MII—P S

TECHNOLOGIES

M1 PS64® Architecturefor ProgrammersVolume
IV-c: The MIPS-3D® Application-Specific
Extension to the MIPS64® Architecture

Document Number: M D00099
Revision 2.50
July 1, 2005

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2002-2003,2005 M1 PS Technologies Inc. All rights reserved.

Copyright © 2002-2003,2005 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying,
reproducing, modifying or use of thisinformation (in wholeor in part) that isnot expressly permitted in writing by MIPS Technologies
or an authorized third party isstrictly prohibited. At aminimum, thisinformation is protected under unfair competition and copyright
laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in amodifiable form such asin FrameMaker or Microsoft Word format) is subject to
use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO
CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN
SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogiesreservesthe right to change the information contained in this document to improve function, design or otherwise.
MIPS Technologies does not assume any liability arising out of the application or use of thisinformation, or of any error or omission
in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied
warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license
agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license
to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements
thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the
laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial
computer software documentation or other commercial items. If the user of thisinformation, or any related documentation of any
kind, including related technical data or manuals, is an agency, department, or other entity of the United States government
("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of thisinformation, or any related
documentation of any kind, isrestricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense
Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of thisinformation by the Government isfurther
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this
information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS I, MIPSIII, MIPS IV, MIPS V, MIPS-3D, MIPS16, MIPS16e, MIPS32, MIPS64, MIPS-Based, MIPSsim,
MIPSpro, MIPS Technologies logo, MIPS RISC CERTIFIED POWER logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS,
4K Sc, 4KSd, M4K, 5K, 5K c, 5Kf, 20K c, 24K, 24K c, 24Kf, 24KE, 24K Ec, 24K Ef, 25K, 34K, R3000, R4000, R5000, ASMACRO,
Atlas, "At the core of the user experience.", BusBridge, CorExtend, CoreFPGA, CorelV, EC, FastMIPS, JALGO, Malta, MDMX,
MGB, PDtrace, the Pipeline, Pro Series, QuickMIPS, SEAD, SEAD-2, SmartMIPS, SOC-it, and YAMON are trademarks or
registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.14, Built with tags: 2B ARCH FPU_PS FPU_PSandARCH MIPS64

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 ADOUL THIS BOOKccuiiiiiieieeeeet ettt ettt h et h e b e bt s b e e b e be s e e se et e e e e e e eneeneeaeenenbenaeebea 1
1.1 TypographiCal CONVENTIONSc.ciiitiriereeieieieeeet ettt se bt se e se e st s ae e st ebesbe s bt sbeebeseese e s e s e e et eneeseeaesbenaas 1
LA T THAHC TEXE oottt b etk h e b bt s e b bt e bbbt s e se s E ke bt e b bt s b b e b e e e b 1

I 2 = o o B I = ST Sr O SOE TSP UE TSP UTPTSTPUPTRTR 1

L. 1.3 COUMEY TEXE ettt e bbb e bR Rt Rt R et R et b et b e e e e e nn s 1

1.2 UNPREDICTABLE @nd UNDEFINEDccooiiieiiiiiiieiieiriseteeses ettt 2
L2 1 UNPREDICTABLE ..ottt ettt bbbt st b bt s bbbt 2
L22UNDEFRINED ..ottt b et b bbbt b bbb bt s bbbt e e 2
L2.BUNSTABLE ..ottt bbbt b et b bt e bbbt e bt e bbbt e 2

1.3 Special Symbolsin PSeUdOCOOE NOLEEIONcccoiiiiiiiieie ettt et sae e 3

1.4 FOr MOFE INFOIMEBLION ...ttt s e e e h s b bt e b e n e st e s et nn s 5
Chapter 2 GUIJE tO the INSIIUCTION SELocvitiieeiireeiirie et b bt e bt en bbbt b s na e nnenes 7
2.1 Understanding the INSIFUCLION FIEIASc.coviiiiiieieer bbb 7
BN R 1 S 0 oo g T T o S 8

2.1.2 Instruction Descriptive Name and MNEMONICccovviirieirieiriee ettt 9

B G o 4 0= A = Lo S 9

2 LA PUMPOSE FTEIO ..ot b bbb b e e n bRt nne 10

2. 1.5 DESCIIPLION FIEIA ...ttt b e bbb e bbbt nne 10

A I = g ox o] =Y Y= Lo OSSR 10

2.1.7 OPEFEtioN FIEIA ..ottt b bbb bRt bRt nne 11

218 EXCEPLIONS FIEIA ...t b bbb et nne 11

2.1.9 Programming Notes and Implementation NOteS FIeldS ..o 11

2.2 Operation Section NOtation and FUNCLIONScioiirieiriiiriecreerieereee st 12
2.2.1 INStruction EXECULION OFTEITNGo.eivetirieiirieierieierieesi ettt et e b e n et enene 12

2.2.2 PSEUAOCOOE FUNCLIONS ...ttt ettt st ae s s s eae st e e seesbesbese et et et e e eneeneeneeneesennes 12

2.3 0p and FUNCtion SUDFIEIA NOLAETON ceiieiieieeieeete ettt 22

24 FPU INSLIUCHIONS ...viitiiteitieteste sttt seesee e e e e eseese st saestesaesaesbesbeseessenseeeseemeeseeneeseebessesaeebenbeseeseanteseneenseneeneenessennes 23
Chapter 3 MIPS-3D® A pplication-Specific Extension to the MIPSB4® ArchiteCtureccoovevvevievevervseseeseeeeees 25
3.1 Base ArchiteCture REQUITEMENLScccoueriereeieeeeeresesteseseestesteseessessessesesseesesseesessessessessessessessensensessesseensensessenses 25

3.2 Software DEteCtion Of thE ASE ... 25

3.3 ComPlianCe aNd SUDSEILING ...veiveeierieriesieieeeieeeees s e sttt e e e e e e e e e e eseesessesaessesbeseeseensenseneeneenanneesensenses 25

LA MIPS-3D OVEINVIBW .eeercieereerereere et s e s s s Rt E Rt ne R R s e Rt p R et e e ner e nren e 25

3.5 INStruction Bit ENCOOINGcveieiiirierieieereeieere e sttt st e e e e e e s e e eseesessesaesresbeseeseen e se e eneenanneesensenses 26
Chapter 4 The MIPS-3D® ASE INSITUCLION SELcc.oiuiiiiiitirie ettt s be e bbb e sae e e 29
4.1 MIPS-3D INSLrUCLION DESCIIPLIONSecueiieuieiirieeieeteste sttt ste s see st see e e e et be s bt saesbe b e b se e st e bese e e e e e e e e eneeaeeaeens 29
APPENIX A REVISION HISIOMY ..ottt bbbt b et b et b et e b s bbbt b 53

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Figures
Figure 2-1: Example Of INStrUCtiON DESCIIPLION.........eiuiitiriireiterie ettt st e et be bt sbesbesbesnen 8
Figure 2-2: Example Of INSEIUCHION FIEIAS........coiiiiiiiiee et et sae b e e 9
Figure 2-3: Example of Instruction Descriptive Name and MNEMONICccoouriririiinere e 9
Figure 2-4: Example Of INSLIUCHON FOMMEL.........coeiiiiiiie ittt e e e bbb bbb snens 9
Figure 2-5: Example Of INSLIUCLION PUIMPOSEcoutiiitiiiii ettt b e sttt se b e saesbe b e 10
Figure 2-6: Example Of INStrUCtioN DESCIIPLION.........ccuiiiiiitirierie ettt st e b e saesre b e 10
Figure 2-7: Example Of INStrUCiON RESIICLIONScc.iiiiiiiiese ettt et s sae b b e 11
Figure 2-8: Example Of INStrUCEION OPEIELIONcoueitiriirieitirierie ettt sttt e e e ese b ae e sbe b e 11
Figure 2-9: Example Of INStrUCON EXCEPLIONcouiitiiiiiitisiesie ettt st st sne b b e 11
Figure 2-10: Example of Instruction Programming NOEES..........cc.oiiieriieirrceescre sttt sre e 12
Figure 2-11: COP_LW Pseud0COde FUNCLION........ccccieiieie ettt st e e e et sae e e stesseestesnaenseesaeseennenseenns 13
Figure 2-12: COP_LD PSeUdOCOUE FUNCLION........cciiiieiiecee sttt st e st et este et e sreesae e e stesseetesaaenteenaeseennenseenns 13
Figure 2-13: COP_SW PseudOCOTE FUNCLIONcocuiiieie ettt et st e e ste s e tesaa e e ena et e ennenneenns 13
Figure 2-14: COP_SD Pseud0COdE FUNCLION.........ciiiiiciicee ittt stee st te e e ste e sreesae e e saessaestessaesseenaeseennenseenns 14
Figure 2-15: CoprocessorOperation PSeudoCode FUNCHION.........oo.iiiieiieieeeeee et 14
Figure 2-16: AddressTrans ation PSeuUdOCOE FUNCLION...........cceiieiieiieie ettt st e b e enreenns 15
Figure 2-17: LoadMemory PseudoCOde FUNCLION..........ciiii ittt st st enne s 15
Figure 2-18: StoreMemory PSeudoCode FUNCLION.............cciiiiie ettt st s te s be s e b e ennenreenns 16
Figure 2-19: Prefetch PSeUdOCOOE FUNCLION...........coi ittt et st e e sae s e e tesra e e enaebeennenseenes 16
Figure 2-20: SyncOperation PSeUdOCOOE FUNCEION.........coiiiiiiieiiecie ettt s sr e 17
Figure 2-21: ValueFPR PSeUdOCOUE FUNCLIONcc.ociiiicee ettt st ste e te s et ena e beennenneenes 18
Figure 2-22: StoreFPR PSeudOCO0E FUNCLIONcciiieiicie ettt e et s te e e e ena e beennenneenns 19
Figure 2-23: CheckFPEXception PSeudoCode FUNCLION ..ot 20
Figure 2-24: FPConditionCode Pseudocode FUNCLION............cooiiieie ettt s st ne s 20
Figure 2-25: SetFPConditionCode Pseudocode FUNCLION...........c.ceiiiieieiiee ettt st s e e nre s 20
Figure 2-26: Signal Exception PSeudoCode FUNCLIONooviiiiiieiiicie ettt s 21
Figure 2-27: Signal DebugBreakpointException PSeudocode FUNCLION............ccoiiiiiiinene e 21
Figure 2-28: Signal DebugM odeBreakpointException Pseudocode FUNCLION..........c.cooiiiiiiinene e 21
Figure 2-29: NullifyCurrentlnstruction PseudoCode FUNCLION.............ccoiiieiiiiierecie e este et 21
Figure 2-30: JumpDelaySlot PSEUAOCOOE FUNCLION ..ottt et s 22
Figure 2-31: NotWordValue PSeUdOCOTE FUNCLIONccuiiieie ettt st st st e b e e e nreenns 22
Figure 2-32: PolyMult PSEUdOCOTE FUNCLION.........cciiieitecee ettt e ae e sae s e tesra et e esa et e ennenreenns 22

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1-1: Symbols Used in Instruction Operation SEBEEMENTScccoererirereiene e r e s 3
Table 2-1: AccessLength Specifications for LOAdS/SIOrES.couoiiirireeceeeere e e 16
Table 3-1: Instructions in the MIPS-BD® ASE ...ttt b et sb e be e b e 26
Table 3-2: Symbols Used in the Instruction ENcoding TaDIES.........ccoeiiieeie ettt s 26
Table 3-3: MIPS-3D COP1 ENCOAING Of IS FIEIcccvieieie ettt ettt ae e nnnens 27
Table 3-4: MIPS-3D COP1 Encoding of Function Field WhEN TS=S........ooi et 27
Table 3-5: MIPS-3D COP1 Encoding of Function Field WheNn 1S=D ..ot 27
Table 3-6: MIPS-3D COP1 Encoding of Function Field When rSEW OF Looveieeiicceceecese e 27
Table 3-7: MIPS-3D COP1 Encoding of Function Field When rS=PS..........oooo et 28

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS64® Architecture for Programmers Volume |V-c comes as a multi-volume set.

» Volume | describes conventions used throughout the document set, and provides an introduction to the MIPS64®
Architecture

* Volume Il provides detailed descriptions of each instruction in the M| instruction set

* Volume Il describes the MIPS64® Privileged Resource Architecture which defines and governs the behavior of the
privileged resources included in a MIPS64® processor implementation

* Volume | V-a describes the MIPS16e™ A pplication-Specific Extension to the MIPS64® Architecture
* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture
* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS64® Architecture

 Volume IV-d describes the SmartM I PS® A ppli cation-Specific Extension to the MIPS32® Architecture and is not
applicable to the MIPS64® document set

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

1.1.1 Italic Text
* isused for emphasis

* isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D, and PS

* isused for the memory access types, such as cached and uncached

1.1.2 Bold Text
* represents aterm that is being defined

* isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are not
programmabl e but accessible only to hardware)

* isused for ranges of humbers; the range isindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through 1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel ow.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 1

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDI CTABL E and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDI CTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction, or
as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDI CTABL E operations may cause aresult to be generated or not. If aresult isgenerated,
itisUNPREDICTABLE. UNPREDICTABL E operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source (memory
or internal state) which isinaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state whichis
inaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user mode
must not access memory or internal state that isonly accessiblein Kernel Mode or Debug Mode or in another process

» UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED operations
or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

» UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which thereis
no exit other than powering down the processor). The assertion of any of the reset signals must restore the processor
to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABL E values, software may depend on the fact that asampling of an UNSTABLE valueresultsin alegal
transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

» Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

2 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

1.3 Special Symbolsin Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1-1.

Table 1-1 Symbols Used in Instruction Operation Statements

Symboal Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the binary
b#n value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" prefix is
omitted, the default base is 10.
Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
X Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) is used. If y isless than
y..Z z, this expression is an empty (zero length) bit string.
+ - 2's complement or floating point arithmetic: addition, subtraction
#, X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement |ess-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwiselogical OR
GPRLEN Thelength in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] isawayszero. In Release 2 of the Architecture, GPR[X]
is ashort-hand notation for SGPR] SRSCtlcgg, X].
SGPR[sX] ISréR;eRI ease 2 of the Architecture, multiple copies of the CPU general-purpose registers may be implemented.
[sX] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), genera register x

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z Coprocessor unit z condition signal
Xlat[x] Trand ation of the MIPS16e GPR number x into the corresponding 32-bit GPR number
Endian mode as configured at chip reset (0 —Little-Endian, 1 — Big-Endian). Specifies the endianness of the
BigEndianMem memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endianness
of Kernel and Supervisor mode execution.
The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
BigEndianCPU endianness may be switched by setting the RE bit in the Satus register. Thus, BigeEndianCPU may be computed

as (BigendianMem X OR ReverseEndian).

ReverseEndian

Signal to reverse the endianness of load and store instructions. Thisfeature is available in User mode only, and
isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as (SRgg and
User mode).

LLbit

Bit of virtual state used to specify operation for instructionsthat provide atomic read-modify-write. LLbit isset
when alinked load occurs and istested by the conditional store. Itiscleared, during other CPU operation, when
a store to the location would no longer be atomic. In particular, it is cleared by exception return instructions.

1+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, al effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to atime
label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, theinstruction operation iswritten in sectionslabeled
with the instruction time, relative to the current instruction I, in which the effect of that pseudocode appears to
occur. For example, an instruction may have aresult that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appearsto occur “at the sametime”
asthe effect of pseudocode statements|abeled | for the following instruction. Within one pseudocode sequence,
the effects of the statements take place in order. However, between sequences of statements for different
instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a particular
order of evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, thisis the address of the instruction
word. The address of the instruction that occurs during the next instruction time is determined by assigning a
value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit M1PS16e instruction)
or 4 before the next instruction time. A taken branch assigns the target address to the PC during the instruction
time of theinstruction in the branch delay dlot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 64-bit address all of which are significant during a memory reference.

ISA Mode

In processors that implement the M1PS16e A pplication Specific Extension, the |SA Mode isasingle-bit register
that determines in which mode the processor is executing, as follows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MI1PS16e instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor O register on an exception.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Table 1-1 Symbols Used in Instruction Operation Statements

Symbol M eaning

Thenumber of physical address bitsimplemented is represented by the symbol PABITS As such if 36 physical

PABITS address bits were implemented, the size of the physical address space would be 2BITS = 23 hytes

The number of virtual address bitsimplemented in a segment of the address space s represented by the, e.symhe b
SEGBITS SEGBITS Assuch, if 40 virtual address bits areimplemented in a segment, the size of the segment is 258!
=20 pytes.

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRS). In MIPS32, the FPU has 32 32-bit
FPRsin which 64-bit data types are stored in even-odd pairs of FPRs. In M1PS64, the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

FP32RegistersMode | | \11ps32 implementations, FP32Register sM odeisalwaysa0. MIPS64implementations have acompatibility

mode in which the processor references the FPRs as if it were a MIPS32 implementation. In such a case
FP32Register M ode is computed from the FR bit in the Satus register. If thisbit isa0, the processor operates
asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sMode is computed from the FR bit in the Status register.

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch or
InstructioninBranchD | jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value isfalse

elaySlot if abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of abranch or jump.

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function - the
exception issignaled at the point of the call.

Signal Exception(exce
ption, argument)

1.4 For More lInformation

Various MIPS RISC processor manualsand additional information about MIPS products can befound at the MIPSURL:
http://www.mips.com

Comments or questions on the MIPS64® Architecture or this document should be directed to

MIPS Architecture Group

MIPS Technologies, Inc.

1225 Charleston Road

Mountain View, CA 94043

or via E-mail to architecture@mips.com.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 5

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 1 About This Book

6 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2-1 shows an example instruction. Following the figure are descriptions of the fields listed below:
 “Instruction Fields’ on page 8

* “Instruction Descriptive Name and Mnemonic” on page 9

» “Format Field” on page 9

* “Purpose Field” on page 10

 “Description Field” on page 10

» “Restrictions Field” on page 10

* “Operation Field” on page 11

» “Exceptions Field” on page 11

» “Programming Notes and |mplementation Notes Fields’ on page 11

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

Instruction Mnemonic

and Descriptive Name —# Example Instruction Name EXAMPLE

Instruction encodin

constant and variabgfe\ 31 26 25 21 20 16 15 11 10 6 5 0

field names and values SPECIAL rs rt rd 0 EXAMPLE
000000 00000 000000

Architecture level at 6 5 5 5 5 6

which instruction was

defined/redefined and

assembler format(s) fOI'/V Format: EXAMPLE rd, rs,rt MI1PS32

each definition
Short description ——————» Purpose: to execute an EXAMPLE op

Symbolic descripti - N
ymbolic description Description: GPR[rd] « GPR([r]s exampleop GPR]rt]

Full description of / This section describes the operation of the instruction in text, tables, and
instruction operation illustrations. It includes information that would be difficult to encode in the
Operation section.

Restrictions on o
instruction and Restrictions:

operands Thissection listsany restrictionsfor the instruction. This can include values of the
instruction encoding fields such as register specifiers, operand values, operand
formats, address alignment, instruction scheduling hazards, and type of memory
access for addressed |ocations.

High-level language .
description ofinstruction\> Oper.atlon:. . .) o
operation * This section describes the operation of an instructionin a*/
[* high-level pseudo-language. It is precise in ways that the */
[* Description section is not, but is also missing information */
[* that is hard to expressin pseudocode.*/
temp ¢ GPR[rs] exampleop GPR[rt]
GPR[rd]« sign_extend(temps; g)

Exceptions that

. . Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers —— g Programming Notes;
Information useful to programmers, but not necessary to describe the operation of
the instruction

Notes for implementors .)
~———® |mplementation Notes:
Like Programming Notes, except for processor implementors

Figure 2-1 Example of Instruction Description

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The following
rules are followed:

8 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2-2).
Constant valuesin afield are shown in binary below the symbolic or hexadecimal value.

» All variablefields are listed with the lowercase names used in the instruction description (rs, rt and rd in Figure 2-2).

* Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2-2). If
such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

Figure 2-2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2-3.

Add Word ADD

Figure 2-3 Example of I nstruction Descriptive Name and M nemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
giveninthe Format field. If theinstruction definition was later extended, the architecture levels at which it was extended
and the assembler formats for the extended definition are shown in their order of extension (for an example, see
C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructions in previous
levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the extended
architecture.

Format: 2pp rd, rs, rt MIPS32

Figure 2-4 Example of Instruction For mat

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at which
theinstruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 9

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Figure 2-5 Example of Instruction Purpose

2.1.5 Description Field

If aone-line symbolic description of the instruction isfeasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Description: GPR[rd] < GPR[rs] + GPR[rt]
The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit result.

* If the addition results in 32-bit 2's complement arithmetic overflow, the destination register is not modified and
an Integer Overflow exception occurs

« If the addition does not overflow, the 32-bit result is signed-extended and placed into GPR rd

Figure 2-6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “ CP1 register fd”
isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /Satus
register.

2.1.6 RestrictionsField
The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictionsfall into one
of the following six categories:
« Vaid valuesfor instruction fields (for example, see floating point ADD.fmt)
e ALIGNMENT requirements for memory addresses (for example, see LW)
« Valid values of operands (for example, see DADD)
« Valid operand formats (for example, see floating point ADD.fmt)

 Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards for
which some processors do not have hardware interlocks (for example, see MUL).

* Valid memory access types (for example, see LL/SC)

10 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.1 Understanding the Instruction Fields

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the
operation is UNPREDICTABLE.

Figure 2-7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation
resembling Pascal. This formal description complements the Description section; it is not completein itself because
many of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Operation:

if NotWordvalue (GPR[rs]) or NotWordvValue(GPR[rt]) then
UNPREDICTABLE
endif
temp < (GPR[rsliq||GPRIlrsls; o) + (GPR[rtlsqi||GPRIrtlss q)
if temp;, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« sign_extend(temps; q)
endif

Figure 2-8 Example of Instruction Operation

See Section 2.2, "Operation Section Notation and Functions' on page 12 for more information on the formal notation
used here.

2.1.8 Exceptions Field

The Exceptionsfield lists the exceptions that can be caused by Operation of the instruction. It omits exceptionsthat can
be caused by the instruction fetch, for instance, TLB Réfill, and also omits exceptions that can be caused by
asynchronous external events such as an Interrupt. Although aBus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the
implementation.

Exceptions:
Integer Overflow

Figure 2-9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.9 Programming Notes and Implementation Notes Fields

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 11

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

Figure 2-10 Example of I nstruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level 1anguage notation to describe the operation
performed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 12

 “Pseudocode Functions’ on page 12

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and include
the following:

» “Coprocessor General Register Access Functions’ on page 12
» “Memory Operation Functions’ on page 14
» “Hoating Point Functions’ on page 17

» “Miscellaneous Functions’” on page 20

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and how
a coprocessor supplies aword or doubleword is defined by the coprocessor itself. This behavior is abstracted into the
functions described in this section.

12 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during aload
word operation. The action is coprocessor-specific. The typical action would be to store the contents of memword in

coprocessor general register rt.

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW
Figure 2-11 COP_LW Pseudocode Function

COP_LD

The COP_L D function defines the action taken by coprocessor z when supplied with adoubleword from memory during
aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the contents of
memdouble in coprocessor general register rt.

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD
Figure 2-12 COP_L D Pseudocode Function

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word operation.
The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW
Figure 2-13 COP_SW Pseudocode Function

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 13

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

14

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store
doubleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

Figure 2-14 COP_SD Pseudocode Function

Coprocessor Operation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* zZ: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

Figure 2-15 Coprocessor Oper ation Pseudocode Function

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2-1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-hit processors) that are used can be determined directly from
the AccessLength and the two or three low-order hits of the address.

AddressTranslation

The AddressTranglation function translates a virtual address to a physical address and its cache coherence algorithm,
describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceis to Instructions or Data (1orD), find the corresponding
physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the reference. If the virtual address
isin one of the unmapped address spaces, the physical address and CCA are determined directly by the virtual address.
If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU determines the

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

physical address and access type; if the required trandation is not present in the TLB or the desired accessis not
permitted, the function fails and an exception is taken.

(pAddr, CCA) ¢« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* ITorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

Figure 2-16 AddressTranslation Pseudocode Function

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA) and the access
(lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais returned in a
fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address and the
AccessLength indicate which of the byteswithin MemElem need to be passed to the processor. If the memory accesstype
of the reference is uncached, only the referenced bytes are read from memory and marked as valid within the memory
element. If the accesstype is cached but the datais not present in cache, an implementati on-specific size and alignment
block of memory isread and loaded into the cache to satisfy aload reference. At a minimum, this block isthe entire
memory element.

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */

/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cache Coherence Algorithm, the method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* VvAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

Figure 2-17 LoadM emory Pseudocode Function

StoreMemory
The StoreMemory function stores a value to memory.
The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main memory)

as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the data for an aligned, fixed-width
memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the bytes that are

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 15

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

16

actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLength field indicate
which of the bytes within the MemElem data should be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA:
/‘k

Cache Coherence Algorithm, the method used to access */
caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem:
/*

/*

/*

/*

/*

/* pAddr:
/* vAddr:

Data in the width and alignment of a memory element. */

The width is the same size as the CPU general */

purpose register, either 4 or 8 bytes, */

aligned on a 4- or 8-byte boundary. For a */
partial-memory-element store, only the bytes that will be*/
stored must be valid.*/

physical address */

virtual address */

endfunction StoreMemory

Prefetch

Figure 2-18 StoreMemory Pseudocode Function

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may increase
performance but must not change the meaning of the program or alter architecturally visible state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */

/* pAddr: physical address */

/* vAddr: virtual address */

/* DATA: 1Indicates that access is for DATA */

/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Figure 2-19 Prefetch Pseudocode Function

Table 2-1 lists the data access lengths and their labels for loads and stores.

Table 2-1 AccessL ength Specificationsfor Loads/Stores

AccessL ength Name | Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

SyncOperation
The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

Figure 2-20 SyncOper ation Pseudocode Function

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are
interpreted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from
aload (uninterpreted), it isvalid to interpret the value in that format (but not to interpret it in a different format).

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 17

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

value ¢« ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PSS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR < UNPREDICTABLE®” || FPR[fprls;. g

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR « FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS, OB, OQH:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR <« FPR[fpr]
endif

DEFAULT:
valueFPR ¢« UNPREDICTABLE

endcase
endfunction ValueFPR

Figure 2-21 ValueFPR Pseudocode Function

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by acomputational or move operation. Thisbinary representation isvisibleto store or move-from instructions.
Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a different
format.

18 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

StoreFPR

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR

/* The UNINTERPRETED values are used to indicate that the datatype */

/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] <« UNPREDICTABLE’Z || values;

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fpry # 0) then

UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value,;.
FPR[fpr+l] < UNPREDICTABLE’? || valueg;.
endif
else
FPR[fpr] <« wvalue
endif

L, PS, OB, QH:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] <« value
endif

endcase

endfunction StoreFPR

Figure 2-22 StoreFPR Pseudocode Function

.0
.32

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

19

Chapter 2 Guide to the Instruction Set

CheckFPEXxception

CheckFPException ()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSRq14. .15 and FCSRqq. . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

Figure 2-23 Check FPException Pseudocode Function

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
tf «<FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */

if cc = 0 then

FPConditionCode ¢« FCSRj3
else

FPConditionCode ¢ FCSRygicc
endif

endfunction FPConditionCode

Figure 2-24 FPConditionCode Pseudocode Function

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

SetFPConditionCode (cc)
if cc = 0 then

FCSR ¢« FCSR3; 44 || tf || FCSRyy o
else
FCSR « FCSRBl..25+cc || tf || FCSR23+CC..0

endif

endfunction SetFPConditionCode

Figure 2-25 SetFPConditionCode Pseudocode Function

2.2.2.4 Miscellaneous Functions
This section lists miscellaneous functions not covered in previous sections.
Signal Exception

The Signal Exception function signals an exception condition.

20 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.2 Operation Section Notation and Functions

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

Figure 2-26 SignalException Pseudocode Function

Signal DebugBreakpointException

The Signal DebugBreakpointException function signal s a condition that causes entry into Debug Mode from non-Debug
Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalDebugBreakpointException ()

endfunction SignalDebugBreakpointException

Figure 2-27 Signal DebugBreakpointException Pseudocode Function

Signal DebugM odeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees areturn
from this function call.

SignalDebugModeBreakpointException ()

endfunction SignalDebugModeBreakpointException

Figure 2-28 SignalDebugM odeBreak pointException Pseudocode Function

NullifyCurrentl nstruction
The NullifyCurrentlnstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

NullifyCurrentInstruction ()

endfunction NullifyCurrentInstruction

Figure 2-29 NullifyCurrentInstruction PseudoCode Function

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 21
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the M1PS16e ASE. The
function returns TRUE if theinstruction at vAddr isexecuted in ajump delay slot. A jump delay slot alwaysimmediately
followsaJr, JAL, JALR, or JALX instruction.

JumpDelaySlot (vAddr)
/* vAddr:Virtual address */
endfunction JumpDelaySlot

Figure 2-30 JumpDelaySlot Pseudocode Function

NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such avalue has bits 63..32 equal to bit 31.

result <« NotWordValue (value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */
/* value: A 64-bit register value to be checked */

NotWordValue ¢« valuegy 35 # (value31)32

endfunction NotWordvValue

Figure 2-31 NotWor dValue Pseudocode Function

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(31-i)..0 || 0%)
endif
endfor

PolyMult « temp

endfunction PolyMult

Figure 2-32 PolyM ult Pseudocode Function

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name contains
both upper- and lowercase characters.

22 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

2.4 FPU Instructions

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft,
immediate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in
uppercase.

For the sake of clarity, an aliasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase since it refersto a
variable subfield.

Bit encodings for mnemonics are given in Volume |, in the chapters describing the CPU, FPU, MDM X, and MIPS16e
instructions.

See Section 2.3, "Op and Function Subfield Notation" on page 22 for a description of the op and function subfields.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 23

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 2 Guide to the Instruction Set

24 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS-3D® A pplication-Specific Extension to the MIPS64® Architecture

This chapter describes the purpose and key features of the MIPS-3D® A pplication-Specific Extension (ASE) to the
Ml Architecture.

3.1 Base Architecture Requirements

The MIPS-3D A SE requires the following base architecture support:
» A 64-bit floating point unit with all data typesimplemented: The MIPS-3D ASE reguires a floating point
implementation that includes the single (S), double (D), word (W), long (L), and paired single (PS) datatypes.

In Release 1 of the Architecture, the MIPS-3D ASE was supported only on M1PS64 implementations. In Release 2 of
the Architecture, MIPS-3D is supported with a 64-bit floating point unit (as denoted by FIRgg4), whether on a MIPS32
or M1PS64 processor.

3.2 Software Detection of the ASE

Software may determine if the MIPS-3D ASE isimplemented by checking the state of the FP bit in the Configl CPO
register to determineif floating isimplemented. If thisbit is set, software should then enable access to Coprocessor 1 by
setting the CUL1 bit in the Status register and checking the state of the 3D hit in the FIR CPL1 control register.

3.3 Compliance and Subsetting

There are no instruction subsets of the MIPS-3D ASE — all MIPS-3D instructions and data types must be implemented.

3.4 MIPS-3D Overview

The MIPS-3D ASE comprises thirteen instructions added to the floating-point instruction set. These instructions are
designed to improve the performance of graphics geometry code (triangle transform and lighting code) executed on the
MIPS processor. Table 3-1 lists these thirteen instructions by function. Chapter 4, “The MIPS-3D® ASE Instruction
Set,” on page 29, describes these instructions in greater detail.

The table and instruction descriptions use the following notations for data formats:

» Sfor single dataformat (32 bits)

D for double data format (64 bits)

PS for paired-single data format (two singles in a 64-hit register)

PL for paired-lower, the single value in bits 0-31 of the paired-single value in the 64-bit register

PU for paired-upper, the single value in bits 32-63 of the paired-single value in the 64-bit register
» PW for paired-word data format (two words in a 64-bit register)

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 25
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

Table 3-1 Instructionsin the MI PS-3D® ASE

Type Mnemonic Valid Formats Instruction
ADDR PS Floating point reduction add
MULR PS Floating point reduction multiply
RECIP1 S, D, PS Reciprocal first step with areduced precision result
Arithmetic RECIP2 S, D, PS Reciprocal second step (enroute to the full precision result)
RSQRT1 S, D, PS Reciprocal square-root with areduced precision result
RSQRT?2 S.D, PS Reciprocal square-root second step (enrouteto thefull precision

result)

CVT PSPW PW Convertsapair of 32-hit fixed point integersto paired-single FP

Format format
conversions . . . e .
CVTPW.PS PS Corvertsapai red-single FPformat to apair of 32-bit fixed point
integers
Compare CABS S, D,PS Magnitude compare of floating point numbers
BCIANY 2F Branch if either one of the two specified (consecutive) condition
codesisFalse
BCIANY 2T Branch if either one of the two specified (consecutive) condition
codesis True
Branch
BCIANYAFE Branch if any one of the four specified (consecutive) condition
codesisFalse
BCIANYAT Branch if any one of the four specified (consecutive) condition
codesis True

3.5 Instruction Bit Encoding

Table 3-3 through Table 3-7 describe the encoding used for the MIPS-3D ASE. Table 3-2 describes the meaning of the
symbols used in the tables. These tables only list the instruction encodings for the MIPS-3D instructions. See Volume |
of this multi-volume set for afull encoding of all instructions.

Table 3-2 Symbols Used in the I nstruction Encoding Tables

Symbol M eaning

(Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
o Theinstruction word must be further decoded by examining additional tablesthat show valuesfor
another instruction field.

Operation or field codes marked with this symbol are reserved for MIPS Application Specific
€ Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructionswhich
v arelegal if 64-hit floating point operations are enabled. In other cases, executing such an
instruction must cause a Reserved Instruction Exception (non-coprocessor encodings or

coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis not
allowed).

26 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

3.5 Instruction Bit Encoding

Table 3-3 M1 PS-3D COP1 Encoding of rsField

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111
0 00

1] 01 BC1ANY2 6eVIBC1ANY4 &eV

2] 10

3| 11

Table 3-4 MIPS-3D COP1 Encoding of Function Field When rs=S

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000
1] 001
2 | 010
3 (011 RECIP2eV | RECIP1eV | RSQRT1eV | RSQRT2eV
4 | 100
5| 101
6 | 110 | CABSFeV | CABSUN¢eV |CABS.EQ<&V [CABS.UEQ eVICABS.OLT ¢V|CABS.ULT ¢VICABS.OLE ¢V|ICABS.ULE &V
7 | 111 [CABS.SF eV [CABS.NGLE €VICABS.SEQ ¢VICABS.NGL €V| CABS.LT €V [CABS.NGE €¢V| CABS.LE €V [CABS.NGT &V

Table 3-5 M1PS-3D COP1 Encoding of Function Field When rs=D

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000
1] 001
2 | 010
3 (011 RECIP2eV | RECIP1eV | RSQRT1eV | RSQRT2&eV
4 | 100
5| 101
6 | 110 | CABSFeV | CABSUN eV |CABS.EQ<&V [CABS.UEQ eVICABS.OLT ¢V|CABS.ULT ¢VICABS.OLE ¢V|ICABS.ULE &V
7 | 111 [CABS.SF eV [CABS.NGLE ¢VICABS.SEQ ¢VICABS.NGL €V| CABS.LT €V [CABS.NGE €V| CABS.LE €V [CABS.NGT &V

Table 3-6 MIPS-3D COP1 Encoding of Function Field When rs=sW or L

function bits 2..0

0 1 2 3 4 5 6 7

bits5..3 000 001 010 011 100 101 110 111
000
001
010
011
100 CVT.PS.PW gV
101
110
111

N0~ WIN|FL|O

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 27
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 3 MIPS-3D® Application-Specific Extension to the MIPS64® Architecture

Table 3-7 M1PS-3D COP1 Encoding of Function Field When rs=PS

function bits 2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0 | 000
1| 001
2| 010
3011 | ADDReV MULR &V RECIP2 eV RECIP1eV | RSQRT1eV | RSQRT2 eV
4| 100 CVT.PW.PSeV
5] 101 PLL.PSeV PLU.PSeV | PUL.PSeV | PUU.PSeV
6 | 110 [CABS.FeV | CABSUN eV |CABS.EQ¢eV [CABS.UEQ eV|CABS.OLT ¢V |CABS.ULT ¢VICABS.OLE eV|ICABS.ULE &V
7 | 111 [CABS.SF eV [CABS.NGLE ¢V|CABS.SEQ eVICABS.NGL €V| CABS.LT eV [CABS.NGE €V| CABS.LE ¢V |CABS.NGT &V
+
28 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4

The MIPS-3D® ASE Instruction Set

4.1 MIPS-3D Instruction Descriptions

This chapter provides an aphabetic listing of the instructions listed in Table 3-1.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

29

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Reduction Add ADDR.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ADDR.PS

ft fs fd
010001 10110 011000
6 5 5 5 5 6
Format: ADDR.PS fd, fs, ft MIPS-3D
Purpose:

30

To perform areduction add on two paired-single floating point values

Description: FPR[fd].PL « FPR[ft].PU + FPR[ft].PL; FPR[fd].PU « FPR[fs].PU + FPR[fs].PL

The paired-single values in FPR ft are added together and the result put in the lower paired-single position of FPR fd.
Similarly, the paired-single values in FPR fs are added together and the result put in the upper paired-single position
of FPR fd. The two results are calculated to infinite precision and rounded by using the current rounding mode in
FCSR. The operands and result are values in format PS.

Any generated exceptions in the two independent adds are OR’ ed together. Cause bits are ORed into the Flag bits if
no exception istaken.
Restrictions:

Thefieldsfs, ft, and £d must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format PS. If they are not, the result is UNPREDICTABLE and the values in the
operand FPRs become UNPREDICTABLE.

Theresult of ADDR.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

lower <« ValueFPR(ft, PS)3; ¢ + ValueFPR(ft, PS)g3 .33
upper < ValueFPR(fs, PS)3; o + ValueFPR(fs, PS)g3. .35
StoreFPR (fd, PS, upper | lower)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, |nexact, Underflow

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Two Floating Point Condition Codes False BC1ANY2F
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY2 cc tf
0 offset
010001 01001 xx0
6 5 3 11 16

Format: BC1ANY2F cc,offset MIPS-3D
Purpose:

To test two consecutive floating point condition codes and do a PC-relative conditonal branch

Desmﬂpﬁon:lf FPConditionCode (CCn+l) = 0 or FPConditionCode(CCn) = 0, then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If either one of
the two FP condition code bits CC is false (0), the program branches to the effective target address after the instruc-
tionin the delay dot is executed.

The CC specified must align to 2, so bit 18 must always be zero. For example, specifying a value of 4 will check if
either one of CC5 or CC,4 is 0 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-

DICTABLE behavior.

An FP condition codeis set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Any Two Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY 2F and BC1ANY 2T have a specific values for tf.

I: condition ¢« (FPConditionCode (cc) = 0) or
(FPConditionCode(cc+1l) = 0)
target_offset « (offsets)CPREEN-(16+2) || offset || 02
I+1: if condition then
PC « PC + target_offset
endif
MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 31

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Branch on Any of Two Floating Point Condition Codes False, cont. BC1ANY2F

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

32 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Two Floating Point Condition Codes True BC1ANY2T
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY2 cc nd| tf
offset
010001 01001 xx0
6 5 3 11 16

Format: BC1ANY2T cc,offset MIPS-3D
Purpose:

To test two consecutive FP condition codes and do a PC-relative conditonal branch

Desmﬂpﬁon:lf FPConditionCode (CCn+l) = 1 or FPConditionCode(CCn) = 1, then branch

An 18-hit signed offset (the 16-hit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay dot to form a PC-relative effective target address. If either one of
the two FP condition code bits CC istrue (1), the program branches to the effective target address after the instruction
in the delay slot is executed.

The CC specified must align to 2, so bit 18 must always be zero. For example, specifying a value of 2 will check if
either one of CC5 or CC, is 1 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-

DICTABLE behavior.

An FP condition codeis set by an FP compare instruction, C.cond.fmt and the MIPS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Any Two Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY 2F and BC1ANY 2T have a specific values for tf.

I: condition ¢« (FPConditionCode (cc) = 1) or
(FPConditionCode(cc+1l) = 1)
target_offset « (offsets)CPREEN-(16+2) || offset || 02
I+1: if condition then
PC « PC + target_offset
endif
MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 33

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Branch on Any of Two Floating Point Condition Codes True, cont. BC1ANY2T

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

34 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Four Floating Point Condition Codes False BC1ANY4F
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY4 cc nd| tf
offset
010001 01010 xx0
6 5 3 11 16

Format: BC1ANY4F cc,offset MIPS-3D
Purpose:

To test four consecutive FP condition codes and do a PC-relative conditonal branch

Desxipﬁon:lf FPConditionCode (CCn+3) = 0 or FPConditionCode(CCn+2) = 0 or FPCondition-
Code (CCn+l) = 0 or FPConditionCode(CCn) = 0, then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If any of the
four FP condition code bits CC isfalse (0), the program branches to the effective target address after the instruction in
the delay dot is executed.

The CC specified must align to 4, so bits 18 and 19 must always be zero. For example, specifying a value of 0 will
check if any one of CCs3 g is 0 and branch accordingly. Specifying an illegally aligned CC will result in UNPRE-

DICTABLE behavior.

An FP condition codeis set by an FP compare instruction, C.cond.fmt and the M1PS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Any Four Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY 4F and BC1ANY 4T have a specific values for tf.

I: condition ¢« (FPConditionCode (cc) = 0) or
(FPConditionCode(cc+1l) = 0) or
(FPConditionCode(cc+2) = 0) or
(FPConditionCode (cc+3) = 0)

target_offset « (offset;g) PREEN-(16+2) || offget || 02
I+1: if condition then
PC < PC + target_offset
endif

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 35
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Branch on Any of Four Floating Point Condition Codes False, cont. BC1ANY4F

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

36 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Branch on Any of Four Floating Point Condition Codes True BC1ANY4T
31 26 25 21 20 18 17 16 15 0
COP1 BC1ANY4 cc nd| tf
offset
010001 01010 xx0
6 5 3 11 16

Format: BC1ANY4T cc,offset MIPS-3D
Purpose:

To test four consecutive FP condition codes and do a PC-relative conditonal branch

Desxipﬁon:lf FPConditionCode (CCn+3) = 1 or FPConditionCode(CCn+2) = 1 or FPCondition-
code(CCn+l) = 1 or FPConditionCode(CCn) = 1, then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following
the branch (not the branch itself) in the branch delay slot to form a PC-relative effective target address. If any of four
FP condition code bits CC is true (1), the program branches to the effective target address after the instruction in the
delay dot is executed.

The CC specified must align to 4, so bits 18 and 19 must always be zero. For example, specifying a value of 4 will
check if any of the bits CC; 4 is1 and branch accordingly. Specifying anillegally aligned CC will result in UNPRE-
DICTABLE behavior.

An FP condition codeis set by an FP compare instruction, C.cond.fmt and the M1PS-3D compare absolute instruction
CABS.cond.fmt.

Restrictions:

Processor operation is UNPREDICTABLE if abranch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of abranch or jump.

Operation:

This operation specification is for the general Branch On Any Four Condition operation with the tf (true/false) as a
variables. The individual instructions BC1ANY 4F and BC1ANY 4T have a specific values for tf.

I: condition ¢« (FPConditionCode (cc) = 1) or
(FPConditionCode(cc+1l) = 1) or
(FPConditionCode(cc+2) = 1) or
(FPConditionCode (cc+3) = 1)

target_offset « (offset;g) PREEN-(16+2) || offget || 02
I+1: if condition then
PC < PC + target_offset
endif

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 37
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Branch on Any of Four Floating Point Condition Codes True, cont. BC1ANYAT

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch rangeis+ 128 KBytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside this range.

38 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Absolute Compare CABS.cond.fmt
31 26 25 21 20 16 15 11 10 8 7 6 5 4 3 0
COP1 Al FC
fmt ft fs cc 0 cond
010001 1 11
6 5 5 5 3 1 1 2 4
Format: caBS.cond.S cc, fs, ft MIPS-3D
CABS.cond.D cc, fs, ft MIPS-3D
CABS.cond.PS cc, fs, ft MIPS-3D
Purpose:

To compare FP values and record the boolean result in one or more condition codes

Description: FPconditionCode (cc) « FPR[fs] compare_absolute_cond FPR[ft]

The absolute value in FPR fs is compared to the absolute value in FPR ft; the values are in format fmt. The compari-
son is exact and neither overflows nor underflows.

If the comparison specified by cond, ; istruefor the operand values, the result is true; otherwise, the result isfalse. If
no exception istaken, the result is written into condition code CC; trueis 1 and falseis 0.

CABS.cond.PS compares the upper and lower halves of FPR fs and FPR ft independently and writes the results into
condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the operation of
theinstruction is UNPREDICTABLE.

See the description of the C.cond.fmt instruction in Volume Il of this multi-volume set for a complete description of
the cond value and the behavior of the compare instruction.
Restrictions:

The fields fs and ft must specify FPRs valid for operands of type fmt; if they are not valid, the result isUNPREDICT -
ABLE.

The operands must be values in format fmt; if they are not, the result is UNPREDICTABLE and the value of the
operand FPRs becomes UNPREDICTABLE.

The result of CABS.cond.PS is UNPREDICTABLE if the processor is executing in 16 FP registers mode, or if the
condition code number is odd.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 39
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Absolute Compare, cont. CABS.cond.fmt

Operation:
if SNaN(ValueFPR(fs, fmt)) or SNaN(ValueFPR(ft, fmt)) or
QNaN (ValueFPR(fs, fmt)) or QONaN(ValueFPR(ft, fmt)) then
less « false
equal « false
unordered ¢« true

if (SNaN(ValueFPR(fs,fmt)) or SNaN(ValueFPR(ft,fmt))) or
(cond; and (QNaN(ValueFPR(fs, fmt)) or QNaN(ValueFPR(ft,fmt)))) then
SignalException (InvalidOperation)
endif
else

less « AbsoluteValue (ValueFPR(fs, fmt <fmt
AbsoluteValue (ValueFPR(ft, fmt
equal <« AbsoluteValue(ValueFPR(fs, fmt
Absolutevalue ((

unordered « false
endif
condition ¢« (cond, and less) or (cond; and equal)

or (condy and unordered)

SetFPConditionCode (cc, condition)

For CABS.cond.PS, the pseudo code above is repeated for both halves of the operand registers, treating each half as
an independent single-precision values. Exceptions on the two halves are logically ORed and reported together. The

results of the lower half comparison are written to condition code CC; the results of the upper half comparison are
written to condition code CC+1.

=fmt

ValueFPR(ft, fmt

Exceptions:

Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation

40 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Convert Paired Single to Paired Word CVT.PW.PS
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.PW.PS
010001 10110 00000 100100
6 5 5 5 5 6
Format: cvT.pw.PS £d,fs MIPS-3D
Purpose:

To convert a FP paired-single value to a pair of 32-bit fixed point words

Description: FPR[fd].PU « convert_and_round(FPR[fs].PU); FPR[fd].PL «
convert_and_round(FPR[fs].PL)

The values in FPR fs, in format PS, are converted to a pair of values in 32-bit word fixed point format and rounded
according to the current rounding mode in FCSR. The result is placed in FPR fd. The conversions of the two halves
are done independently.

When either source valueis Infinity, NaN, or rounds to an integer outside the range -231t0 231-1, the result cannot be
represented correctly, an |EEE Invalid Operation condition exists, and the Invalid Operation flag is set in the FCSR. If
the Invalid Operation Enable bit is set in the FCSR, no result is written to fd and an Invalid Operation exception is

taken immediately. Otherwise, the default result, 2311, is written to the correspond half of FPR fd which caused the
exception.
Restrictions:

The fields fs and fd must specify valid FPRs---fs for type PS and fd for type PW. If they are not valid, the result is
UNPREDICTABLE. The format of the data in the specified operand register fs must be avalue in format PS; if it is
not, the result is UNPREDICTABL E and the value in the operand FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, PW,
ConvertFmt (ValueFPR(fs, PS)g3. .35, S, W) ||
ConvertFmt (ValueFPR(fs, PS)31 o, S, W)

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 41
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Convert Paired Single to Paired Word (cont.) CVTPW.PS

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions
Unimplemented Operation, Invalid Operation, Overflow, |nexact

42 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Convert Paired Word to Paired Single CVT.PS.PW
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt 0 fs fd CVT.PS.PW
010001 10100 00000 100110
6 5 5 5 5 6
Format: cvT.ps.pw £d,fs MIPS-3D
Purpose:

To convert a pair of 32-bit fixed point words to FP paired-single value

Desmﬂpﬁon:FPR[fd] < (convert_and_round(FPR[fslg3. 33) || convert_and_round(FPR[f]s3; g)
Thevauein FPR fs, in format PW, is converted to a value in paired-single floating point format and rounded accord-
ing to the current rounding mode in FCSR. The result is placed in FPR fd.

Restrictions:

The fields fs and fd must specify valid FPRs---fs for type PW and fd for type PS. If they are not valid, the result is
UNPREDICTABLE. The operand in register fs must be avalue in format type PW; if it is not, the result is UNPRE-
DICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

Theresult of thisinstructionis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(£fd, PS,
ConvertFmt (ValueFPR(fs, PW)gy 35, W, S) ||
ConvertFmt (ValueFPR(fs, PW)3q o, W, S)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 43
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Reduction Multiply MULR.PS
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt MULR.PS
ft fs fd
010001 10110 011010
6 5 5 5 5 6
Format: MULR.PS fd, fs, ft MIPS-3D
Purpose:

44

To perform areduction multiply on two paired-single floating point values

Description: FPR[fd].PL « FPR[ft].PU * FPR[ft].PL; FPR[fd].PU « FPR[fs].PU * FPR[fs].PL

The paired-single valuesin FPR ft are multiplied together and the result put in the lower paired-single position of FPR
fd. Similarly, the paired-single values in FPR fs are multiplied together and the result put in the upper paired-single
position of FPR fd. The two results are calculated to infinite precision and rounded by using the current rounding
mode in FCSR. The operands and result are valuesin format PS.

Any generated exceptions in the two independent adds are OR’ ed together. Cause bits are ORed into the Flag bits if
no exception istaken.
Restrictions:

Thefieldsfs, ft, and £d must specify FPRs valid for operands of type PS. If they are not valid, the result is UNPRE-
DICTABLE.

The operands must be values in format PS. If they are not, the result is UNPREDICTABLE and the values in the
operand FPRs become UNPREDICTABLE.

Theresult of ADDR.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

lower <« ValueFPR(ft, PS)s3;. ¢ X ValueFPR(ft, PS)g3. .39
upper < ValueFPR(fs, PS)s3; g X ValueFPR(fs, PS)g3 33
StoreFPR (fd, PS, upper | lower)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, |nexact, Underflow

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal (Sequence Step 1) RECIP1.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RECIP1
fmt fs fd
010001 00000 011101
6 5 5 5 5 6

Format: RECIP1.S fd, fs MIPS-3D
RECIP1.D fd, fs MIPS_3D
RECIP1.PS fd, fs MIPS_3D

Purpose:

Generate a reduced-precision reciprocal of one or two FP values

Description: FPR[fd] « 1.0 / FPR[fs]

Thereciprocal of the valuein FPR fsis approximated and placed in FPR fd. The operand and result are valuesin for-
mat S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|EEE 754 Floating Point standard. A minimum accuracy of 14 bits is recommended for both the S and D input data
formats.

It isimplementation dependent whether the result is affected by the current rounding mode in FCSR. Thisinstruction
is meant to operate in RN (round to nearest) mode for the best accuracy. It is also meant to operate in the Flush to
Zero (FS=0) mode. In this mode, if the incoming datais in the denormalized range, it is assumed to be zero, and if the
output isin the denormalized range, it isforced to zero.

In addition, if the input to this instruction is zero, the output is not infinity, but the maximum normalized value. This
property is useful for 3D graphics applications. If the input is infinity, the output is zero.

Thisinstruction is used asthefirst step of an instruction sequence that can be used to produce afull precision recipro-
cal value. See the description of RECIP2.fmt for an example of how to use thisinstruction in a code sequence to pro-
duce afull precision reciprocal result.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the datain the specified operand register fs must be avalue in format fnt; if it is not, the
resultis UNPREDICTABLE and the value of the operand FPR becomes UNPREDICTABLE.

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 45

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Reduced Precision Reciprocal (Sequence Step 1, cont.) RECIP1.fmt

Operation:

StoreFPR(fd, fmt, (1.0 / ValueFPR(fs, fmt))gegucedprecision)

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, |nexact, Underflow, Division-by-zero

46 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal (Sequence Step 2) RECIP2.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RECIP2
fmt fs fd
010001 00000 011100
6 5 5 5 5 6

Format: RECIP2.S fd,fs, ft MIPS-3D
RECIP2.D fd,fs, ft MIPS-3D
RECIP2.PS fd4,fs, ft MIPS-3D

Purpose:

Take the result of RECIP1.fmt and iterate towards obtaining a full precision reciprocal FP value

Description: FPR[fd] « iterate with FPR[fs] and FPR[ft]

This is the second step in the instruction sequence used to generate a full precision reciprocal result. (RECIPL1.fmt
instruction isthefirst step). The operand and result are valuesin format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|EEE 754 Floating Point standard.

It isimplementation dependent whether the result is affected by the current rounding mode in FCSR. Thisinstruction
is meant to operate in RN (round to nearest) mode for the best accuracy. It is also meant to operate in the Flush to
Zero (FS=0) mode. In this mode, if the incoming datais in the denormalized range, it is assumed to be zero, and if the
output isin the denormalized range, it is forced to zero.

The example below shows how a full precision reciprocal result can be obtained using the RECIP1 and RECIP2
instructions. Assumethat avalue b isin register fOin format S. Assume that RECIP1.fmt produces a 16-bit result. At
the end of the three-instruction sequence shown below, register 3 contains the full precision 24-bit reciprocal 1/b.

RECIP1.S f1, fO /* reduced precision 16-bit 1/b */
RECIP2.S f2, f1, fO /* -(b * £f1 - 1.0) */
MADD. S £3, f1, f1, £2 /* 24-bit 1/b */

The instruction sequence to produce a double, 52-bit result is as follows:

RECIP1.D f1, f£O /* reduced precision 16-bit 1/b */
RECIP2.D f2, f1, fO /* -(b * £f1 - 1.0) */

MADD.D £3, f1, f1, f£2 /* 32-bit 1/b */

RECIP2.D f4, £3, fO0 /* -(b * £3 - 1.0) */

MADD.D f5, £3, £3, f4 /* 53-bit 1/b */
The instruction sequence to take a paired single value and produce a paired single result is as follows. Assume that
register fO holds two single valuesaand b in a paired single format, i.e., fO < a| b.

RECIP1.PS f1, fO /* (reduced precision 16-bit 1/a and 1/b) */
RECIP2.PS f2, f1, fO /* (-(a*fl1l-1.0) and -(b*f1-1.0)) */
MADD. PS £f3, f1, f1, £f2 /* (24-bit 1/a and 1/b) */

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 a7
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Reduced Precision Reciprocal (Sequence Step 2, cont.) RECIP2.fmt

48

If the hardware does not implement the RECIPL.PS instruction, it is still possible to obtain a paired single result, but
this takes three more instructions in the required sequence. Assume that register fO holds a single value a and register
f1 holds asingle value b.

RECIP1.S f2, fO0 /* (£2 gets reduced precision 1l/a) */

RECIP1.S f£3, f1 /* (£3 gets reduced precision 1/b) */

CVT.PS.S f4, f1, f0 /* (f£4 now holds the PS values b | a) */

CVT.PS.s f5, f3, f2 /* (£5 holds PS seed 1/b | 1/a) */

RECIP2.PS f6, f5, f4 /* (£6 holds intermediate 1/b | 1/a) */
(

MADD. PS £7, £5, £5, fé /* £7 holds full precision PS 1/b | 1/a) */

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the datain the specified operand register fs must be avalue in format fnt; if it is not, the
resultis UNPREDICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

Theresult of RECIP2.PSis UNPREDICTABLE if the processor is executing in 16 FP registers mode.

Operation:

StoreFPR(fd, fmt, RECIP_iteration(ValueFPR(fs, fmt), ValueFPR(ft, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Inexact, Invalid Operation, Overflow, Underflow

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 1) RSQRT1.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RSQRT1
fmt fs fd
010001 00000 011110
6 5 5 5 5 6

Format: RSQRTL1.S fd, fs MIPS-3D
RSQRT1.D fd, fs MIPS-3D
RSQRTL.PS fd, fs MIPS-3D

Purpose:

To produce a reduced-precision reciprocal of the square root of one or two FP values

Description: FPR[fd] « 1.0 / sqrt (FPR[fs])

The reciprocal of the positive square root of the value in FPR fsis approximated and placed in FPR fd. The operand
and result are valuesin format S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the
|EEE 754 Floating Point standard. A minimum accuracy of 14 bits is recommended for the S input data format, and
23 bitsfor the D data format.

It isimplementation dependent whether the result is affected by the current rounding mode in FCSR.

In addition, if the input to this instruction is zero, the output is not infinity, but the maximum normalized value. This
property is useful for 3D graphics applications. If the input is infinity, the output is zero.

Thisinstruction is used asthefirst step of an instruction sequence that can be used to produce afull precision recipro-
cal sguare root value. See the description of RSQRT2.fmt for an example of how to use this instruction in a code
seguence to produce afull precision reciprocal square root result.

Restrictions:

The fields fs and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the datain the specified operand register fs must be avalue in format fnt; if it is not, the
resultis UNPREDICTABLE and the value in the operand FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, (1.0 / SquareRoot (ValueFPR(fs, fmt)))gregucedprecision)

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50 49
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 1, cont.) RSQRT1.fmt

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:
Unimplemented Operation, Invalid Operation, Overflow, Inexact, Underflow, Division-by-zero

50 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

4.1 MIPS-3D Instruction Descriptions

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 2) RSQRT2.fmt
31 26 25 21 20 16 15 11 10 6 5 0
COP1 0 RSQRT2
fmt fs fd
010001 00000 011111
6 5 5 5 5 6
Format: RSQRT2.5 fd, fs, ft MIPS-3D

RSQRT2.D fd, fs, ft MIPS-3D
RSQRT2.PS fd, fs, ft MIPS-3D

Purpose:

Iterate towards obtaining a full precision reciprocal square root FP value

Description: FPR[fd] « iterate with FPR[fs] and FPR[ft]

Thisis a step of iteration towards generating the full precision reciprocal square root value. The operand and result
arevauesinformat S, D, or PS.

The numeric accuracy of this operation is implementation dependent; it does not meet the accuracy specified by the

|EEE 754 Floating Point standard.
It isimplementation dependent whether the result is affected by the current rounding mode in FCSR.

A full precision reciprocal square root result is obtained by using the instruction sequence shown below. Assume that
avaluebisin register fO in format S. Assume that RSQRT 1.fmt has a 16-bit precision in the example implementa-
tion. At the end of the four-instruction sequence shown below, register f4 contains the full precision 24-bit reciprocal

square root 1/(sgrt)b.
RSQRT1.S f1, £0 /* 16-bit 1/sqgrt(b) */
MUL. S £2, f1, foO /* b * £0 */
RSQRT2.S f£3, f2, fl /* —(f1 * £2 - 1.0)/2 */
MADD. S f4, f1, f1, £3 /* 24-bit 1/sqgrt(b) */

The instruction sequence to produce a 52-bit result is as follows:

RSORT1
MUL.D
RSQRT2
MADD.D
MUL.D

RSQRT2.

MADD.D

.D

.D

£f1, £0 /* 16-bit 1/sqgrt(b) */
f2, f1, fO /* b * £0 */

£3, f2, f1 /* —-(f1 * £2 - 1.0)/2 */
£4, f1, £1, £3 /* 31-bit 1/sqrt(b) */
£5, £0, f4 /* b * £0 */

f6, £5, f4 /* -(f4 * £5 - 1.0)/2 */

£7, f£4, f4, f6 /* 53-bit 1/sqgrt(b) */

The instruction sequence to take a paired single value and produce a paired single result is as follows. Assume that
register fO holds two single valuesaand b in apaired single format, i.e., fO« a| b.

RSQRT1.PS f1, f0 /* (16-bit 1/sqgrt(a) and 1/sqgrt(b)) */
MUL.PS £f2, f£1, fO /* (a * £f0 and b * £1) */

RSQRT2.PS f3, f2, f1 /* (-(£1*f2-1.0)/2) */

MADD.PS f4, f1, f1, £3 /* (24-bit 1/sgrt(a) and 1l/sgrt(b)) */

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

51

Chapter 4 The MIPS-3D® ASE Instruction Set

Floating Point Reduced Precision Reciprocal Square Root (Sequence Step 2, cont.) RSQRT2.fmt

If the hardware does not implement the RSQRT 1.PS instruction, it is still possible to obtain a paired single result, but
this takes three more instructions in the required sequence. Assume that register fO holds a single value a and register
f1 holds asingle value b.

RSQRT1.S f2, f0 /* (£2 gets reduced precision 1/sqgrt(a)) */
RSQRT1.S £3, f1 /* (£3 gets reduced precision 1/sqgrt(b)) */
CVT.PS.S f4, f1, fO /* (£4 now holds the PS values b | a) */
CVT.PS.S f5, £3, f2 /* (£5 holds PS seed 1/sqgrt(b) | 1/sgrt(a)) */
MUL.PS f6, f5, f4 /* (£6 holds intermediatel results) */
RSQRT2.PS f£7, f6, f5 /* (£7 holds intermediate2 results) */
MADD.PS f8, f5, f5, f7 /* (£8 holds full precision PS 1/sqgrt(b) | */
/* 1/sgrt(a)) */

Restrictions:

Thefields fs, ft, and fd must specify FPRs valid for operands of type fmt. If they are not valid, the result is UNPRE-
DICTABLE. The format of the datain the specified operand register fs must be a value in format fnt; if it is not, the
result is UNPREDICTABLE and the value of the operand FPR becomes UNPREDICTABLE.

Operation:

StoreFPR(fd, fmt, RSQRT_ iteration(ValueFPR(fs, fmt), ValueFPR(ft, fmt)))

Exceptions:
Coprocessor Unusable, Reserved Instruction

Floating Point Exceptions:

Unimplemented Operation, Invalid Operation, Overflow, | nexact, Underflow

52 MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50
Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changesto figures. Change bars
on figure titles are used to denote a potential change in the figure itself.

Revision Date Description
1.00 August 6, 1999 First external release
1.10 November 1, 2000 Convert format and include document in document set
111 March 12, 2001 %dga:rechitecture requirements and subsetting rules for next external review
112 August 29,2002 Update template to synchronize with latest documentation set release.
Changesin thisrevision:
» Update instruction descriptions to allow MIPS-3D to be implemented on a
2.00 May 15, 2003 64-bit FPU (as denoted by FIRrg,), whether on aMIPS32 or MIPS64
processor. This reflects changes introduced with Release 2 of the MIPS
Architecture.
Changesin thisrevision:
* Modify the recommendation for minimum bits of accuracy in the
250 auly 1, 2005 RECIP1.D instruction from 23 to 14 bits.

» Updateto FrameMaker 7.1

« Correct copyright year in Architecture for Programmers version

MIPS64® Architecture for Programmers Volume IV-c, Revision 2.50

Copyright © 2002-2003,2005 MIPS Technologies Inc. All rights reserved.

53

	MIPS64® Architecture for Programmers Volume IV-c: The MIPS-3D® Application-Specific Extension to the MIPS64® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	MIPS-3D® Application-Specific Extension to the MIPS64® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the ASE
	3.3 Compliance and Subsetting
	3.4 MIPS-3D Overview
	3.5 Instruction Bit Encoding

	The MIPS-3D® ASE Instruction Set
	4.1 MIPS-3D Instruction Descriptions
	ADDR.PS
	BC1ANY2F
	BC1ANY2T
	BC1ANY4F
	BC1ANY4T
	CABS.cond.fmt
	CVT.PW.PS
	CVT.PS.PW
	MULR.PS
	RECIP1.fmt
	RECIP2.fmt
	RSQRT1.fmt
	RSQRT2.fmt

	Revision History

