SystemX Clustering and Cluster DB
 725-xxxx-0001
Draft 1.3

	 document no.

725-xxxx-0001
	revision no.

1.3
	status
DRAFT

	department

Engineering
	Author/Contact

Jonathan Goldick
	Email

jonathan.goldick@onstor.com

Component Overview:

SystemX Clustering and Cluster Database

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes how we will be replacing the current ONStor clustering and cluster database with open source Linux equivalents.

Contributors

	Name
	Email

	Jonathan Goldick
	jonathan.goldick@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jonathan Goldick
	All
	Draft
	07/20/07

	V1.1
	
	Jonathan Goldick
	2.1,2.2
	Incorporate ChrisV’s feedback
	07/23/07

	V1.2
	
	Jonathan Goldick
	2.2, 2.3, 2.4
	Notes of Storage and Durable Memory
	08/03/07

	V1.3
	
	Jonathan Goldick
	All
	Incorporate OriginateLabs feedback
	09/07/07

	
	
	
	
	
	

Table of Contents

2Contributors

2Disclaimer Notice

2Copyright Notice

41
Related Documents

52
Requirements

52.1
Clustering

52.1.1
Must Have

52.1.2
Highly Desirable

52.1.3
Desirable

62.2
Cluster Database

62.3
Cluster Database Storage

72.4
Durable Memory and Cluster Checkpointing

83
Relation to Roadmap

84
Proposal

84.1
Clustering

84.1.1
Configuration

94.1.2
Security

94.1.3
Split-Brain Handling

94.1.4
Backup and Restore

94.2
Cluster Database

104.2.1
Networking

104.2.2
Storage

104.2.3
Backup and Restore

104.2.4
Database Contents

104.2.4.1
Static Configuration

104.2.4.2
Recovery Information

104.2.4.3
Management Commands

114.2.4.4
Run Time State

124.2.5
Security

124.2.6
Communications between MySQL Client and Application Nodes

125
User Interface

126
Project Dependencies

127
Performance Criteria

1 Related Documents

1. Overview of SystemX
2. http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
3. Linux Heartbeat Tutorial
4. http://linux-ha.org/_cache/HeartbeatTutorials__LCA2007-tutorial.pdf
5. Linux Cluster Resource Manager
6. http://www.linux-ha.org/_cache/TechnicalPapers__UKUUG-WinterConf-2004-SCRAT-Paper.pdf
7.
8.
9. Linux Local Resource Manager
10. http://www.linux-ha.org/LocalResourceManager
11. MySQL Clustering FAQ
12. http://www.mysql.com/products/database/cluster/faq.html
13. MySQL White Paper on clustering
14. http://intranet.onstor.net/md/software/systemx/MySQL_WhitePapers/mysql-cluster-technical-whitepaper.pdf
15. MySQL White Paper
16. http://intranet.onstor.net/md/software/systemx/MySQL_WhitePapers/mysql_wp_drbd.pdf
17. OriginateLabs feedback http://intranet.onstor.net/md/software/systemx/OriginateLabs/onstor_systemX_cluster_recommendations.2.1.pdf
18. SystemX Networking component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_IP_Networking.doc
19. SystemX Software Upgrade component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Software_Upgrade.doc
20. SystemX Management Execution Agent component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Management_Execution_Agent.doc
21. SystemX Management Run-Time State Repository component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_RunTime_State_Repository.doc
22. SystemX database schema document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_ClusterDB.vsd
23. Open cluster framework http://www.linuxconf.eu/2007/papers/Karlstedt.pdf
2 Requirements

2.1 Clustering
2.2 Must Have
The clustering heartbeat system must support multiple network paths and exercise them all. It is desirable that direct links like serial interfaces be supported but not required.
Preferably there will be no limit on how many nodes can be in a cluster but it must support at least 16 and it must support a cluster of a single node.
There must be support for stretch clusters. To maintain parity with what ONStor has today this means that a four to five ms latency between cluster members must be acceptable.
It is desirable to support sub-second detection of a failed cluster member but in practice it is acceptable for these to be several seconds. It should not exceed 30 seconds.

It must deal with split-brain scenarios. If we have a cluster network partition the clustering component must determine the largest partition and have the smaller partition stop all services. When the partition is repaired the cluster should reform without any additional downtime, reboots, or manual action required.
There must be quorum support; basically we want it to deal with a single node failure in a two node cluster.
It must have adequate security to prevent unauthorized nodes from joining the cluster.

We must be able to add or remove nodes without downtime. Additionally we must be able to rename a node or change the IP addresses associated with its cluster network interfaces with no down time. Note that when we start with a new node, there are really only two legal operations. Either the node can create a new cluster or it can join an existing one.
If the only node in a cluster is removed there must be a warning before this is done. This is important because any virtual servers in the cluster will no longer have any filer to service them. Effectively, all of the cluster meta-data will be lost. It is important that to every extent possible the cluster resources be deallocated when a cluster is essentially destroyed. If the customer has the intent of destroying a cluster with the goal of merging its file systems into another one, they should move the data first.
There must be a defined backup and restore procedure. Backup cannot require downtime, but downtime is acceptable for a restore operation.
We currently have the concept of filer group, which defines a subset of the cluster nodes that are failover partners. Both filers and virtual servers are associated with a group and that defines a coarse level of failover policy. This capability must be present in the clustering component.
2.2.1 Highly Desirable
It is highly desirable that we be able to define flexible policies to determine what constitutes an errant node. For example, having a node that is completely up but cannot reach the data IP/FC network would be such a policy.
It is highly desirable that the virtual servers be spread out among the remaining filers in a group when their node fails, as opposed to all virtual servers failing over to a single member of the group. If the spreading algorithm could be in some way load-based, that would also be desirable. Automatic failback by configuration is also highly desirable.
It is highly desirable that a database backup be consistent. The database should not be locked for more than a few seconds at maximum.
It is highly desirable that there be a bare-metal restore procedure that includes the cluster database.
2.2.2 Desirable
It is desirable that it support fencing off of nodes that are not considered a current member of the cluster or are in some way considered errant.

It is desirable that we be able to define a failover order for virtual servers on physical boxes. In a two-node cluster this is not important but in a larger cluster/filer-group it’s useful to be able to specify to which filer a virtual server will go.
It is highly desirable that the cluster configuration procedure prevent a node from being added to multiple clusters. It is destructive when a filer with virtual servers and volumes is added to a different cluster and ends up orphaning services.

We will not support merging clusters. In order to add a node to a cluster, it must not be a member of any other cluster, including a cluster of one node.
It is highly desirable to have a defined process for merging clusters. This is not always possible because there can be conflicting names and ids. At a minimum we should be able to export/import file systems from one cluster to another, but preserving cluster metadata is not always an option. It is highly desirable to have a command that will report whether a merge is possible and what unresolvable conflicts there would be.
2.3 Cluster Database
The cluster database stores a fairly small amount of information, rarely more than 10MB, which is organized today as an acyclic graph. The objects have a parent/child relationship with each other, although an object can have multiple parents. The typical queries are lookup by name, lookup by id, enumerate children of a given object type, and enumerate parents of a given object type.
It is required that every node in the cluster have fast read access to a consistent copy of the database at all times. This information is required for them to act as a failover target for any virtual server. It’s acceptable to use a database that has a short latency between an update on one node’s DB copy and the updates arriving on the other cluster nodes but this latency should be very short. Basically, we will accept a near-continuous asynchronous replication model for the cluster DB, as opposed to one where every transaction is handled through a distributed transaction coordinator that ensures all copies commit at the same time.
It is required that the database not have a single reader/write lock. Rarely is information modified but it would be highly disruptive to failover times if we were unable to read in configuration information because an unrelated table entry was being changed.

It is required that the database support a shared-nothing storage infrastructure. While we may evolve to a SAN-based storage for the clustering information, we do not want to require it. In a SAN-based model we could store fewer copies of the database and just share N copies among M filers; it’s only necessary to ensure that it be fully fault tolerant. See the next section.
The database must support a standard SQL interface.

It is highly desirable that a read only transaction be handled locally on a cluster node instead of going over the cluster network to a single primary. While the average transaction rates are much less than one per minute, when a failover occurs there will be a burst read load that in rare cases can be in the few MB range. This can be relaxed if the cluster network is fast enough.
It is required that every database instance have a unique id so that we can easily merge them into the data warehouse. The data warehouse will aggregate the databases from all customers into a single system so that reports and analytics can be performed across the customer base. An efficient method of taking binaries dumps of the database tables and importing them into the centralized data warehouse is required.
2.4 Cluster Database Storage
The cluster database has historically been stored in a UNIX file system on a compact flash residing in every filer. The Ubik DB infrastructure ensured that the database was redundantly stored on every node in the cluster, and when new nodes were they would get a full copy. This model does have inherent scalability limits when you try to achieve the goal that all nodes get all updates as soon as possible, with the extreme case being a synchronous updated to all DB copies in a single distributed transaction. It does have the major advantage in that is does not in any way rely upon the SAN configuration to provide high availability.
The key requirement here is that the database be highly available and that all nodes have rapid read access in those rare events that they need to pull down the configuration information that is relevant to their virtual servers.
There are multiple ways to achieve this in terms of a storage layout but they can create constraints on the allowed storage configurations. For example, we could choose to store the DB on a synchronously mirrored file system that resides on the SAN. If the mirroring was across two different disk groups, or better yet, two different arrays, we could consider that to be sufficient guarantee for high availability but have created a new constraint on acceptable storage configurations. As mentioned above, we could choose to make this a near continuous asynchronous mirroring model as well, as long as the DB stays consistent. It’s also possible to have the database software itself handle the maintenance of the redundant copy or copies.
2.5 Durable Memory and Cluster Checkpointing
A significant design point for clustering is whether we are going to provide the software and hardware infrastructure to support durable memory like NVRAM in the filer and checkpoint that memory across the cluster. NetApp uses NVRAM to reduce the latency for small write operations and in a cluster they checkpoint this memory to a paired cluster node for high availability. This approach has some serious disadvantages that this architecture intends to avoid. The key downsides are:

· You have increased the COGS of the filer by adding durable memory when the customer may have already purchased a backend array that contains it.
· If the maximum end user sustained write performance that can be offered by a filer is R, the filer will need at least R write performance across a cluster network for checkpointing and another R write performance to back end storage. Thus if we wanted to support 2x10GE Ethernet to the clients over NFS we would need 20GE of cluster bandwidth and 20GE of SAN bandwidth.

· The software for cluster checkpointing is complex; basically it’s exactly what you need to do to implement synchronous mirroring in storage. It gets even more complex if you want to support an odd number of nodes, basically some configuration other than clustered pairs.

· By saving some of the file system state in memory, the backend arrays will not have a crash consistent view of the file system. This means that no array or switch level features can be used without initiating them from the filer level after synching the NVRAM to disk.

It is still the case that we need to address the small data and metadata write workflows on slow storage. The alternative that we intend to use is to continue to rely upon durable memory at the SAN layer. If the customer has a mid of high range array, this is basically a non-issue because they all have large amounts of durable memory and low latency writes. However, for low end arrays we will offer a memory-based storage device that can connect to the same FC or iSCSI SAN as the filer. This chunk of memory will be used exclusively for file system logging and will provide the low latency write performance needed by these workflows. The key advantages to this approach are:
· Lower COGS for the customer that has an array with durable memory.
· A value add hardware component that we can OEM and sell for additional revenue.

· The cluster network does not need to be high performance to support large sustained write performance.

· The only software work is to support a log LUN in the file system, a relatively simple effort.

· Array and switch-based features like mirroring and snapshots can be leveraged because a crash consistent view is always available on the SAN.
3 Relation to Roadmap

A primary goal of the SystemX architecture is to leverage open source wherever possible. In the area of clustering ONStor has a great deal of home grown code that can be replaced with more functional Linux components.

In the area of the cluster database ONStor needs a proper database engine that has full relational capabilities. A modern replacement for the current Ubik-based system is necessary to implement a number of our planned featured, with Automatic Data Migration and the Advanced Quota Manager being at the top.
4 Proposal

4.1 Clustering
We will use the Linux Heartbeat software to detect which nodes are reachable. This component supports very large cluster sizes, multiple network topologies, and stretch clusters. On top of this layer we will use the Linux cluster resource manager (CRM). This component not only determines which cluster nodes are in the largest connected partition, it handles quorum, fencing, security, and controls the starting and stopping of resources like virtual servers through the local resource manager (LRM).
It is important that the reader be familiar with the Originate Labs document in reference ‎8.
4.1.1 Configuration

· We will configure the cluster to allow nodes to automatically join.

· We will leverage the Avahi service described in the networking reference document to discover the clusters on the network to which a new filer might join. This will allow us to require some authentication before downloading a copy of the cluster authentication file to a new node. Only nodes with access to this file can join a cluster.

· We will assume that multiple clusters could appear on the same subnet so multi-cast communications will not be used.

· We will tune the HeartBeat configurations for sub-second failovers by default. We will have a separate configuration parameter set for stretch clusters. Note that these values are not dynamic; changing them requires a cluster restart.

· All cluster nodes must be running the same generation of software, or be in the process of a cluster upgrade. If a node was unavailable during a cluster upgrade and attempts to join it will automatically be upgraded before being considered as a candidate for running cluster services. See the reference document ‎10.
· All cluster resources will be written to the Open Cluster Framework (OCF) standard. We will define the requirements in terms of IP and SAN connectivity to run a virtual server in this standard and ensure that we regularly verify that the node chosen by the CRM maintains the required connectivity.
· Prior to implementing load attributes for the nodes in the Cluster Information Base (CIB) we will just spread services out evenly, basically treating everything as equal load. Eventually we will provide a mechanism for the load average of virtual servers to added to the CIB and use that in determining where they run.
· When a new node is added we would like to have virtual servers to be able to automatically load spread to include the new filer. This will only be allowed when CIFS is not involved because it does not support transparent failover.
· We will support affinity weightings for virtual servers to filers so that the failover targets can be controlled if so desired by administrators.
4.1.2 Security

4.1.3 As mentioned above, only nodes with the correct cluster authentication information can participate in HeartBeat. There are many choices here but MD5 seems adequate.

4.1.4 Split-Brain Handling
In a two-node cluster we must maintain service if either node fails. We must also maintain service when both nodes are up, but the cluster network has failed. When there are an even number of nodes in the cluster and exactly half the nodes are in the current partition we will use the SAN to arbitrate the decision on which partition wins. The losing partition will not consider itself to be in the cluster and will stop serving all cluster resources and wait until cluster networking connectivity is restored.
The SAN-based arbitration method must ensure that there is a predictable winner. A typical approach is to have some volume takeover area that is written with the time and filer id of the owner at a regular and frequent interval. Say that filer N has the most votes for partition 1 and filer M has the same number of votes for partition 2. Each filer tries to write the takeover area of same volume, say the one with the lowest available volume id. If no other filer has written the takeover area in the most recent interval, the filer writes it’s id into it. If in the next interval the id hasn’t changed then it knows that there is no other partition that is up and it gains a quorum vote and forms the cluster. If on the other hand the region has been written with a filer id that is lower than its value, it knows that there is a better partition and its partition loses the election and stops serving all cluster resources. Lastly, if the region has been written with a filer id that is lower than its value the filer will overwrite that region with its lower number and again gain the quorum vote needed to win the election.
Note that the above algorithm assumes that we don’t have a SAN partition at the same time as a cluster network partition. This will not hold true for iSCSI SAN(s) using a single shared IP network. In such circumstances we may have to rely upon a different approach. In this case we may have to allow an administrator to pick a filer that gets an extra cluster vote. This would have to be done in advance of the cluster partition, and only a partition with that filer as a member would win. In a two-node cluster this means that if filer A got an extra vote that if it actually when down filer B could not achieve a quorum and the entire cluster would be down.
Note that if we all filers to be iSCSI/Fibre Channel targets on the SAN-side we could eliminate the need for using a takeover area on some SAN volume. Instead the filer with the most votes in its partition could attempt to reach the filer with the smallest id that is not in the current partition via the SAN. If it responds and claims to have an equal number of votes then both know which partition should win the election. This is the preferred solution since it has the least dependencies. In an iSCSI world this is equivalent to heart beating over the san# interfaces in addition to the mgmt# interfaces and would work with no extra effort. In Fibre Channel world we would need to extend the Linux HeartBeat software to leverage Fibre Channel, perhaps with an adapted version of the quorum server software.
4.1.5 Backup and Restore

The relevant configuration information is maintained in files on the Linux Ext3 file systems. We can back them up with really any Linux utility. Restoration is similarly easy.
4.2 Cluster Database
For the cluster database we will be using MySQL Cluster. MySQL has a single management node that controls the MySQL nodes in general, one or more data nodes that hold disk-based copies of the database that we will store on the SAN, one or more application nodes that hold in-memory database copies and one or more client nodes that communicate with the application nodes using one of many languages like Perl/Python/PHP/etc. Any or all of these database services can be co-located. A simple rule is that all cluster filers run the client node software.
In a single filer cluster we will have all MySQL nodes resident on the single filer. For a two filer cluster we will add a second data node and a second application node. As the number of nodes increases we may eventually add an additional application node but that’s likely for only very large clusters. This can be done dynamically without affecting the quorum rules.
For stretch clusters we must ensure that there is a data node on each side of the MAN network. This will be handled by using policies in the CRM to ensure that the data nodes don’t all end up on the same side of a MAN cluster.
4.2.1 Networking
While described in much more detail in the reference document ‎9, a brief description is included here. We will have an IP address assigned to each management network interface (mgmt#) which will then be associated with the MySQL management node. These IP addresses will be started as a CRM resource that is defined to run co-located with the MySQL management node resource. We will use a similar rule for starting the application and data node resources, each will have their associated set of IP addresses on the mgmt# interfaces. By using the model of abstracting the IP addresses for MySQL nodes we can allow the Linux cluster nodes to be dynamic without requiring MySQL clustering to be so.
4.2.2 Storage
The SAN file systems that hold the disk copies of the database will be mounted by the filers to which the CRM assigns the role of running the MySQL data node instances. These will be EXT3 file systems running on top of LVM2 and need not very large given that the database copies are quite small. We should follow MySQL’s recommendations on size and RAID levels for a low update, low read rate database. These SAN file systems should be zoned to allow any filer in the cluster to mount them so that failovers of the MySQL data node instances work properly.
4.2.3 Backup and Restore

There is a MySQL backup procedure that can be leveraged to produce a file on the MySQL data nodes. The restoration process does assume that the same data node is used as for the backup. We may be able to trick this through the use of the virtual IP addresses associated with the data node but this needs some experimentation. As a rule we should only need to do a restore when we have had a catastrophic failure of the cluster since we do have redundant data nodes. We should not need this procedure for rollback as that will be handled through the use of LVM2 snapshots as described in a separate document on software upgrade. See the reference document ‎10.
Note that when we do a restore operation we will need to sanitize the database with the actual state of file systems that are discovered on the SAN. Some file system might be new since the backup was taken, and others might have been deleted.
4.2.4 Database Contents

4.2.5 Static Configuration
4.2.6 There will be several types of database information. The first and most familiar is the static configuration information for the virtual servers, volumes, NFS/CIFS shares, etc. While the specifics will be different than in SystemW, notably the movement of networking configuration information out of the cluster database, it will in large part have the same objects and attributes. The specific schema is detailed in reference document ‎13.
4.2.6.1 Recovery Information

The next type of information will fall into the category of recovery data. This is information is used to clean up after a management operation that could possibly fail in the middle. The most familiar example is an NDMP dump operation. This workflow requires the system to pin a snapshot so that it cannot be deleted while the dump is in progress, but also requires that the snapshot be unpinned on completion or failure. To ensure that the unpin operation is executed on failure we store that recovery information in the database so that on a restart of the NDMP service, possibly on a different filer, it can determine which snapshots need to be unpinned. At the present time, NDMP dump and the DMIP mirror services are the only ones that need this recovery information to be kept, but the need is a general one.
4.2.6.2 Management Commands

The next type of information is the pending management commands that have been queued. Given that a single management command can involve updates to a number of independent services in the cluster we must have some infrastructure to ensure that they run to completion across failovers and process crashes. Consider the file system delete operation. This has many steps that are spread across various subsystems and cannot be made completely transactional without some additional information stored in the database. The delete operation must not only delete the NFS/CIFS shares and volume structures in the cluster database, it must get the NFS/CIFS layers to stop services requests for the file system, unmounts the volume, update the LUN labels, and add the LUN(s) back into the appropriate free pool. At any point in the process we could have a failure in any component of the system, including the CLI/GUI initiator of the operation. To address these complex workflows we will have the management library add the operation to a database table of pending work items. As the operation is executed we will record the phase of progress so that on failure we can restart from the current phase until we get to a completion or final failure state. The initiator of the operation will have a handle that they can use to query the progress of the operation should they choose so a percent complete or completion time estimate is highly desirable. When the operation is done we will use handle information in the work item data structure to communicate back to the initiator of the operation, should it still exist, and delete the work item. While it is desirable to allow parallel execution of management where there is no overlap, we may not go through the effort in trying to detect when that is possible as it could be very complex; consider one operation that removes a CIFS group from a privileged access to a virtual server racing with a user in that group that issuing a volume modification request within that same virtual server. There is additional detail on the execution of management operations in reference document ‎11.
4.2.6.3 Run Time State

The next type of information is the run time state tables. One of the basic needs of our management infrastructure is to have a common method of extracting out the run time state of the system when it’s distributed across multiple filers, and user space and kernel processes. Historically we have made a large number of query commands for everything from TCP packets processed, to key performance indicators (KPI) for NFS and CIFS RPC(s), to listing the amount of quota consumed by users for a particular file system. This has created a large code base with a variety of non-standard API(s) for getting and resetting run time information. The planned solution is to have all processes, kernel and user space, that we want to report run time status to periodically upload their information to a cluster DB table, with a controllable trigger event for on-demand updates. Any management agent that wishes to examine run time state information can access the appropriate database table, like the CLI/GUI/SNMP/CIM/etc. This makes for a much more powerful management model because we can leverage all of the features of a relational DB to sort and filter the output. This also allows us to maintain history on the run time state information, which should reduce or even eliminate the need to implement reset functionality.
Note that we must differentiate state information that can get reset due to a process restart and those that have their own persistent stores when it comes to historical modeling. Network packets that have been received will be zeroed when the system resets but user quota usage is persisted in the file system.
Consider the example of listing user quotas on a file system. Today we read the many records out of the file system metadata that are stored in file creation order through a file system API. The CLI/GUI then takes the associated user ids and converts them to user names and finally reports them in an apparently random order. In the new model we could take the uploaded quota records, run a task to get user names for any user id that we have not obtained previously, and then sort and filter on any field we choose. We can even look at the usage over time, aggregate usage across file systems and virtual servers, or really anything.
An additional use case will be the EMRS service. EMRS needs to get the configuration and run time state information for a cluster on a roughly daily basis. In this model it could just request a binary dump of the database tables and import them in the data warehouse.
Given that run time state information can grow indefinitely when we are preserving history we should not keep older histories as memory resident in MySQL. We will still need a way of archiving, pruning, and cleaning up this information to keep it manageable in size.
There is additional detail on the run time state repository in reference document ‎12.

4.2.7 Security
MySQL does not provide secure communications between nodes. This could be addressed with security at the IP level, like VPN, but we will likely not address this in the short term. What we should do is only accept requests from IP addresses within the cluster as a limited form of security.
4.2.8 Communications between MySQL Client and Application Nodes
We need to have a reliable protocol between the client and application nodes given that a failover can occur at any time. The timeout and retry model of communications is not acceptable; it gets into all sorts of idempotency issues. If MySQL provides a solution to this we will use it but we will likely have to implement our own approach. We have the option of using our existing RMC library for reliable UDP communications but may instead choose to use a new library based on SCTP. See the relevant section in the networking document on reliable communications.
5 User Interface

We note attempt to preserve our existing CLI interface for cluster management but similar operations will take the same number of commands..
6 Project Dependencies

The management network needs to be in place in order to get clustering to work. See the reference document ‎9 for the details on how this happens.

Need to meet with MySQL, or a knowledgeable 3rd party (OriginateLabs), on the best way to configure things to meet the above requirements.
Need to verify that the memory and CPU footprint for our small DB will not be a problem in MySQL.
Need to verify that LRM will handle the same process management as our PM. Basically, it must rapidly ensure that every resource is up or do a restart if it were to crash.
7 Performance Criteria

The following times must be quantified for 2, 4, 8, and 16 nodes at a minimum:

1. Node down detection and cluster membership consensus.
2. The latency for DB changes to be replicated to all cluster nodes.
3. The latency to detect and restart a failed process in LRM.

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 5 of 12
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

[image: image3.jpg]Linux Cluster Resource Manager

Linux Local

MySQL Cluster sl

DRDB

HeartBeat EXT3

Mgmt Compact Flash/
 Network SAN

_1106667564.bin

