SystemX IP Networking
 725-xxxx-0001
Draft 1.0

 document no.

725-xxxx-0001
revision no.

1.1
status

DRAFT

department

Engineering
Author/Contact

Jonathan Goldick
Email

jonathan.goldick@onstor.com

Component Overview:

SystemX IP Networking

Approvals:

Name/ Title
ECO

[image: image1.png]ON

Always-On Data

Abstract

This document describes how we will be replacing the current ONStor IP networking with open source Linux equivalents.

Contributors

Name
Email

Jonathan Goldick
jonathan.goldick@onstor.com

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, 2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

Rev
ECO
Written By
Page/Sect
Revision Summary
Date

V1.0

Jonathan Goldick
All
Draft
08/22/07

V1.1

Jonathan Goldick
All
Incorporate review feedback
09/21/07

Table of Contents

1 Related Documents
4
2 Terminology
4
3 Requirements
5
3.1 General
5
 Must Have
5
 Highly Desirable
7
 Desirable
7
3.2 Management/Cluster Networking
7
 Must Have
7
3.3 iSCSI Back End Networking
7
 Must Have
7
 Highly Desirable
8
4 Relation to Roadmap
8
5 Proposal
8
5.1 General
8
5.2 Interface Management
9
 Interface Hierarchy
9
 Naming
10
 Aliases/Clones
10
 IP Addresses
10
 MAC Addresses
11
 Configuring the Switch
11
 DHCP
11
 Bootstrapping Issues
12
 Filer Interface Configuration
12
 IP Address Assignment
12
5.3 Management Virtual Server
13
5.4 Dynamic DNS
14
5.5 Avahi
14
5.6 Network Services
14
5.7 Troubleshooting Configuration
15
5.8 Storing Configuration Data
15
5.9 Virtual Server-Aware Networking Applications
15
 Limiting Access to Applications
16
5.10 IPSec
16
5.11 Impacts on MySQL
16
6 User Interface
17
7 Project Dependencies
17
8 Performance Criteria
17

1 Related Documents

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. Clustering requirements document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Clustering.doc
3. Nice Sun article on Linux networking for management and data blades. It has a lot of parallels to what we need to support. http://docs.sun.com/source/817-5625-10/Linux_Data_and_Management.html
4. A very good how-to for the Linux Bonding driver that will help you review the proposed DHCP approach below http://kernel.org/doc/Documentation/networking/bonding.txt
5. RedHat documentation for networking interfaces at http://www.redhat.com/docs/manuals/enterprise/RHEL-3-Manual/ref-guide/s1-networkscripts-interfaces.html
6. Linux DHCP server man page http://linux.die.net/man/5/dhcpd.conf
7. Linux DHCP client configuration script http://linux.die.net/man/8/dhclient-script
8. Linux DHCP options man page http://linux.die.net/man/5/dhcp-options
9. Linux DHCP conditional evaluations http://linux.die.net/man/5/dhcp-eval
10. Windows background on DHCP http://www.microsoft.com/technet/network/evaluate/technol/tcpipfund/tcpipfund_ch06.mspx
11. Windows DHCP options http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/cnet/cnfe_opt_fdlt.mspx
12. How VMWare handles DHCP MAC(s) http://www.vmware-land.com/Vmware_Tips.html#Net3
13. Avahi – Zero configuration networking http://en.wikipedia.org/wiki/Avahi_%28software%29
14. Linux Routing Tables http://linux-ip.net/html/routing-tables.html
15. Linux container projects http://www.linux-foundation.org/en/Linux_Weather_Forecast#Virtualization_and_containers
16. Sun’s Crossbow technology http://blogs.sun.com/sunay/entry/crossbow_solaris_network_virtualization_resource
2 Terminology

Interface – This describes either a physical or a logical connection to the IP network. A physical interface was called a port in SystemW but we are moving to more standard naming. In SystemW we also used the term lport, or logical port, to describe the result of assigning a name to one or more physical ports, usually to support link aggregation or failover configurations.

Bonding – When we combine multiple interfaces in a link aggregation configuration we call the resulting interface a bonded interface.

LACP – Link Aggregation Control Protocol. http://en.wikipedia.org/wiki/Link_Aggregation_Control_Protocol
IPSec – IP Security http://en.wikipedia.org/wiki/Ipsec
CHAP – Challenge-handshake authentication protocol. http://en.wikipedia.org/wiki/Challenge-handshake_authentication_protocol
VLAN – Virtual LAN http://en.wikipedia.org/wiki/Vlan
DHCP – Dynamic host control protocol http://en.wikipedia.org/wiki/DHCP
Dynamic DNS – DNS support where we automatically register our IP addresses with DNS http://en.wikipedia.org/wiki/Dynamic_dns
IPv6 – Internet protocol version 6 http://en.wikipedia.org/wiki/Ipv6 Pay special attention to the addressing section.

PXE – Pre-boot Execution protocol. http://en.wikipedia.org/wiki/Preboot_Execution_Environment
ZeroConf – Zero configuration networking http://en.wikipedia.org/wiki/Zeroconf
EMRS – ONStor’s event monitoring and reporting services http://intranet.onstor.net/md/TechPubs/Dennis/ePublisher%20Pro%20Trial/Deploy%20Location/SAG%20Test1/SAGCh12-AutoSupport.15.4.html
3 Requirements

3.1 General

3.1.1 Must Have

The most fundamental feature aspect of virtual servers is that you can configure any networking capability on a virtual server that you could on a physical windows or Unix server. This is critical to our value proposition and server consolidation story.

We must be able to run the entire system with a single IP interface. This is intended to support a very low end, non-redundant system. This effectively means that we must be able to run management traffic on the same physical link as user data traffic (NFS/CIFS/etc) and a back end iSCSI or AoE storage array. Allowing some or all of these services to coexist on the same IP interfaces is desirable even when the filer has many interfaces. It is not a cost-effective use of hardware, both internal to the filer and at the IP switch layer, to have dedicated management physical interfaces when there is very little actual management traffic in our architecture.

[that's a strange thing to say. it's a standard architecture, because mgmt traffic takes away bandwidth from the data network. they are always separate in enterprise level equipment.]
We must be able to support our current level or higher of virtual server networking capabilities and they should work for management networking as well:

· Link aggregation (802.3ad)

· Automatic interface failover, including failover across aggregated interfaces.

· LACP

· VLAN (802.1q)

· Routing tables per

-virtual server

· Note that we want the ability to share routing tables across multiple virtual servers in a group, basically a policy that applies to multiple servers.
· ARP tables per-virtual server
· Note that this may not be available in Linux until the containers project completes
· Note that we want the ability to share ARP tables across multiple virtual servers in a group, basically a policy that applies to multiple servers.
· IP, TCP, and UDP statistics per-virtual server

· Note that this may not be available in Linux, they do not appear to keep statistics on virtual interfaces
· Assigning multiple IP addresses to an IP interface

· Using DHCP to obtain IP addresses, but not require its presence.

· Dynamic DNS

We must support a hardware

 TOE option but not require its presence.

We must support dual 10GE interfaces on at least one hardware configuration. This will likely require a TOE and may also require the ability to switch the networking software from an interrupt model to a polling loop for performance reasons. At the low end we must be able to run with a single GE interface
.

The networking stack must be able to leverage multiple CPU
 cores
 in SMP mode. We must not require a dedicated core for networking
. We should be able to set the CPU affinity for the threads running the networking stack

 so that systems with a larger number of cores have the ability to dedicate processors to that task and scale up. Note that the Linux kernel does not have “threads” running the networking stack. The outgoing packets are processed in the context of the thread that has asked for the transfer. The incoming packets are processed in the interrupt handlers, first hardware then software interrupts. Therefore the only way to really dedicate cores to running networking code is to use polling loops for incoming packets instead of interrupts and have the outbound packets put in a queue that is in turn processed by threads running on the networking core(s).
[not exactly a correct description of how the networking works in linux. software interrupts is a bogusly named facility in linux to do what NT calls “delayed procedure calls”]
The networking layer must support zero-copy operation for the major protocols, NFS, CIFS, and iSCSI and AoE. Furthermore, this zero-copy should extend all the way from the IP networking layer to a read/write layer to storage. Already supported in Linux. Including from userspace.
The networking layer must be able to preferentially use memory that is earmarked

 for that purpose

. In
 the current ONStor architecture we have a bank of memory that is shared between the IP networking subsystem and the application CPU running NFS and CIFS. The ability to have the networking layer put newly written user data directly into the memory that will be used for the user data cache eliminates memory copies that hurt performance. This also allows us to have cached user data reside in a bank of memory that is closest to the cores running the networking stack. We will probably not allow a customer to change the amount of memory dedicated to a purpose but we will need to do so to support multiple hardware models. The expectation is that there will be models with different size banks of memory like today and that will define how memory is used; basically how close it is to the networking layer. Allowing customers to mess with allocation plans creates a huge MxN test matrix that we will likely not want to take on. [Completely unnecessary in Linux: it's allocation schemes go way beyond these requirements.]
We must be able to cluster filers that have a different number of physical IP interfaces. This has impacts on networking because we must know how to map a virtual server networking layout on one filer to another to enable failovers.

We must be IPv6

 ready. While releasing such support may come in stages, all configuration information should be compatible with IPv6 addressing. This is necessary for Federal

 contracts. Note that not all TOE(s) support IPv6.
It is required that we be able to use domain names for configuration instead of IP addresses. There will be clear cases where this is not possible due to boot-strapping issues but this should be a goal. The bootstrapping issues should be clearly defined so that other components can identify when names can be used instead of IP addresses.

We must be able to control which filer networking services are reachable at the IP address level. For example, we may want to have CIFS and NFS traffic segregated by IP address from same iSCSI target traffic. At a further level of granularity, we may want to have CIFS shares that are only visible over certain IP addresses, like having a read/write share only reachable on a management network and a read-only share reachable on any network. Basically, any user interface or API should support both domain names or IP addresses if it can.
There needs to be a clear privilege that controls any changes made to a virtual server’s networking configuration. We have been using the Windows privilege model with its NETWORK privilege and should continue doing so.
 Changing the management networking configuration should require a cluster administrator with NETWORK privilege. We should also require cluster NETWORK privileges for the creation of 802.3ad link aggregation and failover setup for IP interfaces. [There should be both a NETWORK and a CLUSTER priviledge: doing operations that involve both should require both.]
3.1.2 Highly Desirable

To support a very low end system with no clustering we should be able to run all services on a single box. We would also like the ability to run all domain-type services within the filer, including NTP, Syslog, and UNIX and Windows domain services. The use case is a home user that has no other network services beyond a WiFi router.

It is highly desirable to be able to make networking configuration changes on a live virtual server. This may not always be possible but it should be a serious design goal. There is one workflow where we might have to accept downtime across the cluster, at least in some rolling outage fashion. If an administrator decides that they wish to use link aggregation across two interfaces then they must create an interface out of the physical interfaces on every filer that will be a failover target for the virtual server. They must also set up the link aggregation on the switches for all of these filers. It is also true that one cannot assign IP addresses to the individual interfaces that are being bonded together; the addresses

 can only be assigned to the topmost interface. Therefore the virtual server is clearly going to experience a loss of connectivity, and possible failover, while this change is made. Now consider the case where the management networking was using the same two physical interfaces as a virtual server. It too cannot assign IP addresses to the individual interfaces being bonded together. Effectively this means that the management network will need to be taken down to make this change and therefore the affected filers will have to restart their clustering services, with the resulting failovers of their dependent services like NFS and CIFS. It is highly desirable that this downtime be done a rolling restart of the cluster nodes, triggered by a single cluster-wide command.

It is highly desirable for the filer to be able to detect switch configuration errors
 relating to 802.3ad. This is a very common problem where the customer has not set the switch configuration to match that of one or more filers in the cluster. It’s not clear that this is possible without access to the switches administrative interfaces but perhaps there is some remote API that can be leveraged, perhaps through SNMP.

It is highly desirable to have a QoS layer at the packet processing stage. This will be used to control how much networking processing resources a particular virtual server or client can use, or to guarantee a minimum amount of packets/sec. Note that this is not currently available in Linux; some of this is present in Sun’s Crossbow technology.

3.1.3 Desirable

Windows domain controllers have the ability to define a list of subsets that comprise a site. These site definitions are used by the Global Name Space service to direct clients to a service that is “closest” to them in a network sense. It is desirable that our networking configuration support the concept of sites. It would also be useful to have the option of downloading the site definitions from active directory. Pfft, whatever. Winblows.
3.2 Management Networking

3.2.1 Must Have

We must support configurations where management

 traffic is running on one or more dedicated interfaces for the security conscious customer.

We must support configurations where management traffic is running on one or more interfaces shared with user data and/or back end iSCSI or AoE storage traffic but using separate management traffic VLAN.

We must support configurations where management traffic is running on one or more interfaces shared with user data and/or back end iSCSI/AoE storage traffic and no VLAN configuration is used. This is for the customer that doesn’t want the complexity of physical or virtual private networking

.

3.3 iSCSI Back End Networking

3.3.1 Must Have

We expect to support hardware configurations where that back end storage network is iSCSI instead of Fibre Channel. This means that we must support using the IP networking for the data reads and writes generated by the volume manager. Furthermore this must perform well given sufficient IP connectivity when compared to Fibre Channel.

We must support at least a static configuration when defining what LUN(s) are available to the cluster.

It must be possible to use an iSCSI TOE
 to accelerate this initiator traffic, but we must not require its presence.

Note that requirements around iSCSI data management like snapshotting will be described in other documents.

We must support some security protocol when accessing the storage, CHAP one-direction is the minimum, bi-directional CHAP would be a highly desirable addition.

We fully intend to support networking booting for the filer in the Fibre Channel configuration. It would be very painful if this is not supported in an iSCSI deployment as well.

We must support multi-pathing to the iSCSI storage

.

3.3.2 Highly Desirable

It is highly desirable to be able to discover iSCSI LUN(s) on the network that are available to the cluster. This will likely involve iSNS support.

We likely have to support IPSec in an iSCSI world but for now this will not be a requirement. We do want the option of using hardware assistance for IPSec

 offload but should not require it. Note that not every TOE is going to support every optional IP feature, ones that support IPSec may not support IPv6, or iSCSI, RDMA, etc.
3.4 Please add a section for ATA over Ethernet (AoE)

4 Relation to Roadmap

The SystemX architecture is intended to scale down to the lowest end home device up to the highest end enterprise system. To scale down we must be able to run the networking services with no external servers and as little as a single networking interface. Scaling this far down will open up an enormous low end market. At the other end of the spectrum we must be able to scale the networking performance up to the very high end to compete with future NetApp and EMC systems. This will open up the high end streaming and geographic markets that Isilon is attempting to own.

A primary goal of the SystemX architecture is to leverage open source wherever possible. In the area of networking ONStor has a modified BSD IPv4 stack code that can be replaced with more functional Linux components. We will have to add our logic for associating a routing table with a socket in order to support our virtual server capabilities but that is relatively small compared to the size of the networking stack. This and any other networking extensions we make will be given back to the Linux community.

The Federal government is pushing support for IPv6 but requiring it for several departments. This component should be IPv6 ready.

5 Proposal

5.1 General

The goal is that filers can just be racked and come as close as possible to getting auto-configured on the network. In general IP configuration will happen through a combination of network services that are running inside the cluster or externally if the customer already has them deployed. As will be described in section 5.5, we will use Avahi to locate existing clusters to which a filer can join and DHCP to configure the interfaces, the IP addresses, the boot image, the core dump location, etc. For every network service that is not running externally to the cluster, we will start an internal service that runs on the management virtual server described in the Management Virtual Server section. This allows us to assume a certain level of network service infrastructure in all environments.

5.2 Interface Management

5.2.1 Interface Hierarchy

Below is a picture of the hierarchy of interfaces in the SystemX networking architecture. There is no requirement to create Bonded, VLAN, or Failover
interfaces
but they are included here for illustration purposes.

[image: image2.emf]eth0 eth1 eth2 eth3 eth4 eth5

Physical

Interfaces

bond0 bond1

Bonded

Interfaces

vlan

Interfaces

bond1.10

(vlan 10)

eth4.14

(vlan 14)

bond0.10

(vlan 10)

eth5.14

(vlan 14)

fail0 fail1

Failover

Interfaces

mgmt1

Interface

Aliases

mgmt0 data0 data1 san0

IP Addresses

10.1.1.2 10.2.2.1 10.3.3.1 10.1.1.3 10.2.2.2 10.2.2.3

Virtual Server

10.3.4.1

VsvrA VsvrB VsvrB

00:07:34:04:12:01 00:07:34:04:12:02 00:07:34:04:12:03 00:07:34:04:12:04 00:07:34:04:12:05 00:07:34:04:12:06 MAC Address

Filer1

[image: image3.emf]eth0 eth1 eth2 eth3

Physical

Interfaces

Bonded

Interfaces

vlan

Interfaces

eth3.14

(vlan 14)

eth0.10

(vlan 10)

Failover

Interfaces

mgmt1

Interface

Aliases

mgmt0 data0 data1 san0

IP Addresses

10.1.1.4 10.1.1.5 10.2.2.3

Virtual Server

00:07:34:04:12:11 00:07:34:04:12:12 00:07:34:04:12:13 00:07:34:04:12:14 MAC Address

Filer2

bond0

data2

VsvrC

10.3.5.1

Note that in this picture san0 would be an interface to back end iSCSI storage arrays, data0, data1, and data2 are interfaces used to reach NFS/CIFS/iSCSI/etc clients, and mgmt0

and mgmt1 are interfaces to the management network. Filer1 and Filer2 have different numbers of physical interfaces but there must be identical interface names on each filer in order to allow a virtual server to failover between them. Since data2 does not exist on filer1, VsvrC cannot fail over to it.

Note that in this picture any layer below “Interface Aliases” and above “Physical Interfaces” is optional.

Note that one can set a VLAN on really any level of the interface hierarchy. It is possible to create eth0.5, bond0.5, fail0.5, and data0.5 as well. Note that if a virtual server uses an interface like data0.5 it will only be able to failover to a filer that also has a data0.5 interface.
5.2.2 Naming

Instead of allowing customers to pick whatever names they want for interfaces, ONStor will establish naming rules that cannot be bypassed. Physical interfaces will use the standard eth0, eth1, etc naming convention. Bonded interfaces will be named bond0, bond1, etc. VLAN interfaces have the same name as their child interface, with an appended dot and VLAN tag number. Failover interfaces will be named fail0, fail1, etc. Interface names are case-insensitive. Note that the RedHat documentation in reference 1 indicates that even failover interfaces are called bond# but our choice seems clearer. However, since there are a fair number of bonded interface types supported on Linux, we might consider following RedHat here.

Note that whenever one of these interfaces is used as a component of a higher level interface, like creating fail0 out of bond0.10 and bond1.10, the lower level interfaces can no longer be used directly. They cannot have IP addresses associated with them and they cannot be used in the creation of new interfaces. This is just how networking works.

All names are case insensitive but will be converted to lower case.
5.2.2.1 Aliases/Clones

There may be multiple interface aliases to a single interface, one for each use case. The planned use cases will be management including the cluster DB traffic (mgmt)
, access
to NFS/CIFS/iSCSI/etc clients (data), and access to back end iSCSI storage (san). In practical terms, even Fibre Channel interfaces will be named san#, but that hierarchy will look somewhat different in that bonding and failover are handled very differently in the Fibre Channel world.

Note that RedHat documentation in reference 1 indicates that one cannot use DHCP on interfaces aliases. It doesn’t say whether this can be done on interface clones, but that is an alternative. For the purposes of this document we will not differentiate between aliases and clones, only that DHCP support is expected on whatever we use.

A key note about the naming rules is that if the same alias name is used on two different filers they should have the same network connectivity. This is critical
for
 the data# aliases used by the virtual server failover logic, it’s much less important for mgmt# and san#. For example, data0 on filer1 must have the same IP connectivity and VLAN membership as data0 on filer2. Note that it may not be possible to detect these configuration issues without access to the switch configurations. We can ping default routes but that does not guarantee that the topology is the same.
5.2.3 IP Addresses

IP addresses are assigned only to interface aliases. It is likely that a customer will want to have fixed IP addresses for specific virtual servers rather than letting them float among a group of possibilities. It’s also true that for the management/cluster network we require that the IP addresses not change so that the cluster members will know each other. Note that no two interface aliases should ever use the same IP address.

The IP addresses assigned to data# interfaces are private to virtual servers and failover with them. The IP addresses assigned to mgmt# and san# interfaces are private to a filer and don’t failover.

Although one would typically only assign a single IP address to a data# interface for a virtual server, we will support having multiple ones. A common example where there would be multiple IP addresses is in server consolidation where we can make a virtual server to appear to be multiple original servers.

It doesn’t seem to make sense at this time to create a separate IP address for each virtual server for the san# interfaces. We wouldn’t do that sort of thing with a Fibre Channel interfaces so it’s not clear that iSCSI would be any different.

5.2.4 MAC Addresses

While we currently reserve 256 MAC addresses per filer in SystemW, this really doesn’t help us when it comes to assigning IP addresses. A quick way to see why this doesn’t help is to imagine that we chose to use the MAC addresses associated with Filer1 for virtual server IP address assignment and later removed it from the original cluster and added it to a new cluster. We cannot

 reuse those MAC addresses in the new cluster without creating duplicates on the network. In general we cannot use the hardware MAC

 addresses of any filer in the cluster as a basis for generating virtual server IP addresses because of this use case.
The approach we intend to take is to still have ONStor MAC addresses for the physical interfaces of the filer, but not reserve any additional ones for virtual servers. We will allocate a single MAC address associated with a cluster license, even for a cluster of one. This MAC address will be assigned by operations and will be stored somewhere on every filer. We want this preloaded because it eliminates the steps when a box arrives at the customer site, but we will need the ability to change this address in the field when

 a new cluster license is purchased, or when the filer moves between clusters. This cluster MAC address will be the seed we use for all IP address assignment when communicating to DHCP, the details of which are in the DHCP section. Note that we don’t have a different method of making unique id(s) today that cannot collide with any id(s) that any other vendor might choose to send to DHCP other than a MAC address. I’m not sure what string that doesn’t include some like an “onstor” prefix would be safe to use so am advocating that we use a cluster MAC address.
We will use the MAC addresses of the physical filer interfaces to get the initial interface configuration, from a bonding and VLAN point of view. We must send the request for this information down all of the physical interfaces because we really don’t know which ones will turn out to be a management interface.

5.2.5 Configuring the Switch

I cannot find a definitive statement on whether LACP support in Linux handles the switch configuration completely or not

. There is some opinions that it does and some that you have to go to the switch and group the ports before LACP will function properly and some opinions that you have to set up all aspects of bonding on the switch and then set up the same things at the Linux-side. This may even be switch-dependent but concrete statements of support are apparently rare. Until we find out otherwise, we will assume that Linux LACP does support informing the switch about the bonding configuration but that you must first configure the switch to group the ports.

5.2.6 DHCP

For ease of administration, and all the reasons listed above, we intend to have all IP services in the cluster, both management and virtual server, assigned by DHCP. Even if a customer wants to use static IP addresses, these addresses will be assigned using fixed addresses defined in DHCP

. By forcing this rule, we can simplify the IP management infrastructure assumptions.

DHCP servers need some identifying text to use to identify the host when assigning IP addresses, typically a MAC/Ethernet address like 00:07:34:04:12:0E. In reality the majority of DHCP servers can handle any text we choose to send. We will only be supporting DHCP servers that can take arbitrary text as per RFC 2132 section 9.14. While it’s possible that some DHCP server implementations will not be able to use a vendor tag rule when the text has more than the usual 6 octets, the preferred method of identifying vendors is to use the vendor-class-identifier and optionally the vendor-encapsulated-options.

There will be some low end DHCP servers, like NetGear, that do not support this and we will have to run an internal cluster DHCP server if the external one is not sufficiently capable. This can be handled by ensuring that the external DHCP server refuses to give leases to the filers so that we can be sure that the internal one is used. We should also work to ensure that an internal DHCP server is found before an external one when in this situation. This may not be something we can guarantee
 but the idea is to ensure that the internal DHCP server has a non-overlapping set of IP addresses that it gives out compared to the external one
. We could also assume that if the customer has a low end DHCP server in the switch they are unlikely to support bonding anyways.
Additionally, any solution to this must have a predictable rule for what text it sends to the DHCP server so that a network administrator can configure things in advance. It is highly desirable that from the point of an order, a customer can be sent a work sheet with the identifying DHCP configuration prior to the systems arriving. By making this knowable prior to the systems arrival the customer can get the networking ready in advance. It’s not hard to imagine that a help desk ticket to get a network administrator to set up DHCP for a new cluster will take a day or so.
5.2.6.1 Bootstrapping Issues

We must address the problem where we have an internal DHCP server and the cluster is completely rebooted. In this case we cannot offer the internal DHCP server until the cluster forms and we know who offers the management virtual server. But, we cannot elect a master until we have IP addresses for mgmt interfaces, and we cannot get the IP addresses until we have the DHCP-supplied IP information. And the circle of logic is complete. that the proposed solution is to cache the interface, mgmt#, and san# networking configuration on each filer and use the local values if the DHCP services are not available. In fact, this is a general rule we can follow for interface setup, NTP configuration and anything else needed prior to a cluster forming. However, there is always a corner case. If a customer wanted to change some or all of the mgmt# interfaces on all nodes, like move a subnet, we would have to ensure that this information made it to the internal DHCP server configuration AND on to the local media copies of every node. This is necessary because if they rebooted all nodes at once there would be no DHCP server available and the local cache copies would have the old IP addresses.

5.2.6.2 Filer Interface Configuration

There is a substantial increase in complexity if the interface configuration that supports the mgmt interface aliases is done after a filer is on the network. Consider the workflow where a new filer uses DHCP to assign a temporary IP address to eth0 so that an administrator can log in and do the initial configuration. If this initial configuration needs to create the interfaces described in the above example, we get into a situation where the running network configuration on eth0 has to be removed so that the intended one can be created. This may be unavoidable in some cases but it is far better to have DHCP download the interface definitions during the initial network configuration. The goal here is to get all interfaces at and below the interface aliases level to be configured via DHCP

.

Note that the bonding driver documentation in reference 1 indicates that DHCP doesn’t work with bonded interfaces because the bonding driver loads too late. We should be able to fix this with the distro we choose so I will instead assume it can be made to work for the purposes of this document.

This can be achieved by leveraging user-defined options in DHCP. We will be defining a new set of options that are sent to a filer when it requests a download using a combination of its cluster MAC address and its filer MAC address. These options will describe the bonding, VLAN, and failover interface configuration that the client should set up as part of the boot process. We will have to hack the DHCP client to implement these new options because to date we cannot find anyone that has done the work.

5.2.6.3 IP Address Assignment

The DHCP naming rule for virtual server addresses will be cluster-MAC-address:interface-alias-name:vsvrName:AddressInstance and the rule for management/cluster/SAN addresses will be cluster-MAC-address:interface-alias-name:filerName. Relative to the example above the rule yields:

00:07:34:04:12:0E:data0:VsvrA:0 10.2.2.1

00:07:34:04:12:0E:data0:VsvrA:1 10.3.3.1

00:07:34:04:12:0E:data0:VsvrB:0 10.3.4.1

00:07:34:04:12:0E:data1:VsvrA:0 10.2.2.3

00:07:34:04:12:0E:mgmt0:Filer1 10.1.1.2

00:07:34:04:12:0E:mgmt1:Filer1 10.1.1.3

00:07:34:04:12:0E:san0:Filer1 10.2.2.2

00:07:34:04:12:0E:data2:VsvrC:0 10.3.5.1

00:07:34:04:12:0E:mgmt0:Filer2 10.1.1.4

00:07:34:04:12:0E:mgmt1:Filer2 10.1.1.5

00:07:34:04:12:0E:san0:Filer2 10.2.2.3

This will allow us to allocate multiple IP addresses for a single virtual server on a single interface, this is necessary to handle some server consolidation scenarios.
Note that using virtual server number in the rule would have the advantage of being unique and unchanging for the lifetime of a virtual server; it’s basically a number starting from one. We chose to use the virtual server name because that fits how administrators think and can be known in advance of filers arriving at the customer site. Note that this gets really ugly if an administrator wants to rename a virtual server; they would have to involve a network administrator, but that is likely to be necessary in any event.

Do we define the NSSWITCH Rules in DHCP config?

How do we make multiple virtual server names and aliases for just some of its IP addresses and define this in a DHCP config file? Think windows server consolidation where one virtual server has the names and IP addresses of all of the original physical windows boxes.

Can you set MTU/auto-negotiate on any interface or just at physical eth# level?

Can interfaces support multiple MTU sizes, like jumbo frames on data0 and 1500MTU on mgmt0 both originating from eth0? What about duplex settings?
5.3 Management Virtual Server

In SystemW we have a management virtual server

 for every filer whose only real purpose is to contain the management and core volumes. The management volume is used to hold
 saved
core dumps, used for the results of ‘system get *’, and as a swap space for the NDMP service during dump and restore.

In SystemX we will be dumping cores to either a local Linux file

 system or more likely over the network. We will also make NDMP use standard Linux virtual memory services to eliminate the need for swapping manually to the management volume. Finally we will use the run time state repository instead of ‘system get *’. This effectively eliminates

 the need for a management virtual server on every filer

.
 We are assuming that we could use ulimit to restrict the resident size of an NDMP instance and use a swap file for the OS on a SAN-resident EXT3 file system as we would on a normal Linux deployment. If this proves not to be the case we may need to rethink how NDMP swap space functions.
We do want to have a management virtual server, but this will instead run at the cluster level. This single virtual server can run on any node in the cluster and will be responsible for delivering network services that are not offered by external hosts. For

 example, if the customer does not have a centralized Syslog server, we will run one within the cluster underneath the management virtual server.

Assigning IP interfaces and addresses for the management virtual server will work the same as with any other virtual server. The name for the virtual server will be vs_mgmt and that name will be reserved, no other virtual server may use that name, or use it as a prefix.

We want to provide EMRS with a single point of contact to get the cluster’s configuration and runtime state information. This service will run on the management virtual server and it will in turn collect the data from all of the nodes in the cluster.

5.4 Dynamic DNS

All names and IP addresses must be automatically registered in DNS, assuming that DNS servers are actually present. Given the many limitations in this area for DHCP due to incomplete standards, we will likely handle this at the Linux layer but it’s only required that it be handled by some agent.

5.5 Avahi

Avahi should only listen on mgmt0 and mgmt1; we therefore do not bring it up until we have the interfaces definitions from DHCP. This is done so that we don’t have to worry about management services being visible on networks that the customer would prefer they not be. We do have the option of allowing sshd connections via Avahi IP addresses but it’s not clear what that buys us. We should consider presenting services like NFS shares and NCM web pages via Avahi.
We do want to use Avahi to find the list of clusters on the network. This is very useful when a customer buys a new filer and wants to add it to an existing cluster. Using Avahi, the customer will have to authenticate to the cluster they want to join and can get the necessary clustering configuration downloaded, like the Linux HeartBeat secret key.
5.6 Network Services

There are a number of network services that we want to leverage that may not be running external to the cluster. When they are not available externally they will instead be started internally on the management virtual server. It is assumed that these will not be high overhead services so running them all on a single cluster node should not be a problem.
Likely choices:

· DHCP Server
· SysLog server

· Note the concern about the lossy nature when the filer with the management virtual server crashes and fails over. Any messages sent during a failover will be lost; we should log the fact that messages could have been lost when this happens.
·
· NTP server
· Windows Domain Services

· Painful as it will be we will have to support Work Group authentication is we ever want to support the low end customer. They are not going to have a domain controller. Technically we could use Samba 4.x and run an internal domain controller instead of Work Groups. The advantage of the former is that we can use any Linux supported authentication mechanism as the underlying Work Group service, it’s not clear if Samba 4.x will be able to do the same thing.
·
Possible but not likely:
· Boot/TFTP server

· We could have all nodes after the first one can boot off of this but will probably stick to a SAN boot strategy.
· NIS/NIS+

· We have to have local users and groups so having NIS/NIS+ is probably not worth it.
· Radius or Diameter server for iSCSI
5.7 Troubleshooting Configuration

The troubleshooting layer must detect that two filers in the same failover group will not have a virtual server failover due to missing interfaces. We also need to report that the same interfaces do not belong to the same VLAN(s) even if they have the same names.

It is assumed that this management virtual server will be reachable by any filer in the cluster, even if they are in different filer groups. The only clear way to guarantee this is to ensure that the same interfaces upon which mgmt# are built are used by the management virtual server at a minimum.

It doesn’t make much sense to have a bond# interface span multiple VLAN(s).

5.8 Storing Configuration Data

We need redundant copies of all configuration data that is stored outside of the cluster DB. The first copy of the configuration information should be on the file system the node boots from. The redundant copy can then be stored in either the cluster DB itself or just in filer on the same file systems used by the MySQL data nodes; the former is the most simple approach. This will suffice as long as a majority of the filers in the cluster do not corrupt their boot file system at the same time. Either the local file system copy will be available, or enough nodes will be up to form a cluster and allow the information to be read from the cluster DB.
5.9 Virtual Server-Aware Networking Applications

We have two use cases for Linux applications that require us to make some minor changes so that they will be virtual server aware. For a service like sshd we intend to support listening on INADDR_ANY so that any virtual server IP address can be used to connect to a single instance of the daemon. While we could make an instance of the daemon for every virtual server running on the filer, that is an incredibly inefficient way to run network services. The preferred solution is to listen on INADDR_ANY and when a virtual server IP address is used to connect we will bind the socket to that virtual server. This will allow us to allow the TCP or UDP traffic to use the routing tables and networking identity specific to the virtual server. This also allows us to scope the behavior of a service by the virtual server used to reach. A typical example is scoping the management shell to only allow operations on the virtual server used to connect to it.

The other use case is when the filer application is connecting to a network service outside of the filer, but doing so on behalf of a virtual server. A typical use case is Samba communicating to a Windows domain controller. Again, we want to use the routing table and networking identity of the virtual server for all communications.

Note that Linux has support for multiple routing tables, see reference 1, but lacks the ability to associate a socket with a specific table; it can do it by defining the rules at the process layer but that would require us to create a process for every virtual server which is not scalable or desirable. It would be great if some Linux networking containers project reached fruition, see reference 1, was ported to Linux, but there is no evidence that this will happen in the next year or so. There also seems no real chance of Sun’s crossbow technology being available in Linux any time soon, see reference 1. The proposed solution is to do what we are doing in Cougar Linux, add the ability to bind a socket to a virtual server so we can establish the correct routing tables, and perhaps ARP targets.
Note that according to reference 1 there can only be 252 separate routing tables in Linux. This would define the virtual server limit per filer. At this time that does not seem like a meaningful limit but it’s something to be aware of.

5.9.1 Limiting Access to Applications

While it makes a great deal of sense from an efficiency point of view to listen on INADDR_ANY, we must retain the ability to limit which IP addresses can be used to reach an application. A typical example is when administrators do not want virtual server IP addresses to be able to reach the management applications like sshd or the management web server. While the configuration of these policies will be described in a different document, we must ensure that the ability to enforce such

 a policy is available in the networking layer.

It seems unnecessary to require every application to be configured for every virtual server. It’s probably best to simply group them into data applications like CIFS, NFS, iSCSI, FTP, etc and management applications like sshd, the management web server, SNMPD etc. We can then indicate whether the class of application is reachable by all virtual servers or none. More information on the policies will be defined in a different document. Add reference when document is written.

5.10 IPSec

TBS

Key Management for virtual servers and maybe the mgmt#.

5.11 Impacts on MySQL

Similar to virtual server IP address assignment, we will have IP addresses for the MySQL management node, for two data nodes, and two or more application nodes. These will be configured to run on the mgmt# interfaces, or an alias to the same interfaces as the mgmt# interfaces. We will treat the IP address assignment as a Linux HA resource that must be co-located with the associated MySQL node resource. We will need to configure MySQL to use these fixed addresses the same way we will do so with Linux clustering and the IP addresses configured on the mgmt# interfaces.

A side node on stretch clusters. The networking layer should provide some definitions of sites so we can detect which filers are on which side of a MAN network and ensure that the MySQL data node resources are spread out.

The DHCP naming rule for MySQL node addresses will be cluster-MAC-address:interface-alias-name:MySQlNodeType. For example:

00:07:34:04:12:0E:mgmt0:MySQLMgmtNode 10.1.1.10

00:07:34:04:12:0E:mgmt1:MySQLMgmtNode 10.1.1.11

00:07:34:04:12:0E:mgmt0:MySQLDataNode1 10.1.1.12

00:07:34:04:12:0E:mgmt1:MySQLDataNode1 10.1.1.13

00:07:34:04:12:0E:mgmt0:MySQLDataNode2 10.1.1.14

00:07:34:04:12:0E:mgmt1:MySQLDataNode2 10.1.1.15

00:07:34:04:12:0E:mgmt0:MySQLAppNode1 10.1.1.16

00:07:34:04:12:0E:mgmt1:MySQLAppNode1 10.1.1.17

00:07:34:04:12:0E:mgmt0:MySQLAppNode2 10.1.1.18

00:07:34:04:12:0E:mgmt1:MySQLAppNode2 10.1.1.19

00:07:34:04:12:0E:mgmt0:MySQLAppNode3 10.1.1.20

00:07:34:04:12:0E:mgmt1:MySQLAppNode3 10.1.1.21

The cluster resource that starts the MySQL management node will also ask DHCP for the fixed addresses associated with MySQLMgmtNode and ensure that they run on the same node. There will be similar rules for the data and application nodes.

6 User Interface

We will make a tool that takes network configuration commands and generates a DHCP client and server configuration file. When the customer is using an external DHCP server they will be able to copy and paste the resulting text into their server’s configuration file.

Note that as stated previously we will not allow administrators to choose the names of the interfaces but we must allow them to choose a specific instance number or to request the next free instance value. For example, they can request to create data5 because they are creating an interface on a filer to match an existing interface on another cluster member, or they can just request that the next unused in the cluster data# interface be created.

7 Project Dependencies

Note that one downside of this approach is that a significant amount of the cluster configuration information is not managed by a centralized cluster DB. This makes tools like EMRS more difficult but they cannot get all of the information they do today from one source. This is really an acknowledgement of the reality of network services in an Enterprise but may lead us to write probe logic for external services in EMRS.

8 Performance Criteria

Speed of failover of the management virtual server is critical because it can be the repository for some important network services, like logging services. If for example some other filer needed to write to the logging service, the text would be lost if the management virtual server was not available due to an in-progress failover

. We should make sure that the management virtual server fails over ahead of any others. We should have a goal of failover in roughly a second

.

�Anything else per virtual server? The current implementation has per virtual server IP statistics and ARP tables. Will we require to support the same? In my opinion this will be more changes to the standard stack than it is worth.

�A good point . The goal is for us to be able to do everything on virtual servers that you could do with physical ones. Per-Virtual Server Statistics are going to be required if we are ever to implement QoS. I have to think about how to get the ARP tables to be per virtual server. This is the reason why I wished that Linux would get the networking containers project complete.

�There also should be an option for multiple virtual servers to share the same routing table.

�Yes. In fact the model is that all policies can be hierarchical/inheritable. Privileges, routing rules, DNS configurations, etc. This was going to be put into the DB schema document but given that this information will reside outside of the cluster DB it does in fact belong here.

�Agree that a hardware TOE option is needed, but we have to think carefully about the system design if software must work without one. As an example, our software today supports TCP/IP/UDP checksums, although the code isn’t used because of the LUC.

�Since we will have a full Linux networking stack, a TOE will not be required.

�Linux networking code already supports the ability to switch from interrupt to polling when the traffic level requires it.
---- 10/06/2007, 23:35 ----
A. Sharp

�Extending my above comment, we may find that a hardware TOE is most effective with adding more processor cores. This would solve the problem of writing software that is used in one config (e.g. no TOE) but not in another (e.g. TOE installed). This also solves the issue of working with the APIs of a TOE vendor, which has proven to be a challenge with our virtual server implementation.

�I’m not very concerned about a TOE just working for us since every vendor supports some variant of Linux.

�Although some designs may do exactly that!
---- 10/06/2007, 23:37 ----
A. Sharp

�The Linux kernel does not have “threads” running the networking stack. The outgoing packets are processed in the context of the thread that has asked for the transfer. The incoming packets are processed in the interrupt handlers, first hardware then software interrupt.

�True if we run using interrupts and not polling loops for incoming traffic, which is unclear at the moment. In order to scale up outbound performance we may not be able to use simple socket writes from "application" cores but may instead need to queue the network transfers like we do today to threads that run on "networking" cores. We have to work out the right balance between scaling up up the networking and taking the additional latency of context switches to worker threads on other cores.

�Earmarking memory for specific purposes is not a good idea to do in hardware. This should be provided via software.

�Yes and no. If the hardware is laid out such that one bank is faster access to the core running the networking than another, it makes sense for the software layer to use that memory preferentially.

�Is the allocation configurable?

�By us certainly. Whether we allow a customer to screw around with them is another thing. The expectation is that there will be models with different banks of memory like today and that will define how memory is used, basically how close it is to the networking layer. Allowing people to mess with allocation plans creates a huge MxN test matrix that we will likely not want to take on.

�VMware allows one to limit the resources used by each VM, are we going to be allow the management interface to specify how much memory each vsvr uses?

�Eventually we will make QOS layers. Initially we will just define the layers and work on them over time. See the slides for where the layers will reside.

�Are there any hardware implications to being IPV6 ready?

�Most TOE(s) do not yet support IPv6 but mostly the answer is no.

�This is going to be fun to track down all the places in our code where we neglected to use proper “struct sockaddr” and used uint32 instead. Which is everywhere we had such opportunity.

�SystemX is all about fun 

�I'm sorry, but this doesn't seem to make sense. We are basing this on Linux but we would use a Windows priviledge model? I seriously think not.
---- 10/06/2007, 23:47 ----
A. Sharp

�Why should the virtual server be down? It seem all you need is bring interface down, create a new one, bring it up. The network stack will recalculate the routes and the clients will see only brief service interruption. In the cluster case, what is the reason that the network change can not be atomic from the applications point of view?

�Are you suggesting that we leave a vsvr up across a networking configuration change even when that removes any ability for clients to reach it, as long as it’s a admin action? I really meant the word “down” and not “disabled”, at least for the duration of a failover. We want to add loss of IP networking connectivity as a failover trigger so this would qualify. Note that in the typical case all filers will be getting the same interface changes, one at a time so the failovers will be repeated. BTW I’m just not sure how we make a simple user interface when a change to say DATA0 could require us to reconfigure many vsvr(s) because of changes to their IP address assignments. Even worse, if a MGMT interface alias is built on the same interface you are effectively dropping out of the cluster temporarily and will have all resources fail over.

�Arrays also have an out of band IP interface that gives information about how they are configured (SNMP maybe?), this information would make managing our boxes easier as well (see Bill N. for details).

�As far as I know, it is available in Linux. Unless I misunderstand what you are saying.
---- 10/07/2007, 00:58 ----
A. Sharp

�As pointed out above, dedicated mgmt interfaces are not a cost-effective use of hardware. Are security concerns the only reason we’d have dedicated interfaces? If so, is there a way around this?

�There are customers that have physically separate management and user networks. We must be able to work in that environment. Kudelsky Group is one of our customers that run in this model.

�Ability to disable management services on selected interfaces. Can this be like a Linux IPchains or IPtables? That way we can let the customer choose the type of service they want o expose on those ports. (NDMP, SNMP, SSH, FTP etc)

�As described in 5.9, vsvr(s) will use routing tables in the proposal. As for configuring each and every application, see section section 5.9.1

�Same comment as above. A good SMP solution where the TOE is actually another processor core may be the way to go.

�Most advanced arrays now do support data link layer based Adaptive load balancing. Should we support this?

�We will support what we get from the iSCSI stack, we will not write our own. Just about every software/Linux driver supports this, I was just being explicit. This can also be done with the Linux bonding driver with packet round-robin mode.

�If we support an off-the-shelf TOE, then IPSec won’t be an issue. Cavium has some good stuff here.

�True, but it gets harder when no one TOE does every optional feature, IPv6, IPSEC, iSCSI, RDMA, etc.

�How does the proposed hierarchy of names compare to our existing convention? Keeping it either “just like Linux” or just like our current hierarchy would be ideal to keep the customer from having to learn a whole new scheme.

�Our current convention is to use fp1.# for physical interfaces and any name for logical. The problem is that the “any name” model is error prone. We document and train people to use the same lport names on each filer but they often forget. The hierarchy that I’m proposing matches what Sun uses for its Linux blade server and seems very clear.

�Is mgmt0 just like any other logical interface in the system? Means, it can be renamed, deleted or altered in any other way? Or it is always created automatically when the system is powered up for the first time with dhclient running.

�Interfaces cannot be renamed, as stated previously we will not allow users to choose the names. They can be deleted via the same method they are created, via the dhcp server config file.

�I’d vote for keeping the “management” and “cluster” names separate. In the future, if we ever implemented a global file system in our cluster, then I’d like to keep the “cluster network” separate from the “management network”. For the SystemX implementation as envisioned here (i.e., without GFS) we should just call it the “management” network.

�Sure. I really meant “clustering” here as for the cluster DB traffic but I agree with your comment, which is why these will be called mgmt# for now. Cluster DB traffic will go over mgmt#, I do not want to create yet another alias group for that use case.

�We should add a way to detect this and warn the admin.

�Not sure if that is possible without access to the switch configurations. We can ping default routes but that does not guarantee that the topology is the same.

�We never had mac addresses reserved for the virtual servers. Mentioning this makes this section a little confusing.

�We are reserving them in manufacturing today so I felt it was useful background. I’m not sure what you think they are being reserved for.

�256 MAC addresses per filer is clearly overkill. We could get away with 16-32.

�Not sure I follow this. There won’t be any duplicate MAC addresses since the filer-level MAC will be unique. If a filer fails, we can update the new filer with the old filer’s MAC. This can be done by updating the seep of the new filer or having the MAC stored at the chassis level so that the MAC stays the same when boards are swapped. This is how Cheetah and Cougar work. Likewise, if a filer moves to another cluster, it takes its MAC with it. With this in mind, I’m not sure why we couldn’t use the MAC address to generate virtual server IP addresses.

�You cannot use that approach. If filer1 is used to generate vsvr IP addresses, then you remove it from the cluster and create a new cluster with it, you are going to collide if you use it again for virtual server IP addresses.

�There is an option of using the DHCP method to do initial configuration of the cluster membership.

It may be better to avoid talking about the cluster MAC address, since this “address” is never used as a MAC address. It is really an onstor unique identifier for the cluster. Putting it into a mac address form may be confusing for the administrator

�A reasonable point. We don’t have a different method of making unique id(s) today that cannot collide with any id(s) that any other vendor might choose to send to DHCP other than MAC address. I’m not sure what string that doesn’t include some like an “onstor” prefix would be safe to use. Any suggestions?

�FYI…right now, the MAC address that is stored in the seep and printed on the label is used by sc1. Every other MAC is then indexed off of this base address.

�You’ll have to send the DHCP request on all interfaces since before you get the response you do not know which interface is the management one.

�Yeah, that's why this is in red. I was writing up a sample DHCP server config file and making the interface specification options required as part of every eth# entry was painful. I hadn't yet reached the point of using DHCP inheritance to make it cleaner.

�Both IPMP and bonding works well with most switches. In case of Linux bonding it uses ARP for probing. One network admin told me that it does have some issues with in-bound load balancing. This has been almost 1 year back. It may no longer be true. However unlike Solaris, this will show one single interface for the bond, which is fine for us.

�Hopefully true, but we need this to get proved out. The literature is all over the map.

�Does this mean customers can’t simply skip the step and configure static IPs on the system mgmt. vsvr and SAN interfaces? That wouldn’t be a good idea IMO

�Yes it’s true. There is no difference between calling an “interface” command today that writes things to the cluster DB and calling a similar command that updates the DHCP server config file. The intent is to remove the common causes of configuration mistakes, and duplicate IP addresses is one of them. Today we assume that cluster networks are physically different interfaces than everything else, and we don’t allow them to be bonded or vlan’d. This will all change when interfaces are consolidated and shared with vsvr(s).

�Looks like some good potential for failure modes… Is it always possible to restrict some cheap netgear router’s DHCP server to not hadn out an IP address to a particlular MAC? if not the in this case will there be a collision with the ONStor DHCP server on the cluster for handing out IP addresses to other hosts on the network (or will the ONStor DHCP server only serve addresses to ONStor boxes?) Will there be a race condition here if the other DHCP server is not able to shut down for serving IP addresses to ONStor boxes? etc... Some clarifications of these problems are probably in order.

�You can always restrict even cheap DHCP servers from responding to our MAC(s) but the point here is that an admin can always mess us up with a colliding DHCP server. This is true even when ONStor isn't involved if you start multiple DHCP servers on the same subnet. I can add more text about failure modes, but to be clear they are the same as without ONStor.

�DHCP is supposed to make things easy and I agree that in some customer environments it will. However, most customers like to start configuring the system with a pre-configured IP. A number of customers don’t let DHCP traffic into back-bone file server network anyway.

�In that case they can run the internal cluster DHCP server. This is very similar to how VMWare works, with an internal DHCP server.

�There is (or was) some dependency for the virtual server creation. The management server is used to join the new virtual server to windows domain (or something like that).

�I don’t see how that is possible because there is no requirement in SystemW that the management virtual server even has IP addresses.

�The management volume also is used for ‘system get *’ dumps.

�Good to know. In the future we will be using the run-time state repository and not “system get *” so hopefully that use case goes away as well.

�Does this mean you are going to equip each filer with a local disk of at least few tens of GB?

�No, I’m assuming that we can dump core to a volume on the SAN in standard Linux. Since you can boot off of a SAN I cannot see why dumping a core would be a different.

�Does not sound feasible. How you are going to limit the amount of memory the NDMP session uses if it is going to share the virtual memory with everybody else? The performance in the virtual memory scenario tends to go downhill if you get in the situation where you really have to start swapping. And you still need to swap somewhere. The size of the swap space needs to be at least as big as the cumulative size of all ndmp sessions that are possible to run concurrently and it may be required to be preallocated when the os boots.

�I discussed this briefly with Tim and maybe we need to followup some more. I was assuming that we could use ulimit to restrict the resident size of an NDMP instance and use a swap file for the OS on a SAN-resident ext3 file system as we would on a normal Linux deployment.

�Currently a number of our customers uses the management virtual server IP as a way to reliably login to a specific gateway from the data network. (Since the mgmt is unprotected, they can always tell which gateway they are logging into. SC network may not be routed to the data network, hence)
How can we do this if eliminate Mgmt vsvr? What if MGMT network is inaccessible? VSVR IPS are unreliable because they may have moved off to another node.

�How much of the need to log into a specific filer is due to the inability to get status from anywhere in the cluster? It will be part of a different component document but any management command can be run from any node. If the filer is hosed such that you cannot reach the mgmt network, you will not be running any vsvr services because you are not a member of the cluster. Remember that there is only a single OS here, there is no case where the TXRX is up and the SSC is hosed. Basically, I need more information on the use case you want to address so I can see if they are handled in different ways in SystemX or are unaddressed.

�It is also always possible to present sshd connections via avahi and this is probably desireable as well – as an aside it also would be nice to present other services (like nfs shares and the NCM web page this way)

�I’ll consider the sshd access, I worry about it conflicting with some customers’ desire to have the management network unreachable from the data network and am not yet clear on the added value. Presenting other services have the same issue but can be something we consider going forward.

�Why do you need “the” management virtual server for that instead of “a” virtual server? You could define the network services associated with the virtual server and let them failover together with the virtual server. For the external syslog server all you need to know is the IP address. It should not matter if this address is associated with our own virtual server or a cluster external server.

�The reason this "management" virtual server is special is that is has associated resources that are the processes that offer the management services like a centralized syslog server, DHCP, or NTP. The normal virtual servers do not have such associated processes they just access them over the network when needed by IP address, unless you can explain why we would want to do otherwise.

�Will starting with a static IP fix this? (As long as we figure out a way to avoid IP duplication)

�No, static IP(s) have no bearing on VLAN membership. You need the entire interface stack (called lports today) defined before IP address assignment even matters.

�If you have avahi listening on any unconfigured box on any available port, the one can get to the initial configuration page very easily and avahi is then only listening on the mgmt ports once it’s configured (say this is a single node cluster w/o an external DHCP server, or that you are able to see from the initial configuration page the other local clusters (via avahi) that you can choose from to have this gateway join).

�That doesn’t appear to be the case when VLAN(s) are used. Additionally, Avahi cannot stay up across the creation of bonding interfaces that involve the same physical interfaces it was using.

�However this should be clearly noted in the log so that it is know that preceding messages might have been lost.

�OK.

�The web server for NCM

�May not belong here. But would a way to export the data into a readable/editable form and re-apply make sense? (most network switches support this)

�The DHCP config file is ascii text so not sure how much more readable you mean. In general you can assume we will follow the same requirements as for the cluster DB, you have to be able to dump in some portable form, like MySQL dumping XML in the cluster document.

�What do you mean by application instance layer? You can force a socket to use a specific routing table, for example if the routing table are selected by source IP address and the source IP address is set up before the connect attempt. This is exactly what we are doing now.

�There is an API that a process can call to indicate that all sockets it uses are associated with a given routing table. As for source-based routing, that is what I was talking about but was indicating to those not already on the Cougar project we have to make changes to the libraries to associated a source address with sockets since it’s not automatic, at least I don’t see how UDP would just work.

�You may be able to solve this by routing tables, route the packets to specific IP and port into a sink.

�I’ll have to think about whether that is the most clear way to do this.

�This is one of the reasons why the idea of a “the” management virtual server is not very attractive.

�Any centralized logging server has this problem, are you arguing that our current method of having log files all over the place is preferable? Whether the centralized server is internal or external to the cluster, this problem here can happen. Even if we took Syslog out of the discussion, the management server can also offer a bunch of services where multiple instances is a very bad idea, like NTP. We need to discuss what you alternate proposal is to centralized network services.

�Some of things that may not necessarily belong here, but could be thought through here are

 Can any type of QoS be implemented at the bond layer. Application aware or just IP based.
One of the most requested features in our current system is ability to failover based on network or san port failures. Detecting such failures could involve listening for link-state or pinging default routers.

�This is covered in the clustering document.

2007 ONStor, Inc., Company Confidential
Page 18 of 18
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_17298968.unknown

