmware can
be used to control actions of a host, memory controller or
other circuits.

[0057] With principle parts of a cooperative memory sys-
tem thus introduced, this disclosure will now proceed to a
more detailed discussion of examples of memories, memory
controllers, hosts and systems that implement principles of
this disclosure. Generally speaking, FIG. 2 is used to provide
additional detail on a NAND-flash implementation (e.g., a
solid-state drive having flash memory and a memory control-
ler). FIGS. 3A-13 are used to provide additional detail on a
cooperative memory controller that implements principles of
this disclosure, including various types of usage information
that can be tracked in various embodiments and ways in
which that information can be used to facilitate cooperative
host-memory controller management of memory. Finally,
FIGS. 14-19 will be used to describe possible system imple-
mentations, including a storage server and a heterogeneous
memory system.

II. Architecture of an Exemplary, Cooperative Flash
Controller.

[0058] FIG. 2 shows a solid-state drive (SSD) having a
memory controller 200 and NAND flash memory comprising
one or more NAND flash memory devices 207. The flash
memory controller 200 includes storage to store information
for each subdivision of memory as referenced above, as well
as logic that services host commands relating to that infor-
mation. The logic is partially in the form of an embedded
processor 202, which receives commands from the host and
fulfills those commands under the auspices of firmware. This
logic and firmware will be further exemplified below in ref-
erence to FIGS. 3A and 3B, but for purposes of FIG. 2, it is
noted that this logic relies on internal memory 203 including
volatile storage (e.g., DRAM, or another very low-latency
storage technology, for example, using a double-data rate or
“DDR” signaling scheme) and nonvolatile storage (e.g., inter-
nal flash memory for the firmware). The memory, and asso-
ciated firmware and data, are accessed via a dedicated inter-
face 204. Once again, in one embodiment, the flash memory
controller interacts with a host using exchanges of commands
and data that are compatible with one or more well-known
communication standards, such as NVMe or SCSI. Each of
these standards provide for commands to be sent from an
initiator (such as the host) to a target (such as a storage
device). Signaling formats used by these commands struc-
tures can follow any desired signaling standard, for example,
a version Peripheral Computer Interconnect Express (PCIE),
serial ATA (SATA) or another signaling standard. The inter-
action can take the form of commands for memory transac-
tions (e.g., read and write transactions), configuration com-
mands to the memory controller (e.g., asynchronous
commands), query commands (e.g., commands for synchro-
nous or asynchronous returns of information based on
memory controller processing requested by the host), and
alerts and returns of various operating codes and other infor-
mation from the memory controller. Generally speaking, a
“synchronous command” as used herein will refer to a com-

Jul. 31,2014

mand to the memory controller which initiates a function in
the memory controller that returns a result as soon as process-
ing is completed. A synchronous command is analogous to a
query. An “asynchronous command” as used herein will refer
to a command that requests a return only once another con-
dition is satisfied. Such a return of information can be trig-
gered immediately (e.g., if the condition is already satisfied)
or in the future (e.g., the memory controller alerts the host
immediately and without solicitation when a condition speci-
fied by the host is later satisfied). An asynchronous command
can be thought of as the host setting an operating mode or
condition in the memory controller, e.g., setting a mode call-
ing to trigger an immediate alert if previously released space
exceeds a host-specified level.

[0059] To perform input/output (IO) operations, controller
firmware interacts with a low-level flash memory interface
205 to translate high-level IO commands into flash memory
operations. In this embodiment, the flash memory consists of
one or more NAND storage devices (e.g., integrated circuits)
207, each coupled to the flash memory interface 205 via a
multidrop channel. Each device 207 includes a multiplex
interface 208 that connects to one or more co-packaged dies
209. Each die can have one or more planes 210, each with
independent control and data registers 211, so that each die is
capable of performing multiple IO commands simulta-
neously (e.g., an operation for each plane). These registers
and respective planes can be delegated commands (e.g., pro-
gramming commands) by the memory controller, or alterna-
tively, the memory controller can use a fractional program-
ming scheme. Following SCSI protocol tradition, a logical
unit (LUN) is used to refer to the smallest device unit addres-
sable by 1O operations.

[0060] As mentioned, the controller can serve detailed
information to the host for each subdivision of memory, and
the host can also issue query requests to the memory control-
ler, designed to assist the host with management of the band-
width-consuming functions referenced above. Advanta-
geously, to avoid delays associated with memory-controller-
resident address translation, the host sends IO requests to the
memory controller that directly specify physical address.
Note that for a NVMe compatible embodiment, the predicate
of direct physical addressing can be supported simply by
configuring the memory controller to manage the host-speci-
fied address as a physical address, or otherwise with limited
memory-controller-side address translation. The perfor-
mance of commands (e.g., management of multiple program-
verify cycles, or “P/V” cycles, of one write command) is then
managed by the memory controller which alerts the host upon
command completion. The meaning of the physical address
in this context depends on flash memory geometry but, in this
embodiment, includes multiple fields. These fields can iden-
tify for example the number of a communication channel
within the flash memory interface 205, the number of a device
207 connected to that channel, the number of a die 209 within
that device 207, the number of a plane 211 located on the die
209, the location of a block within the die 209, and the
location of a page within the block. Thus, physical address in
this embodiment includes a quadruple of channel, device, die
and logic unit number (LUN).

[0061] FIG. 3A helps illustrate layout of one possible flash
memory controller, with an emphasis on command process-
ing. In particular, the flash memory controller can be imple-
mented as a single integrated circuit 301. As before, a host
interface 305 is used to exchange commands and data with a
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host, and a flash interface 307 is used to issue commands to
and exchange data with one or more flash memory devices
(not shown in FIG. 3A). Note that in this embodiment, a
single path is illustrated as coupling the memory controller
with the host, for packetized exchange of both commands and
data; that is, the host interface can include logic that extracts
commands and data from request packets, and can also pack-
etize read data, alerts, metadata and other communications to
the host. Other implementations are also possible, for
example, using separated command and data busses. In the
scheme depicted in FIG. 3A, it should be assumed that the
host interface has a high speed serdes interface, such that
communications with the host occur over one or more differ-
ential signaling paths, for example, compliant with a PCle,
SATA or other signaling scheme. Note that one or more flash
devices can be copackaged with the memory controller, and
thus the flash interface 307 does not necessarily have to use
the same signaling scheme as the host interface, e.g., com-
munications can be via wide-bus single-ended communica-
tions, using command and data busses.

[0062] The host interface 305 separates controller com-
mands from any received packets (as necessary), and routes
these commands over a command bus 308 internal to the flash
memory controller. Generally speaking, commands will
relate to memory operations (e.g., reading or writing of data)
or to queries for data and memory management functions. To
this effect, separate logic blocks within the memory control-
ler are dedicated to each of these functions.

[0063] A memory operations logic block 313 manages
operations involving the memory device. For example, as is
well-known, NAND flash memory typically utilizes incre-
mental programming that is, array control circuitry for the
flash memory device uses a minimum programming voltage,
and results of programming are checked against contents of a
write data register to determine whether those results are
correct. This is performed using a “program-verity” (P/V)
cycle having separate “program” and ““verify” phases. During
validation, a programmed page is typically sensed and an
exclusive-or function is performed with contents of the write
data register; for any bits that remain set, programming has
not been effective, so the programming voltage is raised and
the process repeated in a second P/V cycle. This process
typically continues until proper programming has been
achieved or some limit has been reached, the latter case result-
ing in a write error. The memory operations logic block 313
performs control over these various phases of programming
using buffers 315. Since a memory device can include mul-
tiple planes (as discussed above), the memory command pro-
cessing logic block 315 optionally uses multiple buffers, for
example, with one dedicated to each plane or with buffers
assigned on a rotating basis for individual commands
received from the host. The memory command processing
logic block also manages any functions of reporting write
error and consequent remapping of data, as well as updating
L2P mapping information in metadata storage 311 (for
embodiments that perform such mapping). Note that this
information can be part of a much larger class of metadata
indexed by EU as discussed above (see, e.g., FIG. 6 and the
accompanying discussion below for examples on types of
information that can be tracked using this storage).

[0064] Commands relating to the return of query informa-
tion (e.g., synchronous commands) or the setting of an oper-
ating mode (e.g., asynchronous commands) are sent to query/
management logic block 317. Generally speaking, the host
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can request (a) return of raw information for the entire
memory space managed by the memory controller, or for
specific address ranges or EU ranges, or (b) processing or
filtering of that data by the memory controller. For example,
as referenced previously, the memory controller can be pro-
vided with logic operable to receive and interpret host com-
mands for lists of blocks, e.g., the “top ten” candidates for
garbage collection, ranked in order of page (under) utiliza-
tion. Since the purpose of such an operation is to identify EUs
for erasure, a memory controller receiving such a command
interrogates the metadata storage to (a) identify EUs that are
at least partially in use, (b) identify the extent of page utili-
zation for each such EU, and (c) order a set of EUs that are
candidates for erasure in the order of greatest number of
released pages. The query/management logic block 317 uses
internal registers 319 to manage functions like this and, when
the requested processing is complete, the query/management
logic block sends a reply message to the host with the
requested information. Note that the host interface 305
includes buffers that receive this data, and queue the data for
transmission to the host (e.g., as a reply packet that may be
distinguished from read data). The mentioned example is
only one type of query that can be processed by the host, i.e.,
there are many types of requests and queries that can be
processed by a memory controller of the present disclosure. A
skilled designer can implement any type of management pro-
cessing desired. This request is an example of a synchronous
query, because data is on-hand for the memory controller, and
because the memory controller returns requested data as soon
as its query processing is complete. In a simplified case, the
host can request return of raw metadata. For asynchronous
queries or functions, the host typically provides a parameter
(such as a mode setting and/or a host-selected threshold of
some type) and the memory controller then operates a con-
tinuous or intermittent process to check for the specified
condition; when the condition occurs, the memory controller
immediately alerts the host, typically providing information
that triggered the alert (such as EU identity and metadata for
the EU pertinent to the function being tracked). That is, if the
condition does not occur, there is no responsive alert sent to
the host, and the condition is monitored for occurrence at any
time in the indeterminate future. As should also be apparent,
sophisticated queries can be run that involve multiple meta-
data parameters. For example, a host might request an alert
any time a partially written EU simultaneously reaches a
specific page utilization threshold (e.g., less than 50% utili-
zation) and has a time since last data access greater than a
second threshold. Many examples of asynchronous processes
are possible and will no doubt occur to the skilled memory
architect. Once again, any suitable thresholds or modes are
stored in registers 319.

[0065] A media icon 321 is depicted to indicate the use of
software or firmware by the memory controller. The memory
operations and query/management logic blocks 313 and 317
and registers 319 are all depicted within a dashed-line box
323 denoting that, in one implementation, these elements can
optionally reside on a single die (e.g., a single processor or
coprocessor); in such an embodiment, the media icon 321
typically denotes the use of firmware, for example, stored in
memory within the single die in question. In this regard, such
firmware can be designed to respond to vendor-specific
NVMe extensions to implement specific query/management
functions. For example, any desired asynchronous query can
be implemented as a function call supported by firmware;
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when the asynchronous command in question is triggered, it
is run as an open process in the die (323) or a coprocessor
dedicated to the query/management functions. Alternatively,
many processors can be provided, each assigned queries/
asynchronous processes as they are invoked. As implied ear-
lier, a specific asynchronous process can be associated with a
mode set by the host; for example, in one mode defined by the
host, the memory controller can automatically alert the host
any time it identifies a space reclamation (garbage collection)
candidate, based on default or host-identified parameters—in
a second mode, this function is turned “off.”” Note that in the
future, newer versions of standards such as NVMe can be
structured so as to inherently support generic commands calls
consistent with the operations discussed above.

[0066] The metadata storage 311 is indicated as separate
from dashed-line box 323, reflecting that the metadata storage
optionally can exist independent of the processing logic, e.g.,
on a separate die. That is, in one embodiment, the metadata
storage consists of nonvolatile memory, such that it is persis-
tent in through power cycling. In another embodiment, the
metadata storage can existin SRAM (e.g., internal to optional
die 323), with data switched to nonvolatile memory and
loaded back again in response to power cycling. In still
another embodiment, as denoted by optional connection
block 325, the metadata storage can be read directly by the
host, i.e., via a form of commands for direct memory access.
In such an embodiment, the host simply reads a special
memory location which it knows will contain metadata for a
specific EU or EU range, or for the flash memory as a whole.

[0067] FIG. 3B shows a block diagram of a cooperative
memory controller 351; more particularly, FIG. 3B is used to
show how logic functions can be implemented using hard-
ware and firmware logic 353. This logic 353 supports a num-
ber of optional processing features. In one embodiment, this
memory controlleruses this logic to perform many traditional
flash controller functions (e.g., management of an FTL and
associated search trees). This is to say, while one advantage of
the memory controller 351 is the substantial reduction or
omission of an FTL layer, this is not required for all embodi-
ments. In another embodiment, the memory controller imple-
ments comprehensive cooperative functions that help reduce
the need for complex FTL processes, as referenced above. In
each embodiment, the memory controller 351 serves to the
host unit-specific information for all units of memory gov-
erned by that memory controller; with this information, the
host can directly address specified physical locations, thereby
substantially reducing or obviating need for complex FTL
processes resident at the memory controller.

[0068] For the embodiment of FIG. 3B, logic 353 is seen to
have a number of basic function blocks, including interface
logic 355 to interact with the host using packetized com-
mands and responses, logic 357 used for local metadata man-
agement, command processing logic 359 used for query pro-
cessing and other management functions, and IO scheduling
logic 361 used to manage memory transactions (e.g., program
and erase operations). As noted, even in an embodiment
where it is desired to substantially reduce the FTL layer, a
memory controller can still optionally implement some
address translation, for example, for defect remapping as well
as other functions. This will be described below. The meta-
data management logic 357 maintains locally-stored infor-
mation in the form of metadata 363, as mentioned, for each
unit of memory of the memory device. Non-limiting
examples of information that can be tracked are once again
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discussed below in connection with FIG. 6. This information
can include L.2P or P2L. mappings for each memory unit; that
is, as discussed below, even for an embodiment where the host
uses direct physical addressing, a scheme of shared address
assignment responsibility can be implemented, with the
memory controller assigning physical addresses based on an
initial logical address specified by the host, with the memory
controller reporting back assigned physical address(es) to the
host, for the host to build a L2P table for future reads to the
data. This shared addressing scheme can also optionally be
employed for certain other delegated functions, e.g., valid
data relocation, unit erase, garbage collection, defect man-
agement and other functions. Note that this is not required for
all embodiments, i.e., as will be detailed below, a host can also
support these functions and dictate physical addresses for
new writes. In many embodiments described below, an adapt-
able memory controller architecture will be described, pro-
viding implementation flexibility in assigning specific tasks
to either host or memory controller. To these ends, the meta-
data management logic can include structure to assign physi-
cal address and generate updates to stored metadata 363 and
to report back to the host an index of physical locations
assigned the newly-written file for situations where address
assignment is to be performed by the memory controller.

[0069] To provide another example of use of a limited
address translation scheme notwithstanding address directed
by the host, the memory controller can be configured to
identify write error and to transparently remap the subject
data over to reserved memory space. Because such reassign-
ment might affect only a very small portion of data written to
memory, the memory controller can advantageously keep
track of this reassignment using the metadata 363. Future
reads specifying the remapped EU are intercepted by the
memory controller logic using locally-stored metadata 363
and redirected to the proper physical location in memory for
defective blocks. In this manner, the memory controller is
freed from having to implement extensive search trees to find
physical locations based on supplied logical addresses, i.e.,
the memory controller need only track defective memory
reassignments, which ultimately become stale as the memory
controller progresses through erase operations, garbage col-
lection and updates of data (the latter being directly written to
new pages or EUs). Note that such addressing can be made
even simpler if memory controller simply allocates remapped
space to a reserved EU using a like page assignment.

[0070] The command processing logic 359 receives com-
mands from the host directed to general configuration of
memory operations and for queries. Generally speaking, this
logic manages and updates the metadata 363 and runs queries
on the metadata, returning information to the host as appro-
priate via the host interface logic 355. The returns to the host
can be immediate returns to synchronous commands and
immediate or later responses (or alerts) to asynchronous com-
mands. Exemplifying some command options, the command
logic can (a) serve information up to the host drawn from
metadata 363 for use in wear aware writes, and (b) assist with
wear leveling (WL), garbage collection (GC), defect manage-
ment (DM) and integrity management (IM) functions in
memory. Note that in network storage applications with mul-
tiple drives, this further enables certain novel host capabili-
ties, as will be described in the section dealing with an exem-
plary storage system further below. Note also that in some
embodiments the host can also directly access raw metadata,
e.g., as a form of direct memory access.
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[0071] An exemplary memory controller can assume vary-
ing levels of host support in a manner that can be customized
to any specific memory system design. That is, memory con-
troller 351 possesses dedicated logic infrastructure to per-
form WL, GC, DM and IM specific functions (369, 371, 373
and 375, respectively), each of which can be tailored to a
specific level of interaction with the host pertinent to the
specific implementation. Depending on the desired level of
interaction, the memory controller 351 helps avoid the need
for remote storage and retrieval of large address translation
tables and the use of complex search trees, e.g., address
translation can be performed using a greatly simplified
address translation table or omitted in the memory controller
entirely. In addition, the configured level of cooperation can
advantageously permit a host to directly assume scheduling
of'many flash management functions that might interfere with
(i.e., compete with) host-directed writes, such as garbage
collection, data relocation, wear leveling and so forth. That is
to say, an architecture will be described below that permits a
memory controller to serve sophisticated information to the
host to assist with this scheduling. This, combined with less
FTL overhead, provides for faster, more consistent flash
response, and facilitates multiple drive storage aggregates
based on solid state (flash) drives (SSDs) as well as mixed or
heterogeneous systems that combine SSDs with other
memory types.

[0072] Note that this is an example only, e.g., the architec-
ture described herein can optionally also support a traditional
FTL design, or memory controller management of complex
functions.

[0073] To assist with host scheduling of flash management
tasks, the memory controller can have firmware or hardware
logic (or both) dedicated to specific types of host commands
and host queries. In the embodiment of FIG. 3B, this structure
is illustrated as optionally including structure to assist with
wear leveling (WL), garbage collection (GC), defect manage-
ment (DM) and integrity management (IM) functions, but
other functions or logic can also or instead be used. To support
these functions, the memory controller uses command pro-
cessing logic 359 to manage space allocation and space rec-
lamation, and otherwise to service host calls for the return of
management data. For example, this command processing
logic can facilitate direct physical addressing by identifying
for the host available (i.e., available, erased) address space,
candidates for erase (released space), candidates for data
relocation and garbage collection (e.g., based on low page
utilization), assistance with cold data location (e.g., wear
leveling), or more general functions.

[0074] Forboth embodiments that use wear-aware writes as
well as those that do not, the memory controller can include
wear leveling logic 369. That is, to account for a limited
number of flash memory P/E cycles (typically on the order of
tens to hundreds of thousands of cycles for NAND flash), the
logic on board the memory controller can be designed to track
wear as part of metadata 363 and to provide this information
to the host. If over time, certain units of memory are deter-
mined to represent disproportionately high or low wear rela-
tive to overall memory, wear leveling can then be performed.
Note that for embodiments where wear-aware writes are used,
wear leveling can be highly localized, i.e., performed as a data
relocation option simply to redistribute cold data. The
memory controller 351 can generate alerts when predeter-
mined wear thresholds are reached, and can otherwise per-
form low level queries relating to wear leveling. In support of
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the techniques presented by this disclosure, the wear account-
ing logic 377 can keep a changing-list of EUs, ranked in order
of'coldest data, least wear, greatest wear or in another manner.
In one embodiment, this logic can be prompted via an explicit
host command to synchronously compile such a list or to
asynchronously notity the host of EU identity any time a wear
metric (e.g., EU erase count) exceeds a programmably-de-
fined value. Then, when and as wear leveling is scheduled by
the host, the host issues a command to the memory controller
to relocate cold data and erase the old space (e.g., using
relocation logic 379), thereby redistributing that space into a
pool of available space used for active writes (and potentially
more frequently-cycled data). Note that in an embodiment
where the host directly addresses physical space and per-
forms wear-aware address assignment, distribution of wear
can be inherently minimized as part of the write process.
However, disproportionate wear can still occur for data that is
held for a long time and which is therefore deemed “cold;”
that is, cold data can keep EUs out of circulation while other
EUs are more frequently recycled. The memory controller
architecture presented by this disclosure supports memory
controller cooperation with wear management through the
use of “limited” data relocation and wear leveling processes
(e.g., directed only to specific address ranges within flash) as
well as (if pertinent to the implementation), the scheduling
and management of more extensive wear leveling, e.g., for
entire flash devices or across multiple flash devices or drives.

[0075] As discussed earlier, a copy-on-write process can
result in retaining old pages in flash memory that are stale.
This is because a given EU can have other pages that are still
in use, and the old page location typically cannot be reused
until the entire associated EU is recycled. Over time, substan-
tial portions of flash memory can be locked up simply because
a small fraction of space in many respective EUs is still in use.
This situation can occur whether the host or the memory
controller performs address translation. To address this, the
memory controller of FIG. 3B therefore uses garbage collec-
tion logic 371 to assist with functions of periodically consoli-
dating data. That is, the garbage collection logic can track
information pertinent to whether an EU is mostly stale or is
still efficiently being used and can process host queries relat-
ing to this information. One form of this tracked information
is page utilization information, e.g., where the memory con-
troller stores information indicating whether each page in a
given EU is available (erased but not yet written), has valid
data (cannot be written to without an erase), or is released (a
page with stale data that cannot be rewritten until it is first
erased). Garbage collection involves accounting for released
pages, for example, using release accounting logic 381 to
track the mentioned page utilization information for each
page (or other logical unit) for each EU; EUs with relatively
few used pages can have those pages consolidated with pages
from other EUs having similarly low page utilization, with the
then-concentrated valid date being rewritten to a new desti-
nation. Inan embodiment where the memory controller tracks
this information, the memory controller can compute an
extent of page utilization (e.g., 10% valid data) and can pro-
vide this information to a host with EU identity to permit the
host to decide which EUs should have data consolidated and
moved. The host can then schedule any resultant operation in
a manner that does not compete for needed read data else-
where in the subject memory. Note that “page utilization™ as
used herein generally refers to the extent to which pages of'a
given EU are valid (in use) or are stale or not in use. For
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example, if most pages in a given EU were stale or unused and
only a few pages of the EU had valid data, the extent of page
utilization in the given EU would be low. Conversely, if most
pages in an EU were in active use, the extent of page utiliza-
tion for the given EU would be high.

[0076] In an embodiment where the host cooperates with
the garbage collection task, the host can query the memory
controller using a command, with processing of the command
performed in cooperation with the release accounting logic
381. In more detailed embodiments, the release accounting
logic can be designed to perform low level inquiries, for
example, to return a list of EUs where page utilization falls
below a specific threshold (e.g., 50%). This type of function
can also be managed as an asynchronous task, e.g., the host
can request that the memory controller alert the host if at any
time an EU that has been written-to (or that has justhad a page
released) experiences less than a threshold level of page uti-
lization; in this regard, the release accounting logic 381 tracks
explicit page release with each command information update,
and can perform any processing necessary to alert the host in
response to any asynchronous queries. The release account-
ing logic 381 also has circuitry and/or firmware that performs
other forms of processing, for example, optionally providing
a list of “the 10 best” candidates for garbage collection in
order of page (under)utilization. In another embodiment,
some or all of the data relocation functions can be managed by
the memory controller, for example, with relocation logic 383
being delegated specific tasks by the host (such as the iden-
tification of EUs to the host for relocation of data, or reloca-
tion of data in response to a host-specified target memory
address). Once relocation has been performed, with respec-
tive L2P mappings updated and associated physical pages are
released, the full EU is reclaimable. In one embodiment, this
is performed by the host, which issues an explicit EraseBlock
command for an address-specified EU logic 355 processes
this command and, once the command is completed, returns
the freed EU to a pool of available EUs for future data allo-
cation.

[0077] Write and erase errors discovered by the flash
memory controller are handled by defect management flash
management logic 373. Pages found defective due to write
error are remapped by defect remapping logic 385, with write
operation retried transparent to the host. The original page in
error is marked defective or “bad” and added to a bad block
list or map to avoid further use of associated physical pages.
Unit relocation logic 387 performs background relocation of
data that experienced write error to minimize possibility of
further write errors. Unit erase errors are handled by the
defect management logic as well, with defective EUs also
reflected on a bad block list kept by the flash memory con-
troller. As indicated, in such a scheme, the entire EU can
optionally be moved, preserving relative page layout and
simplifying translation issues.

[0078] While flash memory typically provides strong error
detection and correction (EDC), the memory controller may
also provide onboard data integrity management logic 375.
Data scrubbing logic 389 is responsible for background data
integrity checks based on EDC or additional data integrity
metadata. Suspect blocks with transient errors identified are
relocated by suspect relocation logic 391 using mechanisms
similar to wear leveling and garbage-collection relocation
processes described above.

[0079] As operations are performed in memory, whether as
part of a management operation (such as datarelocation) or in
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servicing a write or read command, 1O scheduling logic 361
detects completion of the command. Pertinent information is
added by metadata management logic 357 to the stored meta-
data 363 for the pertinent EU, and the host is then signaled
with any completion codes as necessary. For example, if a
data relocation operation has been performed, the metadata
363 can be updated with new information for both source and
target blocks of memory (e.g., new page release information,
L2P and P2L. mapping, wear information and so forth), and
the host can be signaled with new physical addresses for
relocated valid data.

[0080] Note that, depending on embodiment, the flash
memory controller can support one or more of the functions
or units of logic described above, i.e., a memory controller
can include subsets of the described logic to assist in the
performance of specific tasks. For example, one hypothetical
memory controller could omit the data relocation logic 383 if
the host was to perform this function. Also, other logic func-
tions can also be supported or provided for beyond those
discussed. As mentioned, the embodiment of FIG. 3B pre-
sents a single memory controller architecture adaptable to
multiple, different implementations, but this is not required
for all embodiments.

[0081] Clearly, many examples exist for the layout of a
cooperative memory controller. In various embodiments,
these layouts can support different cooperative functions.
FIGS. 4-13B are used to provide non-limiting examples of
different types of functions that can be supported.

A. General Flow.

[0082] As discussed above, a cooperative flash memory
controller can participate in and support periodic manage-
ment tasks, such as relates to defect management, wear lev-
eling, and garbage collection. A given task (e.g., an asynchro-
nous task) will typically have an associated management
condition that is triggered when a specific, tracked parameter
exceeds a predefined threshold. Once the management con-
dition occurs, data which triggered the condition is evaluated
by the memory controller, the host or both based on pertinent
metadata. Depending on implementation, individual manage-
ment tasks and the need for action can be addressed solely by
the memory controller, solely by the host (e.g., based on
reported information), or cooperatively by both the memory
controller and the host. That is to say, in any given embodi-
ment, provision can be made for the handling of any one or
more of the management tasks described above on a coopera-
tive basis. In addition, these functions can also be made mul-
timodal, i.e., invoked by components that invoke controller-
owned processing, host-owned processing or cooperative
processing, dependent on system design or implementation.
That is, a typical implementation can feature a single flash
memory controller design which is customizable to a number
of different memory systems or system configurations;
depending on features supported by the specific system (e.g.,
the specific customer), the memory controller can support
adaptation or configuration at design time (or programmati-
cally at initial system configuration) to support the desired
architecture. As an example, a particular cooperative memory
controller might support cooperative garbage collection, but a
particular design many not implement this type of coopera-
tion between host and memory system—in such an imple-
mentation, the memory controller can be programmed (e.g.,
using a command register or mode register) to turn this fea-
ture (and associated functions) off. Typically, once initially
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configured for a specific implementation, a memory control-
ler will maintain its configuration throughout system life or
until the system is reformatted, although it is also possible to
support dynamic modes for some purposes.

[0083] When configured to execute in the cooperative flash
management mode for any one or more of the areas men-
tioned above, a cooperative memory controller provides
methods and mechanisms for a host (e.g., host software) to
define and detect the management condition, to query meta-
data in connection with that condition, and to electively take
responsive action.

[0084] FIG. 4 illustrates a process of the host-controller
interaction in management condition detection. The process
starts at step 401. At step 402, either of the host or the memory
controller determines a need to assess the management con-
dition, for example, as a function of running a routine or based
on some type of trigger. For example, in one embodiment, the
host can initiate a process such as periodic wear leveling
(either via explicit command or as a result of setting an
asynchronous process in the memory controller). The
memory controller can also be set for a default operation, e.g.,
automatically alerting the host or providing data unsolicitedly
to the host any time all pages have been released for a given
EUj; such a process can be triggered by the memory controller,
which notifies the host of a need for intervention or simply
(unsolicitedly) provides pertinent information to the host.
Such a notification can also be the result of an asynchronous
process or mode selectively set by the host, as mentioned
above. Many other examples also exist. In one such example,
a particular implementation may call for specifically alerting
the host “automatically” any time a page release is deter-
mined to be the last page release for an EU (e.g., the EU is
completely released); in different implementation, this infor-
mation might always be tracked by the host (or not tracked at
all). Irrespective of how the process is initiated, at step 403,
the memory controller provides data to the host based on
tracked, subdivision-specific (e.g., EU-specific) information
associated with a particular parameter or metric. In one
embodiment, each exchange between memory controller and
host can be performed in a manner compliant with NVMe, for
example, using a vendor-specific extension or a vendor spe-
cific NVMe administrative command. At step 404, host soft-
ware checks the value returned at step 403 against a specified
threshold to determine existence of a condition requiring
intervention. On a negative determination, the process ends or
otherwise loops to step 403 after a suitable delay. On a posi-
tive determination, host software proceeds to take manage-
ment action (step 405). Once management action completes,
the process either concludes or is looped back to step 402.

[0085] As an example of management action, a host can
initiate an explicit erase operation that specifies an EU physi-
cal address. Because such an operation is host-initiated, it
does not collide with a host-issued read or write request,
thereby improving system performance. In a multiple drive
system, the host can hide an explicit erase (and garbage col-
lection and other functions) behind a read or write request to
another system drive. For example, in a configuration where
multiple drives are coupled to a host through (e.g., through a
multidrop connection, a bridge or other routing scheme),
commands from the host can be interleaved such that as read
and write operations are performed in one drive, garbage
collection and unit erase tasks are performed in another. In a
system which has multiple SSDs, this parallel processing
ability can lead to further performance benefits. Note that this
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type of parallel processing can also be performed where
drives are connected point-to-point with a host.

[0086] FIG. 5 shows a method for host software to query
metadata pertaining to pending management tasks; the host
software can then determine the existence of a condition and
optionally execute the decision it deems appropriate. The
process starts at step 501. At step 502, host software either in
response to the management condition being detected with
one of the methods described above or at will requests the
controller for metadata. For example, the requested informa-
tion can be in the form of a map that verbatim passes tracked
subdivision-specific usage data to the host, for example, by
providing a bad block, EU or page utilization map to the host.
At step 503, for each metadata range returned, host software
performs any processing appropriate on returned metadata.
At step 504, if management action is to be performed in
response to the management condition being detected, host
software either evaluates a current metric based on actions
performed or queries the controller for a value. Based on the
value obtained, at step 505 the host software checks if the
condition still holds and if more metadata needs to be
requested. On a positive determination, the process loops to
step 502 where additional metadata is requested. If the deter-
mination is negative, the process concludes (step 506).

[0087] As mentioned, the cooperative memory controller
of'this disclosure can track many different types of informa-
tion representing subdivision-specific-usage. This tracking
information can be in the form of metadata 600 that represents
one or more parameters, illustrated in FIG. 6. A first tracked
parameter represents unit state 605; in the case of an EU, this
field can be used to store data indicated whether the EU is bad.
Alternatively, this field can also be used to denote whether the
EU contains valid host data, or is otherwise available for
allocation to the host or to the controller. Status 610 can be
used to track any active controller operation. Erase count 615
keeps track of the number of program/erase cycles to date for
the particular unit (e.g. the particular EU). An age field 620
keeps track of how long it has been since data was written to
the erase unit. Time in this context can be represented in many
different equivalent manners, for example, based on a time
stamp or any other desired numerical value or other metric.
Read count 625 identifies how many reads have been per-
formed for data stored in the unit (e.g. EU) since the last
erasure. In one embodiment, time since last read can be com-
puted from the erase or another metric, e.g., with those
memory controller or host calculating time relative to other
EUs or metrics, tracked either by the memory controller or the
host. Address 630 keeps track of a logical address associated
with the erase unit. Release Count 635 identifies number of
pages within the particular unit (e.g., EU) that have been
released. The bitmap field 640 lists or otherwise identifies
pages within the erase unit that are free (i.e., available for
writes), valid (with actively-used data), or released. Depend-
ing on embodiment, this type of data can be maintained in a
variety of ways; for example, more than one field can be used
to track each of these parameters, or release status can be
inferred from valid data status, or vice versa. Other alterna-
tives are also possible. The bitmap field can also be used to
indicate whether the pages in the particular EU were written
out-of-order. The remapped flag field 645 indicates whether
the EU has been allocated to defect management. In another
embodiment, the above metadata could instead be tracked on
the basis of logical erase unit with a mapping to the physical
erase unit.
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[0088] FIG. 6 should be understood as providing non-lim-
iting examples only, that is, not all of the listed data must be
maintained by a memory controller, and each identified field
should be viewed as optional. Similarly, there are also many
other types of data, beyond those specifically illustrated in
FIG. 6, which can be used.

B. Specific Flash Management Tasks.

[0089] Flash management tasks discussed below can be
grouped according to three primary categories: Defect Man-
agement, Wear Leveling Management, and Garbage Collec-
tion Management. The novel memory controller-host inter-
action described in this disclosure provides a unique ways of
handling these management functions in a way that can be
customized to the specific implementation. That is, a single
memory controller design can support a number of config-
urable options (or modes) for allocating responsibility for
these tasks as described below. Prior to discussing these
options, however, it would first be helpful to revisit some of
the capabilities provided by the structure described above.
Once again, in one embodiment, information can be tracked
by the memory controller and made accessible to the host in
amanner that helps reduce reliance on a memory controller to
maintain detailed address translation tables. That is, for pur-
poses of the discussion below, it should be assumed as a
default that (1) the host maintains a reasonably-accurate
understanding of physical location of data in flash memory
and is thus capable of directly addressing data to the specific
physical locations in memory at which the data will be stored,
and (2) many of the operations which might traditionally
compete with host read/write requests will instead be man-
aged by the host, i.e., such that tasks are schedule so that there
is no competition.

[0090] 1. Capabilities.
[0091] a. Wear-Aware Writes.
[0092] Asdiscussed above, the host can issue commands to

the memory controller requesting a listing of space that is
available for writes, that is, either EUs that are erased, or
pages in EUs that are not yet written to following an erase
operation; this information can be returned with wear data
used by the host to selectively direct new writes as a priority
to space that is relatively more virgin. That is, generally
speaking, the host need not track available space and in one
embodiment can simply at any time request an update of
available space by explicit command to the memory control-
ler. The host can rely on this information for a period of time
(e.g., until its list of available space grows low) and the host
can then schedule garbage collection and erase operations at
a time convenient to the host.

[0093] FIG. 7 shows flow for a method 701 by which a host
targets writes of new data to specific physical addresses in
flash memory. The method begins at 703 in FIG. 7. Note that
invocation of the method can be triggered by the need for an
application or an operating system to write data to memory,
per numeral 705. The host is responsible for having a list
on-hand with available free space; this list can be periodically
updated by the host by query to the memory controller, e.g.,
after an erase operation is performed. Note that a steps asso-
ciated with such a query are illustrated in phantom-line boxes
in FIG. 7, i.e., are designated by function blocks 707, 709 and
713. That is, optionally in connection with an erase operation,
the host requests the memory controller to identify all free
space, sorted or prioritized in order of least wear; this listing
is determined by reference to the memory controller’s meta-
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data repository 711. In a system having multiple SSDs, the
host can maintain a dedicated table for each SSD or, alterna-
tively, it can instead build a table spanning memory space for
multiple SSDs using sorted information from each SSD.
“Available space” or “free space” in this context refers to
space that has previously been erased in flash memory but has
not yet been written to, meaning it is available for immediate
programming (i.e., writes). Per numeral 715, the host then
chooses a write address for data based on the list. Note that
other priority schemes besides those listed above can also be
used; as a non-limiting example, space can also be assigned
for writes based on data type (e.g., specific file types) and
other criteria, tracked or otherwise. After selecting a suitable
destination address, the host then issues a write command to
the memory controller specifying a desired physical address
within flash memory, per numeral 717. As indicated by func-
tion block 719, the memory controller then manages the write
process and, once successful, returns a code to the host con-
firming a successful write. The memory controller also
updates the metadata repository (711) stored for each perti-
nent EU (e.g., to indicate that the assigned space is now taken,
and to update any other tracked parameters regarding the data
or use of the particular memory space). As reinforced by
function block 721, the host then updates its own translation
tables (723) as appropriate, i.e., with little to no [.2P transla-
tion performed by the memory controller. In one embodiment
to be discussed below, in which a memory controller is to
perform its own defect management, the memory controller
can remap data and mark the intended physical address as
“bad” without immediately reporting this information to the
host advantageously, L.2P translation is restricted to few,
notable situations such as this. For a NVMe compatible
implementation, these processes can once again be imple-
mented with a vendor specific command. For example, the
host can issue a command requesting LUN ranges and the
amount of space that the host software is considering to
allocate. Upon successtul completion, the command returns a
list of erase unit size logical block address ranges, prioritized
by wear, and described by (LUN, offset) pair or single offset
value (if the LUN was specified in the host request). A
returned command status code can further specify whether
the requested amount of space was available, whether the
request was satisfied or whether further calls are required.
The host then directs its writes as appropriate, directly speci-
fying addresses for pertinent memory operations.

[0094] Note that writes targeted in the manner indicated
above will inherently tend to level wear in flash memory,
thereby reducing the need for wear leveling relative to some
conventional schemes. As further noted below, even with
such a scheme, asymmetric wear is possible and, therefore,
cold data detection and consequent data relocation is advan-
tageously performed even where wear-aware programming is
performed, ie., to perform “limited” wear leveling as
described above. Also note that because the host has or is
provided with direct physical addresses of free space, there is
no need (or greatly reduced need) for .2P address translation
at the memory controller.

[0095] b. Page Underutilization and Stale Space Reclama-
tion.
[0096] To address page utilization issues, including the

presence of stale (unused) data, the host can advantageously
enquire at any time as to the extent of page utilization and/or
aged data present in a flash device or SSD. First, note that
updates of memory content in flash memory is typically pro-



US 2014/0215129 Al

cessed as a copy-on-write operation, which writes updated
data to a new memory location, leaving the old memory
location in an unusable state (at least until the subject EU is
the target of an erase operation). Note that in the context of the
embodiments proposed herein, this operation can be per-
formed directly by the host, i.e., with the host reading data
from a first physical location, modifying that data, and writ-
ing the modified data directly to a different physical address
based on a listing of available space. Over time, EUs can
acquire greater and greater numbers of unused (released)
pages, and so, experience low page utilization. Also, as cer-
tain times, it can be beneficial to inquire as to infrequently
written data, so as to proactively assess whether any data
should remain at its current location. That is, while wear-
aware writes does effectively distribute wear, data that is only
infrequently changed (e.g., a media library) can still be effec-
tively tied up as infrequently written memory space while
other memory space is more frequently cycled. “Cold data”
detection processes (as well as “hot data” detection pro-
cesses) can therefore be run to identify this data and deter-
mine whether this data should be moved, and optionally con-
solidated with other data, or potentially moved to other
storage drives. This is to say, “cold data” can be moved to
better distribute wear in a given memory space, and if that
“cold data” has read/write characteristics similar to other
“cold data,” the respective data can be consolidated in one or
more specific EUs or moved to a different storage drive or to
another tier of a multi-tier storage system. This also enables
the host to better match data access patterns to media charac-
teristics, such as access latency or available capacity. Note
that shuffling various data based on type can help improve the
efficiency with which memory is used and also help better
distribute wear.

[0097] As withthe various schemes presented above, either
the host or both the host and the memory controller can
participate in this type of evaluation. For example, the host
can issue a command (e.g., a vendor-specific NVMe com-
mand) specitying an EU or a LUN or a range of memory
space. Upon successful completion of the command, the
memory controller returns information representing the
amount of capacity used by, e.g., cold data, either on a global
basis (e.g., by returning a map) or can identify “cold” or “hot”
status for a specific LUN identified by the host. The host can
also (or instead) instruct the memory controller to asynchro-
nously generate a notification any time data meeting a specific
“hot” or “cold” threshold meets a predetermined threshold.
For example, in one implementation, a cooperative memory
controller receiving an erase command automatically queries
EUs present in the pertinent memory space to determine
whether a deviation exists from a target wear level (e.g., based
on erase count deviation). The memory controller can also
provide other types of asynchronous updates to the host, for
example, in response to a periodic cold data check, with either
raw metadata being returned to the host, or with the memory
controller performing a query and returning pertinent data
(e.g., an indication that data at a specified location does not
meet thresholds such that it would be considered “cold”).
Other operations are also possible. As with the schemes iden-
tified above, logic on board the memory controller receives
the pertinent command, and sets registers and initiates rou-
tines as necessary to synchronously or asynchronously pro-
vide the requested data.

[0098] In some embodiments, as mentioned, the host is
provided with the ability to request stale space identification
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either for a flash memory as a whole, or for a specific LUN
range. A function call to this effect can be implemented with
a vendor-specific command that returns the list of EUs
described by one or more offset values (e.g., based on an
offsetto a LUN if a LUN was specified in host request). Host
software can proactively use this method to assess units with
stale data or in the context of a request for relocation candi-
dates. Such a synchronous process could be advantageously
applied in response to capacity pressure or other situations
requiring immediate action. Asynchronous processes can
also be used, for example, pursuant to a host command that
the memory controller is to notify the host any time global
page utilization, EU-specific utilization, or available memory
space match host-specified thresholds. Note that in a storage
system having multiple drives, a host can choose the most
suitable destination for data relocation, potentially including
another drive. For example, a host can elect to relocate data
from one SSD onto another SSD, or even onto another
memory type (e.g., a HDD). If host chooses to relocate valid
or “cold data” within the boundaries of the flash memory
device where this data resides, these techniques provide a
method to relocate data without first reading it into host
memory, thereby saving 10 bandwidth and other system
resources. That is, the host can delegate a data relocation
operation to the memory controller; with such an operation,
the host first queries the memory controller for a list of free
address space (optionally meeting some criteria), schedules a
relocation and then (at the appropriate time) provides a relo-
cation command to the memory controller, with both source
address and target address specified.

[0099]

[0100] A delegated copy operation can be scheduled by the
host in a manner (a) so as to not collide with ongoing data
operations, and (b) without requiring movement of the
affected data either to or from the host. Such a process is
illustrated in FIG. 8 by reference numeral 801. More specifi-
cally, the host first determines that it needs to relocate or copy
data, per reference numeral 803. As a non-limiting example,
such an operation could be performed for an EU determined
to have one or more defective memory cells. Alternatively,
such an operation could be performed if page utilization for
two or more EUs is low, and the host wants to consolidate
“valid” data so that one or more EUs can be erased, thereby
freeing all pages or other logical blocks associated with that
EU. Still further, such an operation can be performed for cold
data, to move it to a new physical memory address. Depend-
ing on the amount of data that must be copied, the host then
identifies free space needed to hold the data to be copied, per
function block 805. This query can be satisfied, for example,
by retrieving information (e.g. a bitmap) representing all
space managed by the memory controller; alternatively, the
host can also query specific EUs or can indicate the amount of
space needed, with the memory controller returning a list of
available space. These options are generally indicated by
reference numerals 807, 809 and 811. With addresses for both
existing and recipient data locations identified, the host then
issues a command (813) containing these addresses for the
memory controller to perform a delegated copy operation. As
an optional, implicit part of this command, the memory con-
troller can be configured to release pages of the original
source addresses following such a copy operation; note that
with pertinent pages “released,” the prior memory locations
are in a condition where they cannot be written to until the
entire EU associated with those pages is first erased. As

i. Delegated Copy/Data Relocation.
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another optional command feature, the memory controller
can be configured to automatically check whether such a
release completely releases the pertinent EU (i.e., as arelease
of'the “last page”) and to initiate an erase operation for the EU
if this is the case. The memory controller then (815) returns a
code to the host confirming successful write and updates
metadata for the pertinent EUs. Finally, per numerals 817 and
819, the host updates its translation tables such that the host
can directly address physical locations of memory, thereby
freeing the memory controller from the bulk of translation
duties.

[0101] In one embodiment, a vendor-specific NVMe copy
command can be used to specify a source logical or physical
block address and destination logical block or physical block
address. Multiple pairs of source and destination addresses
can be specified by a single command; if such pairs are
specified, any such copy operations are executed transpar-
ently by the memory controller until the argument list is
exhausted or until the operation fails.

[0102] Note that a delegated copy operation as just
described can provide substantial performance benefits, i.e.,
the memory controller is relieved from the bulk of address
translation duties, with the host being primarily responsible
for issuing commands that directly specify physical address.
Furthermore, the use of the delegate copy operation charges
the host with scheduling of copy operations, with the memory
controller being responsible for completing a delegated copy
operation once issued; since the host is in charge of schedul-
ing such a command, it can once again pipeline command
issuance so as to no unduly interfere with read and write
operations, and it can hide a delegated copy operation behind
operations in other memory (e.g., other planes or SSDs).
Delegating the copy operation to the memory controller frees
up host-controller interface bandwidth that might otherwise
be consumed by the need to send data to be copied from the
controller to the host and then back from the host from the
controller.

[0103] 1ii. Explicit Erase.

[0104] Memory bandwidth competition between host and
memory controller can be further reduced through the use of
an explicit erase command. That is, one optional design takes
scheduling of erasing of flash memory out of the hands of the
memory controller and vests it directly with the host. The host
therefore pipelines issuance of explicit erased commands at
times when flash memory (e.g., a particular SSD) has band-
width to process such a command; as before, in an implemen-
tation featuring multiple drives, a host can hide (stack) an
explicit erase of one SSD behind data operations to another
SSD. Note that in a multidrop or other shared command path
system, such an embodiment can interleave commands across
multiple SSDs (each having their own memory controller),
such that explicit erase operations are performed in one or
more SSDs while data is exchanged in the performance of a
write or read command in a different SSD (e.g., with data
being exchanged over a shared data path).

[0105] FIG. 9 illustrates a method 901 for explicit data
relocation and/or erase operations. The host schedules an
explicit erase operation to occur either immediately, or when
it has sufficient spare bandwidth. As indicated by numeral
903, typically this will be triggered by a condition when the
host needs space (e.g., of amount X). The host then issues a
command (905) to the memory controller querying erase
candidates based on low degree of page utilization. Note that
with such a command, available space is not counted, i.e.,
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such space is already free and available rather, in responding
to such a query, the host seeks to identify space that is released
(not in active use) and for which an erase operation must be
performed for entire EUs before constituent space can once
again be made available for programming. An explicit erase
command or data relocation command (e.g., delegated copy,
referenced above) can be performed as part of a garbage
collection operation.

[0106] As with commands discussed previously, synchro-
nous or asynchronous commands can be issued by the host,
depending on desired implementation. Where the host imme-
diately needs free space, it can issue a synchronous command
to the memory controller, for example, requiring a listing of
units where page utilization falls below a specific threshold
(e.g., any EU where released page space is greater than a
threshold, e.g., 50% of an EU’s capacity). Many choices of
metric are possible, and in some embodiments, complex con-
ditions can be evaluated (e.g., EUs where more than 50% of
pages are released, but where less than 10% of space is cur-
rently available). In response to such a command, the memory
controller returns a listing of EUs (or logical units), sorted by
any desired priority scheme (e.g., by lowest amount of wear).
Asynchronous commands can also be issued, as represented
by numerals 907, 909 and 911, seen at the right of FIG. 9. For
example, some designers may chooseto set a condition where
the memory controller unsolicitedly sends an alert to the host
any time “available space” tracked by the memory controller
falls below a specific threshold, e.g., less than 10% of total
capacity managed by that memory controller. Alternatively,
the memory controller can be configured in some implemen-
tations to alert the host in connection with any page release if
that page release causes the subject-EU to have more than a
specific released page threshold. As yet another example, a
memory controller can be configured to notify the host any
time overall memory (under) utilization (e.g., released page
count to valid page count) exceeds a specific threshold. Com-
mands that invoke these functions are examples of asynchro-
nous commands, because the memory controller might
respond immediately (e.g., if the specified condition were
already satisfied) or at a later point in time (e.g., at a time of
later occurrence of the condition specified by the command).
As noted by numeral 913, a delegated copy command can
then be executed by the host to relocate any valid data in an
EU selected for an erase, with all constituent pages of that EU
then being released. Then, per numeral 915, the host issues an
explicit erase commands; the memory controller manages the
erase operation (e.g., as a sequence of P/V cycles applied to a
substrate well of affected memory) and returns a code to the
host confirming successful erase (917). In a NVMe-compat-
ible embodiment, an explicit erase command can be imple-
mented using a vendor-specific extension of the “Deallocate”
administrative command. The memory controller at this time
also updates its local metadata repository for the memory in
question, for example, identifying all logical units of the
pertinent EU as “available,” adding the EU to a list of avail-
able space, and so forth. Finally, upon receipt of the confir-
mation code from the memory controller, the host then
updates its translation tables as appropriate (919/921).

[0107] Note that once again, explicit erase provides a ben-
efit in that this operation is scheduled by the host (i.e., to avoid
conflicts), with the host maintaining primarily responsibility
for L2P address translation.
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[0108] c. Determination of Geometry and Physical
Addressing.
[0109] To facilitate cooperative flash management and oth-

erwise permit the use of discrete storage drives, a cooperative
host and/or cooperative memory controller can provide a
mechanism to permit the host to have insight into flash array
geometry. To this effect, the host can request (or the memory
controller can transmit to the host) information indicating the
type of memory present, capabilities of the memory control-
ler and other parameters. Such a task can be implemented
with a vendor-specific extension to the NVMe Identify Con-
troller command, where the memory controller responds by
returning information such as the number of channels, targets
per channel, LUNs per target, and number of EUs per LUN,
and whether the memory controller supports specific man-
agement schemes for defect management, wear leveling or
garbage collection, discussed below. Geometry information
can also additionally include physical EU and page size, as
well as many other types of information. This information can
be used by a host to configure operation with the particular
memory device or drive, and to configure wear leveling, gar-
bage collection and other schemes as appropriate. For
example, the host and/or the memory controller can upon
power-up request device configuration, and can then set the
pertinent scheme(s) by responsively configuring a mode reg-
ister. The pertinent scheme can be selected according to
policy (e.g., based on the configuration of memory available
or other system requirements).

[0110] 2. Management Tasks: Configurable Allocation of
Responsibilities.

[0111] A cooperative memory controller and cooperative
host can generally support a host-owned, memory controller-
owned, or shared schemes for managing various tasks asso-
ciated with flash memory. The particular choice of configu-
ration is an implementation choice, and can depend in any
given system of the type of data being managed, desired
performance parameters, file management or network poli-
cies, or other factors. For example, a music server or video
server application (e.g., where data has read-mostly charac-
teristics and where data is read intermittently) might be more
amenable to a host-owned scheme than to a memory control-
ler-owned or shared scheme.

[0112] a. Defect Management.

[0113] Flash memory, as with any storage media, is poten-
tially subject to data errors. While read errors are proactively
handled using EDC techniques, write and erase errors may
occur at random over the device lifetime, with some units
initially marked unusable (i.e., bad) and others being initially
good, but later being found to be bad and marked as bad over
time. These units, whether initially bad or later marked as bad,
are tracked by either the flash memory controller or the host
so that writes of data are not directed to these units. Thus, a
cooperative memory controller and host will typically sup-
port a scheme for managing defects which are detected in
flash media. As with other management functions, whether a
given implementation uses host-owned, memory controller-
owned or shared defect management can be configured
according to preference, for example, adapted at initial
power-up (for example, in dependence on detected device or
system geometry, policy and other considerations), via the
programming of a mode register. For example, the registers
illustrated in FIG. 3 A can be used for this purpose. Note that
in each mode or scheme discussed, the memory controller
will still typically provide some form of cooperative input to
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the host, for example, by serving stored metadata, providing
functional returns to host-initiated queries, using on-board
storage for metadata and associated processing logic. That is,
a cooperative or shared management task should not be con-
fused with a cooperative memory controller that provides
certain functional services (e.g., including the serving of sub-
division-specific data) that can be electively used by the host.
[0114] i. Host-Owned Defect Management.

[0115] For host-owned defect management, units marked
unusable by the chip manufacturer are identified during first
time device initialization. Host software is then expected to
query the flash memory controller or the flash memory for this
defect list using the method provided by the controller.
[0116] In an embodiment where host-controller communi-
cations are NVMe compatible, the host software and flash
memory controller can interact using a vendor-specific Get-
LogPage command. When issued by host software, such a
custom command is structured so as to return a log page
describing logical address ranges marked as unusable, with
each range identified by starting logical block address and the
length in logical blocks (e.g., in pages where a page is the
logical block size identified by the host). Recording defect
areas so as to proactively manage further read and write
access to the correct address is then the responsibility of the
host. Note that the effect of such host-owned defect manage-
ment is that once again, there is no need for L2P translation at
the memory controller—the host registers and tracks defects
and consequent changes in physical locations of data, and
then it directly accesses that data as appropriate.

[0117] Subsequent write errors that occur can be incremen-
tally reported back to the host software without further
memory controller involvement. Such general interaction is
generally designated by reference numeral 1001 in FIG. 10A.
Generally speaking, the host first initiates a write command,
per numeral 1003, and the memory controller detects the
occurrence of a write error, for example, a timeout after
reaching a programming limit (e.g., maximum write time out
or number of program-verify cycles); this write error is then
reported back to the host (1005). The error condition is then
recorded by the host (1007) so as to avoid further writes to the
area in error, with writes directed by the host to another
location. The host marks the unit (EU or other unit as bad). In
addition, any memory operation retry in this mode is advan-
tageously controlled and performed solely by the host soft-
ware, with the memory controller confirming a successful
write to the host and also updating local metadata for cor-
rectly written data (and optionally, for the bad blocks as well).
Note that, once again, the fact that the host updates translation
tables so as to avoid future writes to the location avoids the
need to maintain [.2P translation infrastructure at the memory
controller (1011, 1013). When configured to execute in this
host-owned defect management mode, the controller does not
need to reserve any spare for defect area remapping and thus
can advertise full device capacity to the host, such that the
memory controller is not required to implement even a mini-
mal [.2P capability for this mode. That is to say, the memory
controller need not reserve spare capacity since all address
assignment and defect tracking is owned by the host, i.e., such
that there is no form or remapping performed by the memory
controller and all physical address assignment to new writes
is exclusively owned by the host.

[0118] When the host owns defect management, the
memory controller is typically inhibited from attempting a
unit erase operation due to the inability to handle erase errors
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that could occur. To overcome this issue, for host-owned
defect management, the host explicitly initiates all erase
operations, with a status code returned to the host software
that specifies whether the erase operation completed success-
fully or failed. Recording the unit that experienced an erase
error so as to avoid further writes to a “bad” EU is then once
again the responsibility of the host.

[0119] Note that it was referenced above that the memory
controller, the host, or both can track lists of free erase units.
In connection with defect management, a reserve of available
space is kept on hand in order to provide a pool for immediate
reassignment of writes when a defect is detected. Such a list
can be implemented in a manner that supports midstream
insertion of an EU after erasure. In one embodiment for
example, when spare capacity is low, the host can initiate an
operation that identifies candidate blocks for erasure in a
given memory device or drive. A memory controller sharing
responsibility for defect management might already be
charged with managing a list of erased units that it holds for
spare capacity. A cooperative host can identify pages with low
page utilization, move any active data, instruct the erasure of
associated EUs, and instruct the memory controller to add
newly erased units to its list of free pages. If desired, this list
can be organized according to a desired priority criteria, e.g.,
as a FIFO list, according to wear, or using another priority
scheme. In one embodiment, the list can be organized as a
B-tree, or alternatively, as a hierarchical doubly linked list.
[0120] 1ii. Shared Defect Management.

[0121] While providing host software with complete con-
trol over media defects, host-owned defect management can
exert an extra burden of defect list management on the host
software; this may be undesirable for some applications.
Shared responsibility for defect management using principles
of this disclosure can instead be used. That is, the memory
controller can be used to monitor and track errors and other
parameters, leaving error detection and/or defect list manage-
ment to the host.

[0122] In one embodiment, write errors as they occur are
reported back to the host software. Host software can then
instruct the memory controller to mark the particular physical
block of memory cells associated with the error as bad. In a
NVMe context, such a method can be performed using a
WriteUncorrectable command that, when issued, instructs
the controller to add a specified logical block address range to
the bad block list, maintained in storage of the memory con-
troller.

[0123] Units marked unusable by a chip manufacturer can
be identified during first time device initialization and saved
in the defect list in the controller’s internal memory. The
memory controller preferably further guarantees persistence
of'the defect list across power-cycles, so that defect informa-
tion is always up-to-date. Host software is permitted to
inquire at any time whether a given address range or block has
been previously marked as bad, or to query the memory
controller for the complete defect list. In a NVMe embodi-
ment, such a query can once again be implemented with a
vendor-specific NVMe administrative command.

[0124] As seen in FIG. 1013, as with host-owned defect
management, a cooperative memory controller can once
again provide for an write operation to be initiated by host
software (1023), with an alert code being returned in the event
that the write operation failed (1025). Host software may then
request the memory controller to identify the bad unit in the
memory controller’s defect list and the host then attempts a

Jul. 31,2014

rewrite (1027). Once again, once the retried write is success-
ful, both the host and the memory controller update transla-
tion tables and metadata respectively (1029, 1031, 1033). As
before, because the host is informed of a failed write and
locally maintains precise physical address identifiers for each
page in flash memory, the memory controller is substantially
freed from having to provide for an L2P mechanism. When
configured for cooperative defect management, a memory
controller once again does not need to reserve any spare
capacity for defect area remapping, and can instead advertise
full device capacity to the host software.

[0125] Insome embodiments, host software can be permit-
ted to classify an EU or a smaller address range as unreliable
due to read error detected using the additional data integrity
features mentioned earlier or other host-specific features.
Host software can therefore be provided with an option to
request that this range to be added to the defect list using the
method described above. This option provides for greater
flexibility in error detection and correction at a system level.
[0126] 1iii. Memory Controller-Owned (Transparent)
Defect Management.

[0127] Insituations where the memory controller manages
defects, when write or erase errors occur, they are not reported
to the host software unless the controller is out of spare
capacity (e.g., to remap data). That is, if sufficient spare
capacity exists, defective areas are automatically remapped
by the memory controller, transparent to host, and added to
the defect list maintained by the memory controller. This
configuration is represented by FIG. 10C, and is generally
denoted using reference numeral 1041.

[0128] Asbefore, a defect is detected in the event of a failed
write (1041, 1043). The memory controller detects this error
and updates local metadata (1045). However, in this mode,
the memory controller does not immediately notify the host.
Rather, the locally maintained metadata is updated in a man-
ner that flags a remapping situation, and the memory control-
ler reserves some spare capacity for redirected writes. The
memory controller also updates a locally-maintained bad
block list (1047); note that as indicated in FIG. 10C, each of
these pieces of information can be once again maintained on
a per-EU or per-logical unit (LU) basis. When the data is
correctly written to substitute EU(s), the memory controller
returns a code indicating completion of a successful write
(1049). Per function blocks 1049 and 1051, ensuing reads to
the remapped data are detected by the memory controller,
which detects correspondence of a read address with the
physically-defective “bad” block, transparently obtains the
remapped address from the metadata associated with the bad
block, and services read requests directly from the remapped
space. Note that when configured in this mode, the memory
controller continues to store information tracking usage for
each subdivision of memory, and continues to serve this infor-
mation to the host. The memory controller can also provide
query capability as referenced above. As use of the memory
progresses over time, and as wear leveling and garbage col-
lection occur, the host will be informed of new available
memory that does not include marked “bad” blocks; as a
consequence, physical address assignment for new writes
ultimately moves remapped data to a different memory loca-
tion, thereby avoiding the “bad” blocks. In turn, this results in
the host once again having a direct physical address for the
data in question (1053, 1055). In other words, irrespective of
the fact that the memory controller owns defect tracking in
this scheme, the extent of L2P remapping is advantageously
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both minimal and self-limiting. The host manages address
translation for data reads, but because defect space in practice
will be limited, the memory controller should not require
large search trees or other complex mechanisms to perform
address translation.

[0129] When spare area reserved for defect remapping is
exhausted, the controller issues an alert to the host or other-
wise flags an error condition to draw the attention of the host.
In a NVMe-compatible embodiment, such an alert can be
raised with an asynchronous event notification. The host soft-
ware can then take the appropriate actions such as switching
to another supported defect management mode, initiating
garbage collection or data relocation, or using some other
process.

[0130] Note that if spare capacity is exhausted, this even
can threaten and potentially halt normal device operations. To
overcome this potential issue, a cooperative host can be per-
mitted to poll the spare capacity for defects in any flash device
or drive, or set a state that requests asynchronous notification
if spare capacity for defects falls below a host-defined thresh-
old. Methods for host software to detect this management
condition are described above.

[0131] Also, as alluded-to above, the host can also take
management action to increase the amount of defect spare
when a defect-spare management condition is detected. That
is, host software may proactively address potential spare
capacity run-out by improving spare capacity by, for
example, initiating space reclamation, garbage collection or
data relocation operations or using another process that can
improve usable device capacity.

[0132]

[0133] As discussed earlier, a page in NAND flash memory
cannot be rewritten until an entire EU including that page has
been erased; this is the P/E asymmetry referred to earlier.
Some flash memory controllers operate by detecting an
attempt to write to a previously-written page (i.e., a page that
has already been programmed but not yet erased) and respon-
sively implementing a copy-on-write operation. With such an
operation, the memory controller remaps the page or other
logical quantum of data by remapping it to erased location.
Over time, the number of unused pages grows without any
free space being reclaimed due to the P/E asymmetry. To
reclaim released space, memory controllers are periodically
forced to run a garbage collection task, where they locate and
consolidate partially used erase blocks to reclaim space. Con-
ventional garbage collection practices can require substantial
reserved buffer space, up to 20% of available storage capac-
ity, to compensate for non-reclaimable released space, and
can compete with write coincidentally initiated by the host.
Performance penalties associated with these conventional
practices management can be especially pronounced when
page utilization exceeds 50-60%.

[0134] Host-owned and shared garbage collection tech-
niques permit significant reduction of these performance pen-
alties and associated overhead. As before, in one embodi-
ment, a cooperative memory controller and/or cooperative
host can be made configurable so as to support host-owned,
memory controller-owned, or shared garbage collection man-
agement responsibilities. Host-owned and shared garbage
collection techniques are discussed with reference to FIG.
11A, while memory controller-owned techniques are dis-
cussed in reference to FIG. 11B.

b. Garbage-Collection Management.
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[0135] 1. Host-Owned and Shared Garbage Collection.

[0136] In a host-owned garbage collection process, gener-
ally designated 1101 in FIG. 11A, the host can assume full
control and responsibility for garbage collection, including
released space accounting, candidate unit selection, and relo-
cation of valid (active) data. The operation is initiated when a
host process detects a threshold condition related to garbage
collection, as referenced by numeral 1106. Unit erase opera-
tions and actions to reclaim free space are thereafter initiated
by host software with an explicit erase command, for
example, as described in connection with defect management
above. The host is further expected to appreciate P/E asym-
metry, to track released pages for each unit, and to apply any
garbage collection candidate identification logic to ensure the
desired amount of free units or available capacity. All of these
functions can be facilitated via the information stored and
made available by the memory controller presented by this
disclosure, and the queries that can be run to such a memory
controller. That is, the memory controller can provide page
utilization information to the host, which can determine
scheduling, pull data, issue erase commands and rewrite data
as necessary. Based on this information, the host schedules
garbage collection and selects both source locations and des-
tination locations for any data that is to be relocated (1115).
As indicated by dashed-line block 1117, if supported by the
particular implementation, the host can delegate a copy
operation, for example, as was discussed earlier. Such an
implementation has the advantage that a data relocation
operation does not require moving data back and forth to and
from the host, and thus, does not encumber a data communi-
cation path between the host and the controller. Alternatively,
if it is desired to copy the data to the host (e.g., to move data
to another SSD), the copy/relocation operation can be directly
performed by the host. When data is properly written as part
of such an operation, the memory controller returns with a
confirmation to the host and successfully updates its metadata
as appropriate (1119). As denoted by numeral 1121 and as
previously discussed, the memory controller can be config-
ured as an option to automatically release old pages that were
the source of relocated data, and to automatically erase any
EU for which the last page has been released. Alternatively, if
this function is not automatically performed, the host then
issues an explicit erase command 1123, and the memory
controller then returns a code indicating successful erase. Per
numerals 1125 and 1127, as the host schedules the operations
and is informed of associated physical addresses, the host can
once again directly update its own translation tables, without
need for a complex translation mechanism at the memory
controller.

[0137] Dashed-lines in FIG. 11A are also used to discuss
shared responsibility for garbage collection management. In
addition to host detection of a threshold condition relating to
garbage collection, this can also be performed at the memory
controller (1105), as a default function or programmatically
configured as a result of an asynchronous command from the
host. The first task associated with garbage collection scheme
is the identification of released, but not erased, memory space
present. Accordingly, the host is advantageously provided
with the ability to query each flash memory controller present
in a memory system as to whether such space is present.
Again, this information can be returned in the form of a map
or in a manner specific to ranges of addressable memory
(1111). In addition, a cooperative memory controller can also
be configured to return general metrics such as the extent of
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page utilization or the number of released pages for a memory
device in general. This latter information could be used by a
host, for example, in selecting a specific one of multiple SSDs
as a garbage collection operand. Further, these techniques can
also be performed unsolicitedly, for example, they can be
triggered automatically by a different type of command or in
connection with an asynchronous process; otherwise stated, a
different type of command can trigger an alert of the sending
of data to the host as a result of a metadata update that causes
specific metadata to satisfy a threshold.

[0138] In one embodiment, the ability to query a flash
memory controller is implemented with vendor-specific
NVMe command specifying a particular LUN, or requesting
a return of information for an entire flash memory device or
drive. Upon successful completion of the command, the
memory controller returns information to the host represent-
ing the amount of released space that may be reclaimed and
the amount of valid data that needs to be relocated for recla-
mation to happen. In yet another embodiment, the memory
controller can asynchronously notify the host when released
non-reclaimed space reaches a predetermined threshold. For
example, a host can issue vendor-specific NVMe asynchro-
nous event request to a particular memory controller that
specifies a threshold reclaimable space needed to trigger alert
of'the host. The flash memory controller then responds asyn-
chronously when it detects the specified condition, notifying
host software of the condition and delivering condition spe-
cific information.

[0139] As mentioned, as an option, the host can query
(1109) the memory controller for a suggestion of suitable
garbage collection candidates. Logic on board the memory
controller receives this requires, processes stored metadata
(1111), and responds as appropriate (1113). For example,
depending on implementation, a response can identify a pre-
determined number of EUs in order of page (under) utiliza-
tion. Alternatively, the response could rank all EUs in the flash
memory being managed in order of suitability for garbage
collection. As a further option, if the host command specified
an amount of space to free up, the memory controller could
return an identification of EUs which, when consolidated,
would provide the specified amount of free space. Other
options are also possible. As with other functions described
above, the memory controller services this query by process-
ing on locally stored information (e.g., metadata, 1111).

[0140]

[0141] Memory controller-owned garbage collection typi-
cally requests some type of L2P tracking local to the memory
controller and it therefore entails different considerations
than the embodiments discussed above. Nevertheless, a
skilled designer could implement such a scheme in a manner
consistent with a memory controller that tracks and serves
information (e.g., metadata) for host access. FIG. 11B depicts
one possible method (1141) of managing this process. More
specifically, amemory controller detecting a need for garbage
collection (1143) performs local space consolidation, data
relocation and erase operations (1145). In association with
these actions, the memory controller updates its local meta-
data (1147) and transmits a consequent logical to physical
mapping back to the host, together with metadata that enables
the host to perform a reverse lookup and consequently build
its own address translation table for files (1149, 1151, 1153).
Thereafter, the host performs memory operations (such as
read commands) based on the physical address of data.

iii. Memory Controller-Owned Garbage Collection.
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[0142] Other schemes consistent with memory controller-
managed garbage collection are also possible; a designer,
however, wishing to minimize control overhead associated
with managing flash memory, not to mention avoiding [.2P
overhead on a flash memory device, will typically elect the
clear advantages presented by the host-owned and shared
configurations discussed above.

[0143] c. Wear leveling Management.

[0144] As noted earlier, flash memory typically can sustain
a limited number of P/E cycles, e.g., tens to hundreds of
thousands. As the number of times the unit was erased
approaches the manufacturer defined limit, the unit wears out
and finally becomes unusable such that data cannot be
retained.

[0145] The cooperative management techniques of this dis-
closure permit host software to take full or partial responsi-
bility of wear leveling. As before, a cooperative memory
controller and/or cooperative host can support configuration
of a host-owned, memory controller-owned, or shared wear
leveling scheme. Also as discussed before, the pertinent
scheme can be selected in dependence on a mode register or
system configuration process or at system design time.
[0146] i. Host-Owned And Shared Wear leveling.

[0147] Host-owned and shared wear leveling schemes are
generally represented by FIG. 12A. Generally speaking,
whichever scheme is selected, the host can generally improve
wear leveling by performing wear-aware writes, as generally
denoted by reference numeral 1203. As mentioned, in some
cases, wear leveling might still sometimes have to be per-
formed, for example, due to differences in garbage collection
differently affecting “hot” and “cold” data. Generally speak-
ing, the need for wear leveling can be detected either by the
memory controller or the host, as represented by numerals
1205 and 1206; a number of measures can be used for this
purpose, such as a detection of a difference in EU wear for a
given memory range exceeding a predetermined threshold.
Alternatively, a statistical measure can also be used (e.g.,
statistical variance) to inherently apply a weighted measure
across the entire memory range being managed by a memory
controller.

[0148] For host-owned wear leveling, once again, the host
can poll a memory controller to request a bitmap from the
memory controller or can maintain its own tracked param-
eters representing uneven wear. Note that for many embodi-
ments, tracked wear parameters will be maintained at a loca-
tion consistent with where processes are run to detect wear
leveling, but it is also possible for example to host-monitoring
of wear based on memory controller-maintained metadata.
Irrespective of the source of the wear data, for host-owned
wear leveling, the host identifies candidate address ranges
that are to be redistributed or recycled. For example, if wear-
aware writes fail to evenly distribute wear, it could be that
cold data is being recycled differently than hot data; note that
this situation is slightly different than the issue of low page
utilization mentioned earlier, i.e., in this case, an EU might be
highly utilized for reads, but might have pages that are
released only infrequently. If this data is periodically moved,
then this underwritten memory can be used to dilute wear
attributed to frequently written data. The host can also con-
tinuously track such information and, irrespective of the
mechanism used to acquire data, the host monitors data to
detect occurrence of one or more threshold conditions relative
to wear (1206). With host-owned wear leveling, host software
assumes full control and responsibility for scheduling and
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initiating wear leveling, and for selecting source data
addresses and destination addresses associated with copy
operations (1215). Once again, the host can perform copy
operations itself, pulling data back to the host (e.g., for trans-
feral to another drive), or it can issue a delegated copy com-
mand as discussed above (1217). Successful operations are
confirmed by the memory controller and also form the basis
of'updates to metadata (1219, 1211). Release of source pages
for copy operations and unit erase operations are again initi-
ated by the host software (1221), for example using an
explicit erase command, as described above. When old space
is erased and available to receive new data, the memory
controller provides a confirmation code to the host (1223),
which can then serve as a recipient address for another data
copy/relocation operation. Note that many types of tracked
data can be used to assist in wear leveling management, for
example, tracked metadata representing data type, read fre-
quency, write frequency, and other measures can be consid-
ered in determining whether data is “hot” or “cold,” and thus
whether data should be moved. Also note that with the men-
tioned confirmation codes, the host once again advanta-
geously maintains a current list of physical addresses for all
data stored in flash memory, updated as appropriate following
transaction completion (1225, 1227). The use of these physi-
cal addresses in association with file structure by the host will
be discussed further below in connection with description of
an exemplary storage server.

[0149] FIG. 12A also represents a scheme for shared
responsibility over wear leveling. In such a scheme, the host
can be permitted to query the memory controller as to what
units are most suitable for allocation based on wear consid-
erations (1207, 1209, 1213). A synchronous command can
once again be used (1209) to cause the memory controller to
run a query based on stored metadata (1211) and to return a
result to the host (1213); as indicated in FIG. 12A, this result
can be expressed in the form of a list that identifies a “sug-
gestion” of candidate address ranges that are to be redistrib-
uted or recycled. Per numeral 1213, a list can be provided to
the host based on time since last write, low wear, and so forth.
The host can then explicitly direct new writes to specific EUs
or other physical units based on this information. In addition,
the memory controller can also be programmed using an
asynchronous command to alert the host when a predeter-
mined wear threshold or set of thresholds is achieved (1205).
Note that, as discussed elsewhere herein, some limited L2P
mapping can still be performed by the memory device, but
with the use of direct addressing, it is expected that translation
issues can be greatly minimized, thereby greatly reducing the
possibility of memory controller task competition with host
requests.

[0150]

[0151] A storage system can also implement a scheme
where wear leveling is managed by the flash memory con-
troller; the memory controller manages wear detection trans-
parently to host by itself detecting the need to remap units to
ensure uniform wear distribution. In one embodiment, the
host can then schedule wear leveling (e.g., data relocation and
unit erase), and in a second embodiment, the memory con-
troller can transparently schedule and one or both of these
functions. Such schemes still have context in a cooperative
host-controller management scheme. For example, a memory
controller transparently scheduling and performing data relo-
cation can periodically report new L.2P mappings to the host,
which then implements direct physical addressing as indi-

ii. Controller-Owned Wear Leveling.
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cated earlier. Further, a memory controller can still make
metadata available to the host for most other management
functions, for example, cold data relocation via both asyn-
chronous and synchronous mechanisms described above. It
should be noted though that if a memory controller transpar-
ently manages these functions, the functions can potentially
collide with other host requests unless measures are taken to
avoid collision; for this reason, in many embodiments, sched-
uling of wear leveling and other operations involving data
relocation, unit erase and so forth can advantageously be
reserved to the host.

[0152] Memory controller-owned wear leveling typically
utilizes some type of L2P assignment and tracking local to the
memory controller and it therefore entails different consider-
ations than the embodiments presented earlier. That is, such
an embodiment features additional overhead associated with
an [.2P translation mechanism in the memory controller; even
in a situation where such reassignment is limited (e.g., entire
EUs are simply remapped to spare EUs, such that for
example, internal page ordering is preserved), this can poten-
tially compete with host operations and create unpredictable
latencies. Nevertheless, a skilled designer could implement
such a scheme in a manner consistent with a memory con-
troller that tracks and serves information (e.g., metadata) for
host access. FIG. 12B depicts one possible method (1241) of
managing this process. More specifically, a memory control-
ler detecting disparate wear (1243) performs local space con-
solidation, data relocation and erase operations (1245); as
mentioned, these can be advantageously scheduled by the
host, with the memory controller then commanded to oversee
these operations at the scheduled time. In association with
these actions, the memory controller updates its local meta-
data (1247) and transmits a consequent logical to physical
mapping back to the host, together with metadata that enables
the host to perform a reverse lookup and consequently build
its own address translation table for files (1249, 1251, 1253).
Thereafter, the host performs memory operations (such as
read commands) based on the physical address of data.
[0153] Other schemes consistent with memory controller-
managed wear leveling are also possible; a designer, however,
wishing to minimize control overhead associated with man-
aging flash memory, not to mention avoiding [.2P overhead
on a flash memory device, will typically elect the clear advan-
tages presented by the host-owned and shared configurations
discussed above.

C. Shared Responsibility for Physical Address Management.

[0154] Insomeimplementations, it might be desired forthe
memory controller to assign physical addresses for new data
writes and then report these addresses back to the host; this is
to say, in such an implementation, the host might not have
architectural features required to assign physical addresses on
its end so as to account for in-flight IO operations and to
ensure maximum attainable device bandwidth utilization.
Under such circumstances, this task can be beneficially del-
egated to the memory controller. To minimize latency and
otherwise benefit from direct addressing in such circum-
stance, it is advantageous to provide physical addressing
assigned by the memory controller back to the host, in order
that the host can associate physical addressing with file-level
and other logical addressing structures and appropriately
update its L.2P translation tables. This is to say, as part of the
write operation, the memory controller extracts logical
address, assigns physical address, updates its tracked meta-



US 2014/0215129 Al

data to track these addresses, and then reports this addressing
information back to the host; the host, based on the logical
address it specified and the physical address(es) returned by
the memory controller, updates its tracked information so as
to maintain L.2P mapping. Such a process can also be used by
the memory controller to provide address information back to
the host in associated with a delegated copy or relocation
operation, and with forms of controller-managed wear level-
ing and garbage collection (if implemented).

[0155] In another embodiment, the memory controller fur-
ther cooperates with the host by keeping track of backward
address translations, known as back references. This enables
the host to derive logical addresses of the data block given
their physical addresses as returned by the controller in
response to queries such as used for managing garbage col-
lection (GC) and “cold” data relocation (e.g., WL) candidates
(e.g., suchthat the host is able to map new physical addressing
to the pertinent logical files and addresses). Where the host
software requires logical addresses to perform relocation
while at the same time missing back references, it can request
the controller to return, for each block range suggested in the
query response, the metadata provided by host software when
the block was written. That metadata, in particular, can con-
tain a physical-to-logical mapping allowing for the physical
block address as returned by the controller to be translated to
the logical block address used by the host storage software.
Once again, this permits the host to thereafter use physical
addressing, avoiding costly extraneous address translation in
the memory controller for IO operations. In one embodiment,
this scheme is supported by native memory controller hard-
ware and, once again, can be selected at initial power-up by
programming pertinent registers on board the memory con-
troller, such as the registers seen in FIG. 3B.

[0156] In a NVMe-compatible embodiment, both types of
addressing-related exchanges between the host and the
memory controller can be implemented using a NVMe logi-
cal block metadata exchange mechanism. To inform the host
of memory controller assigned physical addressing (i.e., L2P
correspondence), the memory controller specifies as part of
the logical block metadata vector the physical addresses
assigned to each logical block associated with the host write
command. To store the host-provided logical addresses for
subsequent retrieval and use (e.g., for GC or WL processes),
logical addresses are sent from the host to the memory con-
troller as logical block metadata accompanying a write com-
mand, and then are stored as part of the per-subdivision (e.g.
per EU) metadata storage maintained by the memory control-
ler for all managed memory.

[0157] Note that by using the NVMe logical block meta-
data structure, both types of exchanges retain the standard 10
addressing interface and are compatible with the NVMe
structure while at the same time providing the host with the
ability to specify appropriate (i.e., logical or physical)
addresses as needed.

[0158] Such a process is generally designated by reference
numeral 1301 in FIG. 13. In such a process, the host initiates
a write command to the memory controller, as generally
indicated by function block 1303. This write command speci-
fies a logical address. The memory controller, upon receipt of
this command, queries available space and assigns physical
addressing as appropriate to the new write data. It also
updates its local metadata storage with the pertinent informa-
tion, indexed by physical unit (1305, 1307). This is to say, the
memory controller maintains this information per erase unit
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(or other unit) information for the entire managed memory
space. In the case where physical units such as EUs or physi-
cal pages are tracked, the memory controller stores each
corresponding logical address as metadata for the pertinent
physical unit. As mentioned, in another embodiment, the
memory controller can also track this information in a manner
indexed by assigned logical unit (e.g. block or page). The
assigned physical address is then transmitted back to the host
(e.g., as a confirmation code), per numeral 1309, and the host
builds a [.2P translation table by processing this data. Finally,
the host updates its translation tables as appropriate (1313,
1315); as before, because the host maintains L.2P information
for all files stored in flash memory, it uses direct addressing
(i.e., addressing of physical units) notwithstanding the pres-
ence of the memory controller (1317). That is, the memory
controller is advantageously not encumbered by time con-
suming translation or address lookup mechanisms. Thus, for
delegated data assignment (or the other mentioned pro-
cesses), the memory controller can support residence space
assignment, while at the same time providing the benefits of
a physical access to specific addresses dictated by the host.
[0159] FIG. 13 also represents a process usable by the
memory controller in connection with garbage collection
(GC), wear leveling (WL) and certain other processes. That
is, in a scheme where the host manages physical addressing
(and specifies destination addresses for GC and WL pro-
cesses) but where the memory controller is charged with
suggesting garbage collection and/or wear leveling candi-
dates, the memory controller advantageously informs the host
of logical data correspondence associated with those candi-
dates at the time of making suggestions; in this manner, the
host missing back references can obtain logical addresses and
peruse its L2P mapping tables as part of the GC or WL
process. This functionality is various represented by dashed
line blocks 1310 and 1311 in FIG. 13, and by solid-line blocks
1313, 1315 and 1317.

[0160] Those skilled in the art will recognize that other
combinations of sole/shared management schemes other than
those shown above are also possible.

[0161] With basic implementation of a cooperative flash
memory controller and/or cooperative host thus described,
this disclosure will now proceed to a description of an exem-
plary storage system configuration, with reference to FIGS.
14-19.

III. Architecture of an Exemplary Storage System or
Subsystem.

[0162] FIGS. 14-19 are used to illustrate functions intro-
duced above in an exemplary storage system. It should be
assumed that a storage system or subsystem includes plural
storage modules or drives, at least one of which is based on
NAND flash memory solid-state devices (i.e., integrated cir-
cuits). A “drive” as used in this section denotes any grouping
of memory that has a common memory controller, meaning a
common interface that interprets commands and that directs
memory access operations and associated physical address-
ing to dies or other forms of memory as appropriate. A
memory controller can be in the form of an integrated circuit,
and a drive can be in the form of a memory module, board, or
other type of subsystem. Each drive can have one or more
memory integrated circuits, disks or other storage media that
are selected and accessed by the respective memory control-
ler. Other configurations are also possible. The storage sys-
tem can optionally be a hybrid or heterogeneous storage
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system; that is, the storage system can have plural drives, at
least one of these is NAND flash-based solid-state drive
(SSD), and one or more of these can optionally be a magnetic
drive, such as a hard disk drive (HDD). In the context of a
network-based storage appliance, the storage system or sub-
system can be configured as a storage server having plural
drives, each of which is a separate memory module.

[0163] As has been introduced previously, each SSD (and
optionally, each other drive) in such an embodiment supports
functional calls from the storage system to identify drive
geometry. In one embodiment, drives can therefore be made
interchangeable, with storage system dynamically adjusting
its practices for any particular drive and the system as a whole
according to whether the particular drive is a NAND-flash
based and according to drive geometry. This architecture
provides for host-controller cooperation in managing NAND
flash memory-based storage devices in direct-attached and/or
network-attached storage environments based on existing
host storage software features, with minimal modifications of
the latter. To that end, host storage software is modified and
configured (relative to conventional designs) to perform man-
agement tasks as required by unique NAND flash memory
requirements, with NAND-based storage device controller
providing supportive information and features needed. By
redefining host and controller responsibilities, with manage-
ment task control regained by the host storage software, and
each controller providing locally maintained metadata for
cooperative management task execution, host-controller
management feature duplication and associated disadvan-
tages are avoided.

[0164] FIG. 14 illustrates an exemplary system 1401. In
particular, a storage server 1403 receives requests for data or
to store data, and optionally, requests for processing that data
from one or more clients 1405. These clients each have
respective applications 1406 which generate the respective
data-related needs. The clients can each be desktop or laptop
computers, smart phones, pads or other devices, or other
types of digital systems. Each client 1405 sends requests to
the storage server 1401 and receives responses via a wide area
network, e.g., a local area network (LAN) or a wide area
network (WAN) such as the Internet. The storage server, in
turn, manages plural drives, each of which can be an SSD
(e.g., aflash based drive), a HDD or another type of drive. As
seen in FIG. 14, each drive also has its own dedicated memory
controller, either bundled together as a single assembly 1409,
or as separate devices; for example, assembly 1409 is seen to
include a SSD controller 1411 and a SSD 1413. To simplify
FIG. 14, a dashed-line box is shown only for assembly 1409.
The SSD controller 1411 can be a NAND flash memory
controller and the SSD 1413 can have one or more NAND
flash memory devices. FIG. 14 also shows optional presence
of other dedicate assemblies, 1415, 1417 and 1419, in this
case seen to include a second SSD, an HDD and another
unspecified type of memory, respectively. The collection of
memory is seamlessly managed as a storage aggregate 1421,
with the storage server managing scheduling for all drives so
as to avoid collisions with storage-server-directed reads and
writes, as described earlier. In this regard, the storage aggre-
gate and the host are bundled together to form the storage
server, but this is not required for all embodiments. The
storage server has a storage operating system that implements
a file system to organize the stored data as a hierarchical
structure of logical data containers (e.g., volumes, logical
units, directories and/or files) on electronic and/or magnetic
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storage media. It will be understood by those skilled in the art
that this description may apply to any type of special-purpose
computer (e.g., file server or storage serving appliance) or
general-purpose computer embodied as, or having, a storage
server or portion thereof. Moreover, the teachings of this
description can be adapted to a variety of storage server
architectures including, but not limited to, a network-attached
storage (NAS), storage area network (SAN), or a disk assem-
bly directly-attached to a client or host computer. The term
“storage server” should therefore be taken broadly to include
such arrangements.

[0165] The storage server 1403 includes a host processor
1423, which uses various buffers 1425 under the auspices of
the host software 1427 to schedule and manage memory
operations, including both memory transactions and memory
maintenance operations. The host maintains a local L2P
translation table so as to access files which can be fragmented
in multiple memory locations and potentially multiple drives.
The storage server also optionally employs policy-based
space allocation, supporting data- and media-characteristic-
aware data placement across the entire storage aggregate
1421. The storage server communicates with the clients 1405
via a network adapter 1431 and with the storage aggregate
1421 via a storage adapter 1433 (although it is also possible to
have all communications performed via network adapter or
otherwise remotely over a network such as a WAN or LAN).

[0166] In some implementations, the client(s) can issue
packets including file-based access protocols such as the
Common Internet File System (CIFS) protocol or Network
File System (NFS) protocol over TCP/IP when accessing
information in the form of files. In other implementations, the
client(s) can issue packets including block-based access pro-
tocols such as the Small Computer Systems Interface (SCSI)
protocol encapsulated over TCP (iSCSI) and SCSI encapsu-
lated over FC (FCP) when accessing information in the form
of LUNS or blocks. Also in some implementations, the stor-
age adapter includes input/output (I0) interface circuitry that
couplesto SSDs (1409 and 1415) and HDD (1417) overan IO
interconnect arrangement, such as a conventional high-per-
formance Fibre Channel serial link topology.

[0167] The storage server manages flash memory using a
log-structured copy-on-write file system, with physical block
addressing and wear-aware writes of new data (as has been
described earlier, e.g., in a manner that obviates need for an
extensive FTL layer on the side of the SSD and that better
distributes wear). The storage server is configured to access
NAND flash memory, such as in drives 1409 and 1415. using
physical block addressing, and to account for NAND flash
memory-based device wear-out, and to execute garbage col-
lection with associated valid data migration to manage
NAND flash P/E asymmetry and other NAND flash manage-
ment functions, all as referenced earlier. This is to say, each
flash-based drive such as assemblies 1409 and 1415 advan-
tageously have a cooperative memory controller that imple-
ments the principles described earlier. Depending on system
architecture, host software manages interaction with each
such controller. This architecture provides for host-memory-
controller cooperation in managing NAND flash memory-
based storage devices in direct-attached and/or network-at-
tached storage environments. For example, each flash-based
drive has a respective controller that serves information to the
host regarding each subdivision of the associated memory.
The storage server (in this case, the host) can manage wear
distribution across multiple drives to help lessen wear to any
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one area of memory; for example, in the context of the wear-
aware writes, the storage server can collect wear metrics for
all flash memory managed as well as for other types of non-
volatile memory, if present. The storage server can combine
bitmaps from multiple drives and can allocate if desired new
writes to a single drive only if needed to better distribute wear.
As mentioned, the host can also electively direct writes of
data based on policy, for example, in a manner that avoids
fragmentation or that groups certain types of data together
based on read-write characteristics. In one embodiment, each
SSD memory controller (such as controller 1411) is rooted in
a configurable architecture that depends on host capabilities,
policy, or other considerations. For example, in such an archi-
tecture, if the host processor does not support host-assign-
ment of physical addresses for new writes, the host configures
each SSD memory controller to perform this function and to
report back assigned physical addresses as described earlier.

[0168] FIG. 15 provides a flow diagram 1501 used to dis-
cuss some considerations used by the host processor of FIG.
14 in performing wear-aware writes and in managing
addressing. First, the host processor receives a trigger to write
new data to memory or the host otherwise determines that a
need for management action is warranted, for example, to
relocate data (e.g., hot or cold data) and/or to reclaim space
(1503). The host processor proceeds to determine target
addresses (1505) that will serve as the write destination for
the new/moved data, and it does this based on a list of avail-
able free space (1507). This list can if desired represent mul-
tiple drives as well as mixed memory types. For locations in
flash, the data advantageously also is prioritized in order of
least wear, i.e., such that the first location represents the most
virgin space, and so forth. If the host processor/operating
system does not have such a list, it proceeds to request one or
otherwise initiates garbage collection and erase operations as
necessary to generate free space; system designers if desired
can implement a policy that ensures the list references at least
a first threshold level of available free space, and that calls
garbage collection and explicit erase to raise available free
space to a second level (e.g., employing hysteresis) any time
this list represents free space less than the first threshold. With
the target physical addresses thereby identified, the storage
server then proceeds to schedule memory operations (1509).
In a multiple drive system, this can be achieved using one or
more transaction queues (one for each control path or bus)
which interleave commands as appropriate to multiple drives.
Once the host processor receives confirmations of completion
of the various commands (1511), the host processor then
updates its L.2P translation tables and file references (1513).
Numeral 1515 references an exemplary file naming structure,
i.e., where each file is an object having a name, and where the
file is stored across multiple, not-necessarily-contiguous
blocks. The file has one or more indirect references (for
example, to memory locations that will store lists of physical
addresses for blocks having ordered portions of the file), and
it has physical address and logical position within the file for
each such file reference. When a transaction is completed, for
example, changing physical address in association with a data
copy operation, the physical address of data move from a first
block to a second is changed (updated), so that the host
software can thereafter use direct physical addressing to iden-
tify locations of the subject-data. Note that FIG. 15 shows two
options in dashed lines, including a delegated copy operation
1517, and a copy-via-host operation 1519. That is, in situa-
tions where a data copy operation is dictated, the delegated
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copy operation can be employed to perform data transfers
within a single SSD as described earlier, which does not
encumber the host processor-memory controller connection
with the requirement of data transfer. As indicated by function
block 1519, transfers in between different drives will typi-
cally be processed by first transferring data back to the host
processor, and then onto the second drive.

[0169] FIG. 16 shows a block diagram for functions of host
software 1601 in managing SSDs. Generally speaking, the
host software 1601 first identifies a condition associated with
a SSD, for example, a new data access request from a client
(1603) or an alert condition (or asynchronous return from
memory), represented by numeral 1605. The host software
then invokes a storage manager 1607 to determine actions that
need to be taken with respect to flash memory. The storage
manager, in turn, sends actions to a scheduler 1609. Actions
can include requests that are to be immediately sent to
memory as well as conditional requests, for example, for
background processing. As an illustrative example of the
latter operation, it might be desired to perform space recla-
mation and release of additional space as a background opera-
tion (for example, to provide buffering of available space not
critically needed by the host); such a request can be queued by
the scheduler and invoked at a time when background traffic
(e.g., frequency of other IO operations) are below a threshold
level of traffic. As operations are scheduled, constituent com-
mands associated with those operations are sent to a transac-
tion queue 1611 for pipelined issuance to the pertinent SSD
(s). In this regard, the storage manager 1607 relies on
interaction with a host-maintained L2P address translation
table 1613 to select pertinent “direct” physical addresses
associated with each command. Note that the scheduler can
interleave commands for one SSD with commands for a sec-
ond SSD (or an HDD or other drive type). As another illus-
trative example, the storage server might be called upon to
retrieve a large media file (e.g., for a streaming application)
from one drive while freeing space in a second drive. The
transaction queue can interleave periodic requests to the first
drive for the read data (e.g., to maintain sufficient streaming
buffer occupancy) with periodic commands to the second
drive to relocate data and erase EUs of that drive until the
desired amount of space has been released. Additional detail
will be presented below relating to performance of these types
of operations. As depicted by FIG. 16, the storage manager
1607 can include a number of components, including a seg-
ment cleaner module 1615, and a write allocator module
1617. The storage manager can interact with policy module
1619 and a policy repository 1621 in configuring and man-
aging each of two modules. That is, the host software in this
exemplary system configures the segment cleaner module
1615 to operate (e.g., to free additional space, perform gar-
bage collection, weal leveling, defragmentation and reloca-
tion of existing data) within homogeneous storage media,
between heterogeneous storage media, or both, in accordance
with any specified policies. The write allocator module 1617
is used to allocate physical subdivisions that may then be
written to, as previously described above. Note that, as was
alluded to previously, the host software beneficially is pro-
vided with the ability to query each controller and/or drive of
the storage aggregate to determine drive type, manufacturer,
capabilities and other information pertinent to the manage-
ment of memory and system configuration. This information
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is stored foruse by the storage manager 1607 in accessing and
managing the drives, as generally indicated by reference
numeral 1623.

A. Reclamation in NAND-Flash Memory (SSDs).

[0170] Host-assisted space reclamation uses metadata from
a flash controller to reclaim and consolidate space owing to
P/E asymmetry in flash, using principles described earlier. If
it were not for the P/E asymmetry, the storage server could
equate physical memory no longer used for valid data with
free space. Such is generally the case for HDDs and other
forms of random access memory, to the extent managed in
common by the storage server. However, for flash drives (or
other memory types having P/E asymmetry), released space
cannot typically be reused until (a) all independently-writable
units that form an EU have been released, and (b) an explicit
erase procedure has been performed, in a manner that returns
the floating gates of each constituent memory cell back to a
default state. FIG. 17 illustrates a method 1701 that can be
used applied by the host software. Note that it can be benefi-
cial to postpone or batch reclamation operations. In particu-
lar, it may be advantageous to schedule erase operations for a
later point in time, scheduled in a manner appropriate to load
and other system-level considerations; as an example, if free
space shortage is not critical, it can be advantageous to batch
erase operations to times of low network traffic or when there
is low demand for a particular storage drive. The EU units and
its pages are only marked as free once the erasure has suc-
cessfully completed and confirmed by return of completion
code by the particular memory controller.

[0171] FIG. 17 generally shows two methods, including a
method of automatic erasure (if appropriate) each time a page
is released, represented by solid lines only, and a method of
batched space reclamation appropriate for address ranges,
specified “candidate” EUs, or for a drive as a whole. The latter
method will be described first. The method 1701 generally
starts at step 1703, for which at least one EU is identified. For
each EU identified, at 1704, the method proceeds to check
each page of that EU to see if it is released; that is, as indicated
by steps 1705, 1707 and 1711, the method tests whether the
pertinent page is no longer referenced by any file system
structure. If a page is still referenced, the method ends for that
EU at step 1712, and the method then continues to the next EU
(1703). If it is not referenced, at step 1713 the page is marked
as released rather than free. If a page is determined to be free,
the bitmap is checked (1715) to determine whether it is the
last page of that EU; for EUs that are determined to be fully
released, the method continues at 1717, with an explicit erase
operation being called (1719) and the drive summary infor-
mation being updated (1721); otherwise, the method ends for
that EU at step 1716, and the method then proceeds to the next
EU (1703). The method then proceeds to the next EU (1723).
For example, if the method is called for a specific range or list
of EUs, the method 1701 proceeds in this manner for each EU
until it has processed the last EU. Note that, as indicated by
reference numeral 1709, this method can optionally be per-
formed for a storage aggregate or for each drive on an inde-
pendent basis.

[0172] As noted, FIG. 17 also shows steps associated with
a page release operation (i.e., solid lines only). That is, in
some implementations, it might be desired to have the storage
server immediately schedule an erase operation each time
“the last page” in any EU is released. Such a method begins at
1713, where the host processor identifies a page release the
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host processor checks the pertinent bitmap to see whether the
latest release has resulted in the EU being fully released
(1715); if it is not fully released, the method ends. Ifthe EU is
fully released, the method continues at the right side of FIG.
17, where an explicit erase operation is automatically queued
(1719); when this operation is confirmed, the bitmap for the
drive or aggregate as pertinent is updated (1721), and the
method ends.

B. Garbage Collection.

[0173] In one embodiment, garbage collection is per-
formed to reclaim space of EUs where the amount of released
space relative to unreleased space exceeds a predetermined
threshold. Garbage collection is achieved by copying valid
data to another tier or another location in the same tier to
release source locations. The valid data can be combined with
other data, for example, data from the same file (e.g., for
purposes of defragmentation), or data belonging to another
file. Once all valid data for an EU has been relocated, all
portions of a partially used EU are thereby released, and the
EU can be marked as fully released and erasable. The method
justdiscussed can then (or at a later time associated with batch
processing) be called to trigger the erase operation. Note that
any desired garbage collection policy or trigger can be used,
and that such a policy or trigger can be dynamically adjusted.
For example, garbage collection can be performed using a
batch process, in a manner analogous to the batched process-
ing just discussed. Alternatively, garbage collection could be
initiated (or a host alerted) any time released space to valid
(unreleased, written space) exceeds a 1:1 ratio (e.g., less than
50% page utilization). Such a metric could be dynamically
changed, e.g., this metric could be dynamically varied such
that (depending on policy or other system considerations)
garbage collection would be initiated when this ratio exceeds
1:5 (e.g., at least twenty percent of valid space in an EU has
been released), or implemented by policy module (1619 from
FIG. 16) as a policy applicable to supportive flash-memory
controllers and/or drives. Many such examples are possible.
[0174] FIG. 18 illustrates a method followed by the host
processor/software (e.g., by the segment cleaner of FIG. 16)
in response to a garbage collection (GC) alert raised by a flash
memory controller. The method starts at step 1803. While
such an alert remains in effect (1805), the host software
identifies a specific EU under consideration (e.g., from a
prioritized list of EUs) and then loops from one EU to another
(1808) through arange of EUs. When the list is exhausted, the
method queries whether the GC condition alert still holds
(1805)—as long as the condition that triggered the alert
remains valid (e.g., an available space shortage, or EUs not
satisfying a threshold level of utilization), the method
retrieves a successor list and processes each EU in that list.
Once the condition is cleared, the process stops at step 1807.
[0175] At step 1809, the host software queries the memory
controller for candidate segments that are suitable for GC.
Step 1811 will loop for each returned GC candidate. If storage
manager (1607 from FIG. 16) does not employ back refer-
ences, controller-provided backward address translation as
described earlier may be applied at this step, to derive logical
addresses of the returned candidate ranges identified by their
physical flash addresses. At step 1813, host software screens
whether each suggested candidate is an appropriate candidate
for relocation; for example, due to policy or other consider-
ations, it might be desired to not relocate certain types of data
(e.g., ahost policy is in effect that groups certain types of data
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together at one location based on read-write characteristics).
If the candidate is not appropriate, the host software then
proceeds to examine the next candidate in the list, per numeral
1815. If the candidate is appropriate, the host identifies pages
needing relocation (1817), typically from information pro-
vided by the memory controller together with suggested can-
didates; this can optionally be provided in the form of a
bitmask of valid data that needs relocation. The host software
(e.g., the segment cleaner) at step 1819 then schedules the
relocation operation (1821), identifying source and target
physical addresses as appropriate. As referenced earlier, such
an operation can be performed using a delegated copy process
for relocation within a source SSD, or alternatively can be
performed to relocate data to a different drive (and potentially
a different memory type). As indicated by dashed-line numer-
als 1823 and 1825, such an operation typically calls for read-
ing data to the host processor and attendant memory, and
marking the data as pseudo-dirty (i.e., as modified even
though the data is not in this example). The pseudo-dirty
modification will trigger scheduling of a copy-on-write
operation that then rewrites this data to available memory
space. The process of FIG. 17 can then be called to fully erase
the pertinent EU (and to add that EU to the pertinent list of
available space). Note that, if desired, the destination of such
a copy-on-write operation can be selected according to
policy. Finally, per numeral 1827, the next EU in the candi-
date list is processed. If the segment cleaner chooses not to
relocate data immediately, it will save the candidate for later
relocation.

C. Shared and Host-Owned Wear Leveling.

[0176] With shared and host-owned wear leveling, the stor-
age server becomes aware of physical blocks (e.g., EUs) that
represent “cold” (or optionally, “hot”) data and, thus, that
potentially signify uneven wear. In one implementation of a
“shared” scheme, the host can periodically ask for a drive- or
system-wide wear metric and an updated list of wear leveling
candidates in advance of any wear leveling process to ensure
quick allocation is possible when they are needed. The stor-
age server then can then schedule processing of this list as a
periodic maintenance operation, or as a background process.
If and when the list starts being exhausted, a new list can be
requested. While in a shared scheme the list request is sent to
the memory controller, in a host-owned scheme, this query
can be sent to another host process.

[0177] In one implementation, the write allocator of FIG.
16 interacts with the memory controller to replenish a pool of
wear-ordered EUs when either the pool becomes small or
when the memory controller (or host software) detects a wear
leveling related condition that requires host’s attention. The
latter can occur for example, when due to recalculation of
device wear distribution, the memory controller or the host
detects the existence of other EUs that are now considered
less worn out relative to mean wear; alternatively, this condi-
tion can also exist when one or more EUs are detected to have
significantly-less-than-normal wear. The pool in this context
can include EUs having “cold data” that otherwise represent
low wear relative to the mean, and that are to be recycled, such
that future writes will be directed to these “low wear” EUs
instead of further contributing to wear variance in a particular
SSD.

[0178] A wear leveling process from the host processor’s
perspective is seen in FIG. 19, and is generally designated by
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numeral 1901. The illustrated method is substantively similar
to the method of FIG. 18, used for garbage collection.

[0179] The method starts at step 1903. While the need for
wear leveling remains in effect (1905), the host software
identifies specific EUs under consideration (e.g., from a pri-
oritized list of EUs) and then loops from one EU to another
(1908) through the EUs specified in any provided list or
range. When the list is exhausted, the method queries whether
the WL condition alert still holds (1905)—as long as the
condition that triggered the alert remains valid (e.g., an avail-
able space shortage, or EUs not satistying a threshold wear
metric utilization), the method retrieves a successor list and
processes each EU in that list. Once the condition is cleared,
the process ends (1907).

[0180] At step 1909, the host software queries the memory
controller for candidate segments that are suitable for WL.
Step 1911 will loop for each WL candidate. The host software
screens whether each suggested candidate is an appropriate
candidate for relocation (1913), for example, not redistribut-
ing space which according to policy might be used for areas
reserved for important system parameters. If the candidate is
not appropriate, the host software then proceeds to examine
the next candidate in the list, per numeral 1915. If the candi-
date is appropriate, the flash memory controller identifies
pages needing relocation (1917); this can optionally be
permed by calling on the memory controller to provide the
starting physical block number (e.g., page number) and bit-
mask of valid data that needs relocation. The host software
(e.g., the segment cleaner) at step 1919 then schedules the
relocation operation (1921), identifying source and target
physical addresses as appropriate. As referenced earlier, such
an operation can be performed using a delegated copy process
for relocation within a source SSD, or alternatively can be
performed to relocate data to a different drive (and potentially
a different memory type). As indicated once again by optional
process blocks 1923 and 1925, the data can be read back to the
host operating system, and the data can be marked as dirty so
as to trigger a copy-on-write operation that then rewrites this
data to available memory space. The process of FIG. 17 can
then once again be called to fully erase the pertinent (and to
add that EU to the pertinent list of available space). The
destination of such a copy-on-write operation can once again
be selected according to policy. Finally, per numeral 1927, the
next EU in the candidate WL list is processed.

IV. Multi-Modal Operation.

[0181] As should be apparent from the description above, a
cooperative storage architecture facilitates performance of
management and access functions across multiple drives,
regardless of type of memory. Reserving some SSD (i.e.,
flash) functions to the host in this architecture helps amelio-
rate latency concerns and drive expense issues that have tra-
ditionally hindered use of SSD drives in direct-attached and
network storage applications. That is, the techniques and
functions that contribute to this architecture can be embodied
in memory devices themselves, controllers for memory
devices or drives, the host, or in any combination of these
elements. Note however that in practice, it might be desired to
fabricate a memory, memory controller or host architecture
(e.g. host software) in a manner that supports both implemen-
tations with other cooperative storage elements and imple-
mentations with legacy devices. In addition, it is possible to
fabricate elements and systems that, depending on design or
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network management considerations, selectively use certain
cooperative techniques but not others.

[0182] Thus, in one embodiment, a memory controller sup-
ports any one or more of the host-owned, cooperative, or
memory-controller owned modes or features described
above. A register (for example, part of the memory controller
storage 111 from FIG. 1) can be programmed with a value, for
example, by hardwiring a signal connection or setting a fuse,
or by configuration at initial power-up. Providing a number of
programmable modes in this manner permits a cooperative
memory controller and/or cooperative host to be used both in
the cooperative management of memory (e.g., where the host
processes data provided by the controller and where the
memory controller tracks subdivision-specific usage infor-
mation) and also with legacy components that do not support
these cooperative features. In addition, providing these capa-
bilities also provides flexibility to a host or system designer in
the selection of mode based on performance criteria, intended
application, or other factors.

V. Conclusion.

[0183] The description presented above provides examples
of a cooperative memory controller as well as a host that
interacts with such a memory controller, a storage system
architecture, and various memory systems. As indicated,
these techniques can optionally be employed with any one or
more of these components. Further, while various embodi-
ments shown above have described structure and functions in
the context of a host, memory controller and/or memory, it
should be understood that various ones of these components
can be combined with one another or packaged, mounted or
sold together. For example, depending on implementation, a
host processor can be copackaged with a memory controller
or mounted to a common board. Conversely, it is possible to
copackage a memory controller with memory, such as
mounted them on a single die, multichip module or system on
chip (SoC). In the system context, solid state drives (SSDs)
and hard disk drives (HDDs) have been described as generally
having their own, dedicated controllers, but it is possible to
have multiple types of memory managed by a single control-
ler, i.e., with a drive or memory itself constituting a hybrid.
Further to the system context, embodiments have been
described having two tiers of memory, but it is possible to
have a single tier of memory (e.g., all NAND-flash), or three
or more tiers of memory. As an example, one contemplated
implementation features a host with multiple tiers of fast-
access memory (e.g., local SRAM and DRAM), one or more
SSDs and one or more HDDs, configured as different tiers.
Some embodiments may omit one or more of these in favor of
other memory types, for example, the HDDs can be omitted,
or a different type of storage media can be used.

[0184] To provide a few further examples, instead of using
flash memory, the techniques applied above can be applied to
other forms of both volatile and nonvolatile memory. For
example, it is possible to apply some of the management and
network configuration schemes discussed above to DRAM
and other forms of volatile memory. In addition, some or all of
the garbage collection, space reclamation, geometry report-
ing, wear leveling, defragmentation and other schemes dis-
cussed above can be applied to other forms of nonvolatile
memory. Although known by a variety of names, these
memories typically have bistable elements have properties
where resistance change is a manifestation of some type of
change in physical materials. For example, RRAM, magnetic
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random access memory (MRAM), phase change random
access memory (PCRAM), nanowire RAM, and similar
designs all operate based on similar state change principles
where the current that flows through the material (or equiva-
lently, voltage drop seen across the material) changes depend-
ing on state of the underlying materials. Therefore, in many of
the detailed examples provided above, flash memory is used,
but as mentioned, other designs are possible. Also, the
examples discussed above were focused on NAND-flash
memory, but it should be equally possible to apply the teach-
ings herein to NOR-flash memory designs.

[0185] Also, the techniques discussed above, when imple-
mented on a comprehensive basis, permit substantial reduc-
tions in memory controller functions which would be con-
ventionally needed to manage an FTL. However, as should be
apparent from the examples provided above, many of the
cooperative techniques provided by this disclosure and sup-
porting circuitry can be implemented in embodiments that
utilize a traditional FTL. For example, it is possible to com-
bine cooperative garbage collection and space reclamation
processes with a conventional FTL. Advantageously, by pro-
viding ready-host visibility into EU-specific, tracked param-
eters (e.g., metadata) and making liberal use of cooperative
capabilities, a given design can eliminate much of the over-
head that would be traditionally needed to manage an FTL.

[0186] It should be noted that the subject matter disclosed
herein can be expressed (or represented), as data and/or
instructions embodied in various computer-readable storage
media, meaning physical non-transitory media such as com-
puter memory, storage disks and the like. In this context, the
described subject matter can take the form of instructions or
data for fabricating an integrated circuit (or integrated cir-
cuits) that, when built and operated, possesses the circuits and
structures, and performs the techniques described herein. An
output of a process for designing an integrated circuit, or a
portion of an integrated circuit, comprising one or more of the
circuits described herein may be such a computer-readable
medium such as, for example, a magnetic tape or an optical or
magnetic disk, or other non-volatile physical storage. The
computer-readable medium may be encoded with data struc-
tures or other information describing circuitry that may be
physically instantiated as an integrated circuit or portion of an
integrated circuit. Although various formats may be used for
such encoding, these data structures are commonly written in
Caltech Intermediate Format (CIF), Calma GDS II Stream
Format (GDSII), or Electronic Design Interchange Format
(ED/F). Those of skill in the art of integrated circuit design
can develop such data structures from schematic diagrams of
the type detailed above and the corresponding descriptions
and encode the data structures on computer readable medium.
Those of skill in the art of integrated circuit fabrication can
use such encoded data to fabricate integrated circuits com-
prising one or more of the circuits described herein. Some or
all of the functions described above can also be embodied as
instructions stored on machine-readable media, including
software code or firmware that, when executed, cause a
machine (e.g. a microprocessor or device having a micropro-
cessor) to perform the described functions. Generally speak-
ing, any such instructions can be alternatively implemented as
hardware logic, or a combination of hardware and software
logic, depending on implementation.

[0187] The foregoing description and in the accompanying
drawings, specific terminology and drawing symbols have
been set forth to provide a thorough understanding of the
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disclosed embodiments. In some instances, the terminology
and symbols may imply specific details that are not required
to practice those embodiments. The terms “exemplary” and
“embodiment™ are used to express an example, not a prefer-
ence or requirement.

[0188] Various modifications and changes may be made to
the embodiments presented herein without departing from the
broader spirit and scope of the disclosure. For example, fea-
tures or aspects of any of the embodiments may be applied, at
least where practicable, in combination with any other of the
embodiments or in place of counterpart features or aspects
thereof. Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

1. A memory controller to interact with a memory having at
least one memory array, the at least one memory array having
physical storage locations, the memory controller compris-
ing:

at least one interface to receive memory commands from a

host and to exchange data in association with the
memory commands between a host and the memory
array;

logic operable to store in a management table information

for every physical storage location of the at least one
memory array, the information for each physical storage
location representing at least one of operability of
memory cells within the physical storage location, wear
of memory cells within the physical storage location,
period since last programming of valid data within the
physical storage location, or validity status of any data
stored within the physical storage location; and

logic operable to send to a host information regarding at
least one of the physical storage locations of the at least
one memory array in dependence on the information
retained in the management table.

2. The memory controller of claim 1, where the memory
controller is embodied in a first integrated circuit, where the at
least one interface is embodied as at least one first interface,
and where the memory controller further comprises a second
interface operable to exchange the data with at least one
memory integrated circuit in association with the memory
commands.

3. The memory controller of claim 1, where the memory is
flash memory, where each physical storage location includes
at least one page of flash memory and where the memory
controller is embodied as a flash memory controller.

4. (canceled)

5. The memory controller of claim 3, where each physical
storage location is exactly equal in size to an erase unit of
NAND flash memory.

6. (canceled)

7. The memory controller of claim 1, where the informa-
tion stored in the management table further includes metadata
retained in the storage for each physical storage location, the
metadata including a physical-to-logical mapping for data
stored in the respective physical storage location.

8. The memory controller of claim 1, where the memory
controller further comprises logic operable to receive a com-
mand that requests provision of information regarding at least
one physical storage location of the memory array to a
requesting host in dependence on the information stored in
the management table, and where the logic operable to send
the information to the host is operable to send the information
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regarding at least one physical storage location of the memory
array to the requesting host in response to the command from
the requesting host.

9. The memory controller of claim 8, where the logic
operable to receive a command is operable to receive an
asynchronous command, and where the memory controller is
operable in response to the asynchronous command to estab-
lish at least one condition precedent prior to sending the
requested information to the requesting host.

10. The memory controller of claim 9, where the logic
operable to receive a command from the requesting host is
further operable to receive a synchronous command from the
requesting host, and where the memory controller is operable
to send the requested information to the requesting host sub-
ject to at least one condition precedent in dependence on
whether a command requesting the information regarding the
atleast one physical storage location of the memory array was
a synchronous command type or an asynchronous command
type.

11. The memory controller of claim 1, where the informa-
tion stored in the management table for each physical storage
location includes information indicating at least one of:

whether the respective physical storage location has been

marked as bad;

number of erase operations performed on the respective

physical storage location; or

information representing page usage for all pages within

the respective physical storage location.

12. The memory controller of claim 1, further comprising
logic operable to interpret commands received from a
requesting host via an interface of the at least one interface,
where the commands received from the requesting host via
the interface are compatible with a Nonvolatile Memory
Express (NVMe) standard.

13. The memory controller of claim 1, where the logic
operable to send the information to the host is operable to
send the information in a manner that is not concurrently
solicited.

14. The memory controller of claim 1, where the memory
controller further comprises logic operable to perform for a
given physical storage location a comparison with a threshold
ofat least one of (a) the information stored in the management
table for the given physical storage location or (b) informa-
tion derived from the information stored in the management
table for the given physical storage location, and where the
logic operable to send the information further comprises logic
operable to generate an alert for a host responsive to the
comparison.

15. The memory controller of claim 1, where the logic
operable to send the information to the host is operable to
send to the host information representing plural ones of the
physical storage locations.

16. The memory controller of claim 15, where:

the information stored in the management table for each

respective physical storage location includes informa-
tion representing validity status of any data stored within
the physical storage location;

the information representing validity status includes infor-

mation identifying page utilization corresponding to the
respective physical storage location; and

the information representing the plural ones of the physical

storage locations is sufficient to identify candidate
physical storage locations for space consolidation in
dependence on whether, for each respective physical
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storage location, the information representing page uti-
lization indicates that page utilization satisfies a thresh-
old condition.

17. The memory controller of claim 16, where the infor-
mation representing plural ones of the physical storage loca-
tions is sufficient to indicate an ordered list of at least two of
the physical storage locations of the at least one memory array
in order of increasing page utilization.

18. The memory controller of claim 1, where:

the information stored in the management table for each

respective physical storage location includes informa-
tion representing validity status of any data within the
physical storage location;
the information representing validity status includes infor-
mation identifying number of released pages corre-
sponding to the respective physical storage location; and

the logic operable to send information to the host is oper-
able to send information representing one or more
unerased physical storage locations of the at least one
memory array, including information dependent on rela-
tive number of released pages in each unerased physical
storage location.

19. The memory controller of claim 1, where:

the information stored in the management table for each

respective physical storage location includes informa-
tion representing operability of memory cells within the
physical storage location;
the information representing operability of memory cells
includes information indicating whether the respective
physical storage location has been marked as bad; and

the logic operable to send information to the host is oper-
able to send information identifying one or more of the
of the physical storage location of at least one memory
array which have been marked as bad.

20. The memory controller of claim 1, where:

the information stored in the management table for each

respective physical storage location includes informa-
tion representing wear of the respective physical storage
location; and

the logic operable to send information to the host is oper-

able to send information identifying one or more physi-
cal storage locations of the at least one memory array for
which the information representing wear indicates that
the respective physical storage location is associated
with wear satisfying a threshold condition.

21. The memory controller of claim 1, where:

the information stored in the management table for each

respective physical storage location includes informa-
tion representing a period since last data programming
of valid data in the respective physical storage location;
and

the logic operable to send information to the host is oper-

able to send information identifying one or more physi-
cal storage locations of the at least one memory array for
which the period represents satisfaction of a threshold
condition.

22. A memory controller to interact with a memory having
at least one memory array, the at least one memory array
having physical storage locations, the memory controller
comprising:

means for receiving memory commands from a host and

for exchanging data in association with the memory
commands between a host and the memory array;
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means for storing, in a management table accessible to the
memory controller and for every physical storage loca-
tion of the at least one memory array, information rep-
resenting at least one of operability of memory cells
within the physical storage location, wear of memory
cells within the physical storage location, period since
last programming of valid data within the physical stor-
age location, or validity status of any data stored within
the physical storage location; and

means for sending to a host information in dependence on

the information retained by the memory controller.

23. An apparatus, comprising:

at least one flash memory array having physical storage

locations; and

a flash memory controller having

at least one interface to receive memory commands from
a host and to exchange data in association with the
memory commands between a host and the memory
array,

logic operableto store, in a management table accessible
to the flash memory controller and for every physical
storage location of the at least one memory array,
information representing at least one of operability of
memory cells within the physical storage location,
wear of memory cells within the physical storage
location, period since last programming of valid date
within the physical storage location, or validity status
of any data stored within the physical storage loca-
tion, and

logic operable to send to a host information in dependence

on the information.

24. The apparatus of claim 23, embodied as a system on-
chip (SOC).

25. The apparatus of claim 23, embodied in a package
multichip assembly where the flash memory controller com-
prises a first die and the at least one flash memory array
comprises at least one second die.

26. The apparatus of claim 23, where the flash memory
controller further comprises logic operable to receive from
the host at least one of (a) a host command for identification
of candidate memory units for a data relocation operation, or
(b) ahost command for identification of candidate erase units
for an erase operation, and where the information to be sent to
a host is responsive to the at least one of a host command for
identification of candidate memory units or a host command
for identification of candidate erase units.

27. The apparatus of claim 26, where the flash memory
comprises NAND flash memory cells and where each physi-
cal storage location of the memory array comprises an integer
number of one or more physical erase units or one or more
physical pages.

28. The apparatus of claim 23, where the memory control-
ler is externally programmable to define at least one thresh-
old, where the memory controller further comprises logic
operable to perform a comparison with the at least one thresh-
old of at least one of (a) the information for a given physical
storage location or (b) information derived from the informa-
tion for a given physical storage location, and where the logic
operable to send the information to the host further comprises
logic operable to generate an alert for a host responsive to the
comparison.

29. A memory controller integrated circuit, comprising:

at least one interface to receive memory commands from a

host including commands to program pages of a NAND
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flash memory, to read physical pages of the NAND flash
memory and to erase physical erase units of the NAND
flash memory, where the NAND flash memory com-
prises physical storage locations that are each an integer
number of at least one of (a) one or more physical pages
of'the NAND flash memory and (b) one or more physical
erase units of the NAND flash memory;

logic operable to store, in a management table accessible to
the memory controller integrated circuit and for at least
each erase unit of the NAND flash memory, information
representing at least one of operability of memory cells
within the physical storage location, wear of memory
cells within the physical storage location, period since
last programming of valid date within the physical stor-
age location, of validity status of any data stored within
the physical storage location; and

logic operable to service host queries for information
dependent on the information, and to responsively trans-
mit the information to a host.

30. The memory controller integrated circuit of claim 29,
where the logic operable to service host queries is operable to
receive at least one of (a) a host query for identification of at
least one page of memory cells as a candidate for a data
relocation operation, or (b) a host query for identification ofat
least one of the erase units as a candidate for an erase opera-
tion, and where the information is transmitted responsive to
the at least one of a host query for identification of at least one
page of memory cells as a candidate for a data relocation
operation or a host query for identification of at least one of
the erase units as a candidate for an erase operation.

31. (canceled)

32. The memory controller of claim 1, where the memory
controller is embodied as an integrated circuit, and where the
information for each physical storage location includes infor-
mation indicating a cumulative erase count for the respective
physical storage location.

33. The memory controller of claim 5, where the memory
controller is to store information in the management table
respective to each physical page of memory cells for each
erase unit of the at least one memory array.
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34. The memory controller of claim 5, where the informa-
tion stored in the management table for each physical storage
location includes page release information for the respective
physical storage location.

35. The memory controller of claim 5, where the informa-
tion stored in the management table for each physical storage
location includes page release information for each page of
plural pages in the respective physical storage location.

36. The memory controller of claim 29, where the memory
controller is to store information in the management table
respective to each physical page of memory cells for each
erase unit of the at least one memory array.

37. A memory controller to interact with a memory having
atleast one memory array, the memory controller comprising:

at least one interface to receive memory commands from a

host and to exchange data in association with the
memory commands between a host and the memory
array;

logic operable to store in a management table information

for every physical storage location of the at least one
memory array, the information for each physical storage
location representing page release status for each page
of memory cells associated with the respective physical
storage location; and

logic operable to send to a host information regarding at

least one of the physical storage locations of the memory
array in dependence on the page release status informa-
tion retained in the management table.

38. The memory controller of claim 37, embodied as a flash
memory controller, where each physical storage location is
equal to at least one of a page of memory cells or an erase unit
of memory cells.

39. the memory controller of claim 37, where the informa-
tion stored in the management table for every physical storage
location of the at least one memory array also indicates
whether each page of memory cells associated with the
respective physical storage location contains un-released,
valid data, and where the logic is operable to send to the host
information representing whether any one of the physical
storage locations of the at least one memory array is a candi-
date for one of an erase operation or a valid data relocation
operation.



