Supporting file creation time - Functional Specification 725-xxxx-0001
Draft 0.1

	 document no.

725-xxxx-0001
	revision no.

0.1
	status
REVIEW

	department

Engineering
	Author/Contact

jobia
	Email

jobi.ariyamannil@onstor.com

Function Specification:

Supporting file creation time

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes how to support file creation time in EverOn filesystem.

Contributors

	Name
	Email

	Jobi Ariyamannil
	Jobi.ariyamannil@onstor.com

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2005, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V0.1
	
	Jobi Ariyamannil
	All
	Draft
	10/1/2007

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

41
Related Documents

52
Relation to Requirements

63
Relation to Roadmap

74
Problem Statement

85
Solution

96
User Interface

107
Dependencies

118
Migration Strategy

129
Testing Strategy

129.1
Key Limits

129.2
On Disk Formats

129.3
Cluster Operations

129.4
Cooperative Testing

1310
Performance Criteria

1 Related Documents

See defect TED00017316.
\\Mightydog\program management\Rocket_98\Phase Reviews\Planning Review\R98_Software_Plan.ppt

2 Relation to Requirements
Currently, our filesystem does not support creation time on non-directories. It would be nice to have this supported to meet competition.

Quoted from the defect,

In the Electronic discovery business, while they are prosecuting a case, for example the Maxtor-Seagate merger, they try to obtain all emails and documents in a specific time range. They apply filters using Creation time stamp and Last Modified time stamp. Without creation time stamp, it would not be possible to recognize tampering of evidence or if evidence/assets under review were modified/updated since creation.
3 Relation to Roadmap

This feature can be finished in a week and thus can be part of any future release.
4 Problem Statement

Currently, our filesystem does not track or report creation times of files other than directories.
5 Solution

Since existing filesystems do not have the creation time of inodes tracked and since we have no means to initialize the creation time on existing files, we will start tracking/reporting creation times on newly created files. These files will be flagged as keeping correct creation time by using a bit in the inode attributes. Files which do not have correct creation time tracked will continue to report the oldest of access and modify times as creation times as we do today. While modifying access or modify times of those files, we can preserve the oldest of them as the file creation time to avoid file creation time moving forward with changes to those times.
We need 8 bytes in the disk inode (of size 128 bytes) to track inode creation time correctly. We don’t want to extend the disk inode for performance reasons, so we need to find 8 bytes in the existing disk inode. There are 4 bytes currently unused for files in name space (currently initialized as 0) and this can be used for this purpose. Since these bytes are zero currently, a non-zero value indicates creation time is tracked for the inode, thus we may not have to use any other bits in the inode attributes. Rest of the 4 bytes can be obtained from one of the following:
· We support archive time (xtime) in the disk inode which consumes 8 bytes. For all practical purposes, archive time needs to track seconds only and thus 4 bytes from the archive time can be taken for storing 4 bytes of the creation time.

· For namespace inodes, inode generation number is stored in the gennum file. Thus there is no need of tracking the same in the disk inode which consumes 4 bytes. We can use this field for tracking creation time and cache the generation number of the inode incore field (to avoid reading the gennum file every time we validate a file handle).
Directory inodes will keep overloading the inode size field as today for tracking creation time.
Files having unix style time format, will track creation time as seconds and nanoseconds since Jan 1, 1970 00:00:00 UTC. Files having NT style time format, will track the same in units of 100 nanoseconds since 1601.
Since this feature can be implemented in a backward compatible manner, there will not be any revision of filesystem layout version.

TBD: Is it ok to support creation time just in seconds? If so, we can avoid overloading 4 bytes in the inode.

6 User Interface

None
7 Dependencies

None
8 Migration Strategy

None
9 Testing Strategy

Test new functionality on newly created or modified files as mentioned above.

Test the above on files created/modified from both NFS and CIFS.

EEK a filesystem which has newly created/modified files.

Snapshot/Mirror of newly created/modified files must report correct creation time.

Restoring of newly created/modified file from backup, must restore the creation time correctly.

9.1 Key Limits

None.
9.2 On Disk Formats

Some unused fields in disk inode is used to store creation time in a backward compatible manner.
9.3 Cluster Operations

None.
9.4 Cooperative Testing

TBD
10 Performance Criteria

None.
 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 2 of 13
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

