[image: image2.png]ON (/) Enterprise NAS
with Impact

NAS for the Enterprise

[image: image3.png]CE

ONStor ‘nfxsh’

Design

Document

Table of Contents

31.
‘nfxsh’ overview

1.1 Features
3
2.
Command declaration.
3
3.
Command registration
3
4.
Command line reading
3
5.
Command line parsing and execution
3
6.
Work flow
3

1. ‘nfxsh’ overview
nfxsh is the command-line shell used to manage the EverON OS. When the user logged in as admin, nfxsh is the default shell. Root users can enter into nfxsh by typing /usr/local/agile/bin/nfxsh. nfxsh is slightly customized form of GNU zebra vtysh shell. The source code of nfxsh can be found in
//depot/<Working branch>/nfx-tree/code/ssc-nfxsh

1.1 Features

nfxsh contains following features
1. Automatic command completion: When the user partially types a command and presses tab, nfxsh will fill the remaining letters in the command if there is no ambiguity. If there is any ambiguity, then it displays list of commands which are ambiguous.

E.g.
webui7 diag> vs<tab>
vscan vsd vsvr

2. Automatic checking for mandatory elements in the command: Each command has set of command elements. For example in “interface show ip”, elements such as interface, show and ip forms the command. nfxsh automatically checks whether the user has entered all entire mandatory command elements after pressing the return key. The following are checked when return key is pressed:
a. Command completion

b. Whether the user has typed a command that is not available as a part of nfxsh

c. Handling optional parameter
3. Documentation for each command element: Help about the command can be obtained just by pressing ‘?’ at the nfxsh prompt. Help contains information about next possible command element.
E.g.

webui7 diag> vsvr show ?

 [NAME] Virtual server name

 all All virtual server

4. nfxsh provides facility for providing various privilege levels for each command. Only user with required privilege can see (help will not list the commands for which the current user does not have privilege)/execute the command. It provides the facility to specify the context (cluster or vsvr) in which the command should be executed.
5. Command stop: When the command entered is not responding for a while, then the user can stop the command that is running by pressing CTRL+z.
2. Command declaration.
nfxsh provides easy way of adding new commands to the existing command list. There will be separate C file for each command class and all the commands which are part of the particular command class will be under that C file. The filename of the command class is cmd_<command class>.c. For example, the C file for cluster command class is cmd_cluster.c.

A Macro named DEFUN has been defined in command.h which helps in declaring a new command to the nfxsh. The macro takes four parameters

1. Name of the function that handles the command
2. Name of the struct cmd_element object. struct cmd_element contains all necessary information about the command

3. Commands string: The command that the user should type at the nfxsh prompt

4. Help string: This provides help about the command.
The definition of DEFUN macro is shown below.

#define DEFUN(funcname, cmdname, cmdstr, helpstr) \

 static int funcname (struct cmd_element *, struct vty *, int, char **); \

 static struct cmd_element cmdname = \

 { \

 cmdstr, \

 funcname, \

 helpstr \

 }; \

 static int funcname \

 (struct cmd_element *self, struct vty *vty, int argc, char **argv)

Here struct cmd_element should be filled with information about the new command.
struct cmd_element

{

 char *string; /* Command specification by string. */

 int (*func) (struct cmd_element *, struct vty *, int, char **);

 char *doc; /* Documentation of this command. */

 int daemon; /* Daemon to which this command belong. */

 vector strvec; /* Pointing out each description vector. */

 int cmdsize; /* Command index count. */

 char *config; /* Configuration string */

 vector subconfig; /* Sub configuration string */

 int vs_required; /* If virtual server context should be set */

 uint32 db_ver; /* if set, allows modify clusdb only if dbver matches */

 authen_privScope_t privsScope;/* Privs scope (cluster or Virtual server)*/

 sec_privileges privsRequired; /* Privileges required to execute this command

 (at least one of them needs to be held */

};
Let’s take example of declaring “volume delete” command found in cmd_vol.c. The command declaration looks like this.
DEFUN(vol_offline,

 vol_offline_cmd,

 "volume offline VOLNAME",

 "Volume Commands\n"
 "Bring offline the specified volume.\n"

 "Name of an existing volume\n")

{

// command definition

}

The macro would expand as follows

static int vol_offline (struct cmd_element *, struct vty *, int, char **);

static struct cmd_element vol_offline_cmd =
{

"volume offline VOLNAME",

vol_offline,

“Volume Commands\nVolume Commands\nBring offline the specified volume.\n Name of an existing volume\n”
11};

static int vol_offline (struct cmd_element *self, struct vty *vty, int argc, char **argv)

{

//command definition

}

3. Command registration
Commands have to be registered with the nfxsh using install function so that it will be available in the nfxsh shell. There will be one install function for each command class which internally calls install functions of each command in the command class.
Node forms the top level of the command tree. Commands in the node can vary depending on the privilege level of login user. The privilege level available for node is

1. Diagnostic Privilege: Available only to the root user.
2. Full Privilege: Available to admin user, local user, NIS domain user and windows domain user. These full privileges are further divided into sub privilege levels like Cluster, Login, Security, Volume, Storage, Network, Quota, Ndmp, Backup, Restore, Takeownership and Traverse. More detailed description of privilege can be found in NCM help document.

Install function adds the command to the node. There are different types of install functions defined in the command.c. Based on the install function called, information about the command is updated in the struct cmd_element like privilege for the command, scope in which command can be executed and whether vsvr context is required to execute the command. Below is the list of install functions available.
1. install_element: Simpler form of install function. Install a command into a node.
2. install_element_w_priv: Install a command into a node when a command requires a privilege at cluster level to be executed.

3. install_element_w_vs_priv: Install a command into a node when a command requires a privilege at virtual server level to be executed. If the command is executed outside a virtual server context, privilege check will be executed at cluster level.

4. install_element_vs_required: Install a command into a node when a command requires a privilege to be executed and the virtual server context defined.
5. install_element_common_with_options: Grandiose of all install, allow unlimited options set. It allows user to set various privilege.

[image: image1]
4. Command line reading

Command line reading in nfxsh is done using GNU Readline library. GNU Readline Library is a utility which aids in the consistency of user interface across discrete programs that need to provide a command line interface.

vtysh_readline_init function defined in vtysh.c performs all initialization work for readline. Following operations is performed inside the vtysh_readline_init function
1. Registers keybind call-back function (vtysh_rl_describe) with readline using rl_bind_key library call. So whenever the user press ‘?’ at the nfxsh shell, vtysh_rl_describe function will be automatically called. This function takes care of printing command documentation by using the information available in command node which forms the top of the command tree..
2. Assigns readline variable rl_attempted_completion_function with command completion call-back function (new_completion). So whenever the user presses tab key after typing certain part of the command, new_completion call-back function returns to readline utility with possible matching command list. Readline takes care of auto completion of the nfxsh command.
To more about the readline library please check the following URL http://www.delorie.com/gnu/docs/readline/rlman_toc.html#SEC_Contents
5. Command line parsing and execution
When the user enters the command and presses return key, following steps are followed to execute the function.
1. Removes comment in the line. Any command followed by ‘!’ or ‘#’ are treated as comment line and is ignored.
2. Tokenizes the multiple command each separated by ‘&&’ or ‘;’ in to separate command and executes each command consecutively. Multiple command execution is possible only, if we enter nfxsh commands at the sh prompt.
3. If there is no matching command in the command node, then nfxsh returns CMD_ERR_NO_MATCH error.

webui7 diag> cluster show nasgateway

% Unknown command/option.

4. If there is ambiguity in matching the exact command, then nfxsh returns CMD_ERR_AMBIGUOUS error. In the below example, there are two commands that match the below line. They are “nfs share delete” or “nfs share disable”.
webui7 diag> nfs share d
% Ambiguous command/option.

5. If the command entered is partially completed, then nfxsh returns CMD_ERR_INCOMPLETE error.

webui7 diag> cluster show

% Command incomplete.

6. If the command requires virtual server context to be set and if the context is not set when the command is executed, then nfxsh returns CMD_ERR_VS_NOT_SET error.

webui7 diag> nfs show

% Virtual server context not set.

7. If certain privilege level is required for executing the command and the current login user doesn’t have the required privilege, then nfxsh returns CMD_ERR_PRIV_NOT_HELD error. In the below example, if the user with login privilege executes the “cluster add group” command, nfxsh will throw “Privilege to execute this command not held” error message.
webui7> cluster add group test

% Privilege to execute this command not held.

8. Matches the command element corresponding to the user entered command in the command node tree. Executes the command handler that matches the command. If the return value of command handler is failure, respective error message is displayed in the prompt.
6. Work flow
[image: image2.png]
[image: image3.png]

install_element_common_with_options vsvr enable

Install …..

Install …….

install_element_vs_required cifs share add

Install_element cluster show cluster

Node

(Full or Diag priv)

Start

Print welcome menu

Call Install function of various command elements

Sort command element in ascending order of commands

Initialize readline library

A

A

Set for Long jump to this location when user presses CTRL+z

While user doesn’t enter quit or exit command

Read the command from the nfxsh

Call the command handler corresponding to the command

End while

Stop

SIGTSTP Signal handler

Long jump to set location

Return

