LDAP Functional Spec
 725-xxxx-0001
Draft 0.1

	 document no.

	revision no.

1.0
	status

DRAFT

	department

Engineering
	Author/Contact

	Email

Functional Spec
CLI Refactoring
Approvals:

	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
[image: image1.wmf]

	Abstract

This document describes the parsing library design and available options.

Contributors

	Name
	Email

	Jeyaram Sankar
	jeyaramg@onstor.com

	Narain CR
	Narain.ramadass@onstor.com

	Ravikumar
	Ravik@onstor.com

	Kumar Vakacharla
	kumarv@onstor.com

	Mohankumar Shah
	mohan@onstor.com

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, 2006, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V0.1
	
	HCLT CLI Refactoring team
	All
	Draft
	11/27/06

	V0.2
	
	Ravi Kumar
	All
	Review comments suggested by Brian and Charissa are incorporated
	12/06/06

Table of Contents

41.
Existing System - Overview

4Current Implementation

52.
Problem Statement

63.
Requirements

6Related Documents

74.
Solution

7Flow Chart

7Overview

7Management API

8Parsing Library

8Management API

8Parsing library

8Invoking Parsing library

8Design

8Template Definition

11Multiples of a Token

11Potential Problem

11Hard-coding of the offset and length values

11Additional pre-processor

12Additional globally allocated area of memory

13Additional memory allocated in the stack for every API

155.
Assumptions and Dependencies

166.
Migration Strategy

177.
Testing Strategy

188.
Performance Criteria

1. Existing System - Overview
Current Implementation

‘nfxsh’ shell has been the primary interface for managing the ONStor NAS Gateway. ‘nfxsh’ uses the vtysh of the GNU Zebra project (http://www.pointless.net/~jasper/zebra-html/zebra.html). ‘nfxsh’ provides the following features for the CLI:

1. Command completion

2. Basic syntax validation

3. Context sensitive help for commands

In order to provide these features, all the commands have to be registered with the shell. Every command handler registers the following with the shell during the initialization of the shell:

1. Pointer to the function that implements the command

2. Name of the command

3. Command string along with syntax

4. Help string

Every command handler uses a helper macro named DEFUN to define the above mentioned structure. All the command handlers are registered with the shell using the function ‘install_element*’. The shell initializes its internal data structures about all commands during its startup by invoking these functions. After initialization the shell waits for user inputs.

The shell parses the command line input while it is entered, validates it with the set of registered commands and invokes the appropriate command handler to process the command. Further validation of the input arguments is done by the command handler separately.

There are about 580 commands supported by the shell as of now. All these commands are implemented under nfx-tree/code/ssc-nfxsh/cmd_*.c.
2. Problem Statement

1. The general guideline for the CLI syntax is ‘class verb object’. For example, ‘vol create XYZ’. Not all the commands in the nfxsh adhere to this syntax. In addition to this, the options used in the commands are also not consistent

2. Every command handler validates the input arguments on its own. This resulted inconsistency, redundancy and the code is bulky

3. The processing logic for many of the commands is embedded in the commands itself. This results in usage of CLI output for other management applications like NGM, NCM.

4. There is no cleaner way of aborting commands. As per the current implementation, ^z can be used to abort commands. Using ^z aborts a command abruptly and could leave the state of the subsystem in inconsistent state (memory leaks, locks unreleased and inconsistent clusterDB transactions).
5. Every update to cluster DB is atomic. But if a management operation requires multiple updates to cluster DB, this operation is not atomic. This could potentially result in inconsistent cluster DB.
3. Requirements
1. Modify the existing Command Line Interface to bring consistency

2. Optimize the validation of input arguments to commands and bring consistency by defining a parsing library

3. Define a management API that would be used by the commands to abstract the logic

3.1. Command specific logic shall be moved from the CLI implementation to management API
3.2. Management API shall not perform any i/o operations (terminal input & output)
3.3. Transaction model shall not be built into the management API in phase I
Related Documents
CLI Refactoring project proposal submitted by HCLT available at
"

\\Mightydog\software\CLI Refactoring\OIDC-CLI Refactoring-Proposal 0.3.ppt

CLI Refactoring project management API style guide available at
"

\\Mightydog\software\CLI Refactoring\CLI Refactoring - API Style Guide.doc

Rules and requirements for the proposed design
1. The caller of the management API would validate the semantics of the input arguments. The caller would pass only the validated arguments to the management API.

2. API specific checking of input arguments would be done by the management API Ex. for “vsvr create” command the API should check to ensure that the virtual server name specified by the user does not exist, whereas for “vsvr show” command the API should check to ensure that the virtual server name specified by the user should exist.

3. The management API shall not do the work of printing. All printing work (Both text and error messages) would be performed by the DEFUNs

4. Input and output structure of the management API would have a common header.
4. Solution
4.1 Flow Chart
The below flow chart explains the code flow of the proposed design.

[image: image2]
4.2 Overview

4.2.1 Management API
The management API would be defined for all CLI commands. The command handler (DEFUN) would invoke the management API which in turn would call the corresponding lower level APIs for performing the requested operation. The management API would take two parameters, one input structure and one output structure. The input structure would contain the input arguments keyed in by the user. The parsing library would do the function of updating the input structure with the input arguments.
E.g. The syntax of the ‘cluster add nasgateway’ command is given below

cluster add nasgateway NASGATEWAYNAME -a IPADDR

The management API for this command shall be defined as follows:

sscapi_status_t SSCAPI_cluster_add_nasgateway (cluster_add_nasgateway_in_t *in,

 cluster_add_nasgateway_out_t *out)

Where cluster_add_nasgateway_in_t is the input structure and cluster_add_nasgateway_out_t is the output structure. The input structure for the cluster add nasgateway command will be as shown below.
typedef struct

{

 sscapi_msghdr_in_t cani_hdr;

 uint32 cani_nasgatewayname_len;

 uint32 cani_ipaddr;

 char cani_nasgatewayname[CLUSTER_MAX_NAME_LEN];

} cluster_add_nasgateway_in_t;

The input and output structure would also contain common header information like version number, error code, error message etc.
4.2.2 Parsing Library

Every CLI has its own code for validating the input parameters, leading to the redundancy in code in multiple places. To avoid this, a common parsing library shall be developed, which would be used by the system for validating the CLI command input arguments. This ensures that that the validation code is consistent, and the overall code size can be potentially reduced. Apart from validating the arguments the parsing library would also populate the input structure which would be passed as an input argument to the management API.
4.3 Management API

The above section gave a brief overview of the management API. CLI Refactoring team is currently working on the Management API style guide and it would get completed on 28-Nov-2006.
4.4 Parsing library
4.4.1 Invoking Parsing library

Before getting into more details about the design of parsing library, a decision on where to invoke the parsing library functional should be made. For which there are two approaches
Approach 1 - Invoking parsing library inside vtysh code

Extend the current code in vtysh to invoke the parsing library which would parse the input arguments and construct the input structure. The input structure would be then passed as an argument to the command handler (DEFUN).

Approach 2 – Invoking parsing library inside DEFUN
Call the parsing library function inside the command handler (DEFUN). If we choose this approach we could reduce the development effort and the changes would be minimal when we move over to the bash shell. We propose to take this approach as this approach is shell independent and gives flexibility for the CLI implementation
4.4.2 Design
The parsing library would to make use of template for validating the input arguments and populating the input structure. This template would be defined for every input parameter of the CLI command.
The template would contain
1. Validation semantics for the input parameter, which would be used by the parsing library to validate the input arguments of the CLI command.
2. The position (offset and length) of the input parameter in the input structure. The parsing library would use the position information in the template for updating the input structure, which would be passed as an input to the management API.
4.4.3 Template Definition

This section documents the definition of the template to be used by the ONStor parsing library.

1. There shall be a template specified for every parameter in a command line.

2. There shall be a template definition for every data type expected to be supported.

3. The template definition shall be appended to every variable component definition in a command string passed to “DEFUN”.

4. The template definition shall begin with a "{".

5. The template definition shall end with a "}".

6. Multiple tokens may be present within the "{" and the "}" - all separated by ",".

7. The following tokens may be present as part of template definition.

7.1. data type shall determine the type of the data item.

7.2. ‘default value’ for the item. This value shall be assumed if no parameter is passed in the command line.

7.3. The DEFAULT_VALUE token shall ALWAYS be a string and shall be an EMPTY string if no default value needs to be considered. If the token being parsed is a not a string, it shall be handled in the normal manner as a parameter passed in the command line is handled and shall require no special processing.

7.4. START_OFFSET - this specifies the starting offset in the structure where the data item needs to be stored after any appropriate conversions. The data copy may be a simple string copy (as in the case of the string data type) or may involve type conversion (as in the case of integer data type). Except for the data type’s bit-fields and key-value pairs – the START_OFFSET is assumed to always be a 32-bit boundary.

7.5. LENGTH - this shall specify the maximum length of the item. If the data passed by the user from the command line is larger than the length specified here, the command shall fail. It may be noted that format conversions may be needed before the length of an incoming token is determined for data types other than string.

7.6. LEN_OFFSET – Strings are represented as counted strings in all structures. Hence for every string field, another field shall be added to indicate the length of the string. This token shall indicate the offset of the field in the structure where the length of the string is stored.

7.7. LEN_LENGTH – This token indicates size of the field used to store the string length.

7.8. The remaining tokens in the list shall specify additional validation primitives for the data item. These may - for e.g. - specify valid values etc.

8. The template definition may vary for different data types

9. If any data passed in the command line does not conform to the semantics specified in the template, the parsing library may raise a generic error and terminate the operation even before the API gets an opportunity to execute. In this case – an error code may be returned from the parsing library to the caller. The parsing library may also internally generate an error message to be printed on the console.

10. The parsing library can be designed to trust the caller – i.e. – the format and the number of tokens within the template need not be validated by the library since they are only internally generated values.

The template definitions for the various data types are specified below:

Strings

“%s, regexp”
Integers

“%d, DEFAULT_VALUE, MIN_VALUE, MAX_VALUE”
Undefined strings – No validation required

“%v”
Key-value pairs

“%k, DEFAULT_VALUE, [key1:value1;key2:value2…]”

The VALUE part of the key-value pair is implicitly assumed to be an enumeration in this case.

IP Address of format A.B.C.D that is stored as string

“%i”

IP Address of format A.B.C.D that is stored as integer

“%I”

IP Address with mask (A.B.C.D/n)

“%j”

MAC Address (A:B:C:D:E:F)

“%m”

HOSTNAME/IP ADDRESS

“%h”

“ “ (Blank space) For arguments that does not take any values. These arguments are treated as Boolean. If the tag is specified, the field shall be set to TRUE. (E.g. [-a], [-f])

“ “

Local user account name or Windows user name or ldap domain

“%u” : Local user account name or windows user name or ldap domain name. (E.g. ONSHCL\winuser1, nisuser2@onsnishcl, local_user3$)

“%u”
Example
For the command “cluster add nasgateway NASGATEWAYNAME -a A.B.C.D” the template would be similar what is shown below
cluster add nasgateway NASGATEWAYNAME{“ NASGATEWAYNAME,%s,^[a-zA-Z0-9][a-zA-Z0-9\-.]*[a-zA-Z0-9]$”, OFFSET, LENGTH, LEN_OFFSET, LEN_LENGTH} -a IPADDRESS{%I,OFFSET, LENGTH,}
The input structure for cluster add command will be similar to the one shown below

typedef struct

{

 sscapi_msghdr_in_t cani_hdr;

 uint32 cani_nasgatewayname_len;

 uint32 cani_ipaddr;

 char cani_nasgatewayname[CLUSTER_MAX_NAME_LEN];

} cluster_add_nasgateway_in_t;

The information %s and regular expression “^[a-zA-Z0-9][a-zA-Z0-9\-.]*[a-zA-Z0-9]$” available in template would be used by the parsing library for validating the gateway name specified by the user. The information OFFSET and LENGTH (16) would be used by the parsing library to populate the input structure shown above.
4.4.4 Multiples of a Token

A special case is noted that is encountered with commands like:

vscan add extension exe,com,bat,doc,xls

domain add windows AA BB HOST1 HOST2 HOST3 HOST4

These commands expect multiple instances of the same basic token. An additional format specifier is
defined to handle such commands. The special character “*” may follow the format specifier that signifies
the situation described above. This character is be followed by another character that specifies the
delimiter – for e.g. – the delimiter is “,” in the case of “vscan add” and “ “ in the case of “domain add…”.
This is followed by a numeric value that limits the maximum number of times that a token may repeat.
4.4.5 Potential Problem

There is one problem involved with implementing the design described above and 4 possible solutions
have been described below for this problem.

The problem statement is as follows:

While it has been decided to include an additional token (START_OFFSET) to help validate the text
keyed in by a user at the command prompt, a decision needs to be taken about how this value would be
specified in the actual code. If this value is hard-coded in code, this value may need to be changed
whenever the structure used as the INPUT structure is modified. There are 4 possible solutions that have
been discussed so far:

1. Hard-coding of the offset and length values

2. Additional pre-processor

3. Additional globally allocated area of memory

4. Additional memory allocated in the stack for every API

Additional information about each of these approaches follow.

4.4.5.1 Hard-coding of the offset and length values

This is the simplest and fastest approach of the lot. Evidently, the structure offsets for the various
elements of the structure would be hard coded in the text string defined as part of every “DEFUN”.
Changes required to other parts of the code would be minimal and the only problem that could potentially
crop up does so when additional parameters are added to the CLI structures. This would generally only
happen when parameters are added or removed from a CLI. Even in this case, mandating that
the
newer members of the structure only be added to the end of the structure reduces the impact of the
problem.

4.4.5.2 Additional pre-processor

This is also a reasonably simple approach. A separate pre-processor can be developed to handle the
offsets that are present in code and replace the place-holders in code with the appropriate ACTUAL
offsets even before the C pre-processor and compiler get an opportunity to execute.

When making a change to the command-specific structure, no additional changes need to be made in
code and the additional pre-processing component in the system may handle the new changes
appropriately.

This approach may be the simplest from the point of view of the nfxsh code, however the development

effort for the additional pre-processor may not be trivial.

For e.g., the code may include the following:

#defineVOL_MODIFY_CMD_OPTIONS

"[-q HARDQUOTA{%d,DEFAULT_VALUE,MIN_VALUE,MAXVALUE, \

 nfxsh_offsetof(vol_struct, hardquota), nfxsh_sizeof(vol_struct, hardquota), 0, 0] \

[-s SOFTQUOTA{%d, DEFAULT_VALUE,MIN_VALUE,MAXVALUE, \

nfxsh_offsetof(vol_struct, softquota), nfxsh_sizeof(vol_struct, softquota), 0, 0] \

[-g MINAUTOGROW{%d, DEFAULT_VALUE,MIN_VALUE,MAXVALUE, \

nfxsh_offsetof(vol_struct, minautogrow) , nfxsh_sizeof(vol_struct, minautogrow), 0, 0] \

[-h HIGHWATERMARK{…}] [-p NEWVOLNAME{…}] [-e
SHAREDREAD{…}] \

[-L LANGUAGE{…}] [-d DEVICE{…}] [-f{…}] [-o OPLOCKS{…}] \

[-c CHARSUBST{…}] [-t CHARSUBSTTABLE{…}]\n"

DEFUN(vol_modify,

vol_modify_cmd,

"volume modify VOLNAME [OPTIONS ...]",

VOL_COMMAND_STR

"Modify a volume.\n"

 "Name of an existing volume\n"

 VOL_MODIFY_CMD_OPTIONS…

This shall be passed through the additional “nfxsh_parse” pre-processing utility even before the C pre-processor and the C compiler get an opportunity to work on the file. “nfxsh_parse” shall in-turn create a separate file that would replace all the instances of “nfxsh_offsetof” and “nfxsh_sizeof” in the original code and the new file shall be used for the purposes of compilation.

For instance, the example above would look as follows in the processed (new) file:

#defineVOL_MODIFY_CMD_OPTIONS

"[-q HARDQUOTA{%d,DEFAULT_VALUE,MIN_VALUE,MAXVALUE, 16, 8 , 0, 0] \

[-s SOFTQUOTA{%d, DEFAULT_VALUE,MIN_VALUE,MAXVALUE, 20, 4, 0, 0] \

[-g MINAUTOGROW{%d, DEFAULT_VALUE,MIN_VALUE,MAXVALUE, 32, 8, 0, 0] \

[-h HIGHWATERMARK{…}] [-p NEWVOLNAME{…}] [-e
SHAREDREAD{…}] \

[-L LANGUAGE{…}] [-d DEVICE{…}] [-f{…}] [-o OPLOCKS{…}] \

[-c CHARSUBST{…}] [-t CHARSUBSTTABLE{…}]\n"

4.4.5.3 Additional globally allocated area of memory

A global data area may be statically allocated at boot-time that resolves the offset of every element within
a structure. As soon as the nfxsh program starts, a variant of the function “install_element” is executed for
every instance of a DEFUN. Additional code may be included within “install_element” to resolve the place
holders in the DEFUN’s.

An important consideration with this approach is that the large globally allocated area of memory is no
longer required after all “install_element”s have completed their execution. This memory could be re-used
for any other purpose at this point or free’d if possible.

The memory that is statically allocated in the heap for this data may – for e.g. – be re-used to create the
tables used by the CLI parser. This approach may marginally increase the amount of time required for
program start, but will use memory efficiently. This approach effectively provides the macro “offsetof” at
runtime as a function.

When making a change to the command-specific structure, the global structure also needs to be modified
accordingly to include the new changes.

E.g. the global data area may appear as follows:

struct global_structure_offset_defn_s[] = {

…

{“vol_modify_struct”, “hardquota”, offsetof(vol_modify_struct, hardquota)},

{“vol_modify_struct”, “volname”, offsetof(vol_modify_struct, volname)},

…

};

4.4.5.4 Additional memory allocated in the stack for every API

With this approach, no changes may be required to the syntax definition of a command inside the
DEFUN. Instead a structure is instantiated inside every API (DEFUN) that contains the parsing semantics
for every variable component inside the syntax definition.

The parsing semantics are specified in a manner very similar to the general definition mentioned above.

With this approach, the additional memory requirements may be classified under 2 categories:

Global memory required: All the literals defined to be included in every structure (within every DEFUN) shall be allocated space from the global heap. At run-time, when the function receives control, these literals may be copied from the data segment (BSS) to the stack when the structure is instantiated.

Stack requirements: Every-time an API is called, a structure is instantiated inside the DEFUN. This instance of the structure shall exist on the stack for the lifetime of the function

E.g. For,

 cluster add nasgateway NASGATEWAYNAME -a IPADDR

DEFUN(…)

{

/* input structure to the “cluster_add_nasgateway” API */

cluster_add_nasgateway_in_t in;
argument_template_t cluster_add_nasgateway_tmpt[] = {

 {"NASGATEWAYNAME","%s,^[a-zA-Z0-9][a-zA-Z0-9\-.]*[a-zA-Z0-9]$",

 offsetof(cluster_add_nasgateway_in_t, cani_nasgatewayname),

 sizeof(in.cani_nasgatewayname),

 offsetof(cluster_add_nasgateway_in_t, cani_nasgatewayname_len),

 sizeof(in.cani_nasgatewayname_len)},

 {"IPADDR", "%I",

 offsetof(cluster_add_nasgateway_in_t,cani_ipaddr),

 sizeof(in.cani_ipaddr),

 offsetof(cluster_add_nasgateway_in_t,cani_ipaddr_len),

 sizeof(in.cani_ipaddr_len)}

 };

}

Note: If we decide to use this approach then the parsing library code has to be invoked from with in the command handler (DEFUN).
This approach is the preferred approach as it is maintainable (no hard coding) and simpler to implement.

5. Assumptions and Dependencies

N/A
6. Migration Strategy

The implementation of parsing library would involve changing all command files under the ssc-nfxsh directory irrespective of the approach chosen for specifying the OFFSET and LENGTH. At this moment we don’t foresee changes to any other files.
7. Testing Strategy

The changes mentioned require testing of every CLI command in the CLI command list.
8. Performance Criteria
N/A
readline() function in vtysh

Command handler (DEFUN)

Checks for the command string and invoke the command handler

CLI command input arguments

Parsing Library

Invalid input arguments. Print error

Valid input arguments.

Populate input structure

Management API

Input structure

Note: Text in Blue indicates the process and text in Red indicates the parameters passed

2005 ONStor, Inc., Company Confidential
Page 28 of 17
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_95727696.unknown

