SystemX FileSystems MetaData
 725-xxxx-0001
Draft 1.0

	 document no.

725-xxxx-0001
	revision no.

1.0
	status
DRAFT

	department

Engineering
	Author/Contact

Jobi Ariyamannil
	Email

jobi.ariyamannil@onstor.com

Component Overview:

SystemX FileSystems Log

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes the requirements on the FileSystems Log for SystemX.

Contributors

	Name
	Email

	Jobi Ariyamannil
	jobi.ariyamannil@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jobi Ariyamannil
	All
	Draft
	11/21/07

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

41
Related Documents

52
Requirements

52.1
Must Have

52.2
Highly Desirable

52.3
Desirable

63
Relation to Roadmap

64
Proposal

65
User Interface

66
Project Dependencies

67
Performance Criteria

68
Implementation Plan

1 Related Documents

The goal of this document is to describe the requirements of the filesystem log implementation in terms of performance and scalability.
1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Filesystem metadata component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Metadata.doc
3. SystemX Filesystem policies document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Policies.doc
4. SystemX LVM component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_LVM.doc
5. SystemX storage pool document

2 Requirements

2.1 Must Have
Most filesystems use a database journaling technique to maintain a consistent file system structure. This involves duplicating transactions that are made to file system metadata to the circular file system intent log first before making the actual modifications to the metadata on disk. Once the changes to the metadata are logged on disk, filesystem requests can return success to the applications. The filesystem logs enable rapid and clean recovery of file systems if a system goes down. If an application is doing appending writes to files or is creating and removing many files in a short amount of time, there might be a lot of I/O going to the filesystem log due to the large number of filesystem metadata transactions. If both the blocks allocated to the filesystem log and the blocks for actual filesystem data are on the same physical disk, this could cause an I/O bottleneck. Also the I/O characteristics of the filesystem log (sequential small writes) differ from the rest of the filesystem usage. A popular solution for this problem would be to have a separate dedicated LUN for filesystem log. Also fast-write cached devices (NVRAM, SSD etc) can provide much better performance for filesystem logging.
In SystemW, the first 64MB in the volume was used for filesystem log and we did not have much flexibility configuring separate filesystem log device. In SystemX, we will make it a requirement to dedicate separately allocated chunk of storage for filesystem log to effectively optimize the I/O to the log and to the filesystem. If only one LUN is allocated to the filesystem, LVM2 can create sub-LUNs for log and filesystem. It is preferred to use contiguous blocks on disk for logging. If the overall filesystem performance is affected by the I/O bottleneck due to the shared use of the LUN for logging and rest of the filesystem data for a given workload, administrators may need to dedicate a LUN just for filesystem logging. This LUN (or sub-LUN) for filesystem logging must be specified while creating the filesystem.
There can be LUNs dedicated for filesystem logging purposes in the storage pool. The log LUN for a filesystem must be in the same storage pool as the rest of the LUNs of the filesystem. A single filesystem could use multiple LUNs for its log as concatenated LUNs.
The filesystem must support swapping the log device if needed. This must be done after flushing all the incore filesystem dirty data to disk and truncating the old log. This can be done at the LVM layer too (LUN migration), but swapping log does not need any data migration if that is triggered from the filesystem.
The minimum size for a filesystem log will be 64MB and the default log size will be 128MB. But administrators can configure a large log device of sizes up to 16GB if the workload performs better with the larger filesystem log. A lot of metadata intensive workloads have dependency on the size of the log. At the same time, it does not make sense to reserve large logs for all filesystems. If the filesystem is very big, it makes more sense to have larger logs. The log can become a performance bottleneck if user writes are also logged. The filesystem must support resizing the log (grow and shrink) online as long as the log device has free space available. If the filesystem log is large, it may increase the log replay time though.
Like in SystemW, all the filesystem metadata modifications must be logged (with a few exceptions like atime updates etc). In cases when a large piece of metadata is modified, only the deltas of changes are logged instead of logging the whole new metadata. There may be exceptions to this when the metadata itself is very small, for example, inodes. Some small sized user data writes also could be logged. The filesystem performance has a direct dependency on the logging subsystem and the logging implementation must be optimized to do I/O coalescing, I/Os in bigger sizes etc.
As in SystemW, the filesystem will not support any rollback using the logs. In order to maintain filesystem consistency after any failure event, the filesystem will record changes to various metadata which are modified as part of any transaction in the log and once the transaction is committed, a commit record for the transaction will be added to the log. If the filesystem could not write the commit record for a transaction because of any reason, all the changes recorded as part of that transaction will be discarded during log replay. After committing a transaction, its metadata changes can be applied to the filesystem and once all the metadata changes are applied to the filesystem successfully, the corresponding transaction log entries are no longer needed.
The blocks of the filesystem log will be check summed and if any corruption in the log is detected during log replay, a complete filesystem consistency check is enforced. The filesystem will not make any attempts to replicate the log device even if the replication feature is turned on for the filesystem. Considering any failure during log replay will cause a complete filesystem consistency check, administrators may consider replicating the log device at the array level.
The log replay after an abnormal shutdown must not require synchronous updates of the filesystem metadata on disk before restarting the filesystem services. Also the log must be intact even after multiple failures and must be able to bring the filesystem to the consistent state even if a previous log replay was not completed successfully (idempotent).
The filesystem must provide detailed statistics of the intent logging performance on demand. This can be used to detect logging-based performance bottlenecks that may be software-related or in the SAN/array layer.
2.2 Highly Desirable

If the log LUN is configured for RAID-5 (which triggers read-modify-write if the I/Os are small), it would be good to issue the I/Os to the log in sizes which avoids the reads while writing to disk. It is desirable to provide an option for the administrators to specify an I/O size to be used while logging and the filesystem must try to honor that. (TBD: Is it possible to determine this by ourselves?)
2.3 Desirable
For measuring performance impacts of intent logging, our filesystem could support operating without any journaling at all. This can be used for filesystems for which integrity is not a concern, but the performance is important. The filesystem will not make any attempts to keep the ordering of the I/Os in the absence of journaling and will continue to operate normal (do lazy metadata updates to storage etc). If intent log is turned off, a full filesystem consistency check and repair is expected, if the filesystem is abnormally shut down because of any reason (power failures, I/O failures etc). This is not a recommended mode of operation, but everything must work as supposed as long as there is no abnormal shutdown of the filesystem (mostly used for testing and/or temporary filesystems).
It is desirable to provide a utility to dump the contents of the filesystem log in a human readable format for debugging and tracing. Also it is desirable to provide an option to turn on logging of old values of metadata before applying the changes to it.
3 Relation to Roadmap

TBD
4 Proposal
Appropriate extensions will be made to SystemW implementation to meet the SystemX requirements.
5 User Interface

TBD
6 Project Dependencies

TBD
7 Performance Criteria

TBD

8 Implementation Plan

TBD[image: image2][image: image3][image: image4]

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 6 of 7
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

