SystemX FileSystems MetaData
 725-xxxx-0001
Draft 1.0

	 document no.

725-xxxx-0001
	revision no.

1.0
	status
DRAFT

	department

Engineering
	Author/Contact

Jobi Ariyamannil
	Email

jobi.ariyamannil@onstor.com

Component Overview:

SystemX FileSystems Metadata

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes the requirements on the FileSystems Metadata for SystemX.

Contributors

	Name
	Email

	Jobi Ariyamannil
	jobi.ariyamannil@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jobi Ariyamannil
	All
	Draft
	09/14/07

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

41
Related Documents

52
Requirements

52.1
Must Have

72.2
Highly Desirable

72.3
Desirable

73
Relation to Roadmap

74
Proposal

95
User Interface

96
Project Dependencies

97
Performance Criteria

98
Implementation Plan

1 Related Documents

Filesystem metadata is for managing filesystem resources like blocks and inodes. Additional metadata needed for accounting (example, quotas), auditing, snapshots and data replication.

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Filesystem snapshots component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS_Snapshots.doc
3. SystemX Filesystem log document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS_Log.doc
4. SystemX Eventing Filesystem Directories document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS_Directories.doc
5. SystemX Filesystem policies document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS_Policies.doc
6. SystemX Filesystem Allocator document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS_Allocator.doc
7. SystemX LVM component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_LVM.doc
8. wiki page comparing various filesystems http://en.wikipedia.org/wiki/Comparison_of_file_systems
2 Requirements

2.1 Must Have
Industry leadership in the NAS gateway space is going to require file systems that scale arbitrarily large, in both performance and in size. The amount of storage and the number of objects in a typical single file system increase by an order of magnitude roughly every 5 years. When NetApp was designing WAFL, a 10 GB file system was considered quite large; today a 10TB file system is not uncommon. Fundamentally, NAS management will not scale if architectural, performance, or practical limitations in file systems require administrators to increase the number of file systems by an order of magnitude every 5 years. To achieve and maintain industry leadership for the next ten years ONStor needs to remove all limitations that force the creation of additional file systems.

With the above in mind, ONStor must architect its file system to support multi-billion object single file systems with petabytes of back end storage. All data management operations must be altered to scale to a file system of this size. Overall, the filesystem design must be simple, elegant, performing and scalable.
The filesystem is responsible for managing the on-disk file layout and responds to requests for all basic file/directory operations from clients including CIFS, NFS, NDMP, MXA etc. The filesystem will issue block I/O requests to LVM2 to finish the requests. There may be multiple filesystem processors processing the filesystem requests in parallel, so the filesystem must be SMP safe and efficient. Cache coherent shared memory is available between all the filesystem processors. At any point in time, the filesystem is owned by a single virtual server in the cluster for modify operations. We are not going to support a cluster filesystem in systemX. We must be able to allow limited read access to the filesystem from other virtual servers in the cluster. While the clustering component of the product will make sure there is no split brain situation in the cluster, under no circumstances there should be more than one node making modifications to the same filesystem at any given point in time. If the node which owns the filesystem dies, the filesystem will be failed over to another node if the virtual server is configured to do so.

All the basic filesystem functionality supported in SystemW must be supported in SystemX as well. We need to support additional protocols like iSCSI, NFSV4 etc.
As in SystemW, a single filesystem could be hosted on multiple LUNs. As the need for storage increases, additional LUNs could be added to the filesystem. In order to provide different quality of storage services and better I/O performance, a single filesystem may span multiple LUNs with different characteristics (speed/reliability etc). Some LUNs could be dedicated for filesystem log, some for metadata, some for user data and some for mixed use. As sizes of the LUNs are becoming larger and larger, we have to support multiple filesystems on a single LUN. Note that LVM2 supports sub lun allocations. When a filesystem is hosted on multiple LUNs, missing some of the LUNs where non-critical data is stored (for example, user data), should not be a cause for complete denial of filesystem services; however this is limited by what LVM2 will support. See reference document 7.
The filesystem must support storage devices with sector sizes between 512 bytes to 64KB. The device sector size is the maximum I/O size for which atomicity s guaranteed by the device after any kind of failure event. By default, the filesystem can assume the sector size to be 512 bytes, but the administrators must be able to configure a larger sector size of the underlying devices support that to obtain better performance.
The time taken to write new data to a file in a filesystem of 1GB and 1PB must be same. Also it should not be dependent on how occupied the filesystem is. There must not be any limit on the size of a single file other than the maximum available space in the filesystem. Sparse files must be supported and space should not be reserved for unallocated portions of the sparse files. Thus files larger than the filesystem could be supported. (Can this be possible with CIFS?)
The filesystem must support and optimize for small directories and very large ones, although we will be putting enforced limits on the number of sub-directories. See the reference document 4 for detailed directory requirements and limits.
Inodes must be allocated on demand. There should not be any upper limit on the number of used inodes (files/directories) in a filesystem other than those limited by practical limits like space availability.

While allocating space to files, the filesystem must not waste space for small files. At the same time, large file performance must not be compromised neither by the amount of metadata nor by the small I/O transfer size. In order to achieve this, unlike traditional filesystems, our filesystem must not use fixed size filesystem block size (the unit of space allocation) for all the files. Instead, we must allocate blocks in sizes proportional to the size of the file. Small files will use smaller block sizes, while large files will use bigger block sizes. A file’s block size may be changed when its size changes significantly. Variable block sizes can be used for metadata files as well. The filesystem must support variable block sizes of 1k, 2k, 4k, 8k, 16k, 32k, 64k and 128k. The larger block sizes are not useful for current protocols we support, but could be used for large metadata files and/or internally created big files (iSSCI, preallocation etc). Also large block sizes are useful to reduce the amount metadata needed for large files.

The filesystem must allocate blocks to files so that there is a balance between the metadata needed to describe the blocks (contiguous is best, which also avoids disk head movements during single threaded sequential read/write operations) and performance (LUN striping is best on a multi disk volume to increase the I/O transfer rate). The file metadata and the filesystem free space fragmentation must be avoided even if multiple files are written in parallel and/or regions of the same file are written out of order. Refer allocator requirements document 6.
In today’s world, every filesystem has to deal with unreliable storage and/or networks underneath. It has been always a challenge to build a highly reliable filesystem using highly unreliable components. The disk capacity is doubling every 12 to 18 months; one thing that’s remaining relatively constant is the bit-error rate on the disk drives, which is about one uncorrectable error every 10 to 20 terabytes. The SATA advertised bit error rate of one error in 10 terabytes is frightening. With the 10GigE networks, that much data can be transferred in around 17 minutes. The other interesting thing to note is that at least in a server environment, the number of disk drives per deployment is increasing, so the amount of data people have is actually growing at a super-exponential rate. That means with the bit-error rate being relatively constant, you have essentially an ever-decreasing amount of time until you notice some form of uncorrectable data error. The filesystem can be exposed to a silent or a noisy data error while transferring 10TB of data. This is not even considering the cases drives are performing out of spec or that people have got a bad batch of hardware. All these mean filesystem can never trust the underlying hardware.
RAID also may not address this problem completely since RAID can recover from maximum of one or two disk errors. RAID 5 & 6 don’t scale well into petabyte systems – one reason for that is the rebuild typically cuts the I/O performance by almost half for the affected RAID.
Traditionally, filesystems do not bother about corruptions to user data. As long as the filesystem metadata is consistent, they seem to function without any issues. Typically, the amount of filesystem metadata transferred is not significant compared to the user data transferred. Also if metadata is corrupted, most likely the filesystem will start to malfunction and the problem is noticed much quicker. If the user data is corrupted, most often that will go unnoticed. In order to detect these kinds of corruptions, we must maintain checksums. Many storage arrays support checksums, but that is not sufficient for finding errors induced in transit. So we need to implement end-to-end checksums.

These checksums are known to cause a huge performance impact and some disk wastage. WAFL keeps the checksum in every sector of the data after reformatting the disks to have sector size equal to 520 bytes instead of the normal 512 bytes. That model takes care of the atomicity of writing the data and checksum together. The checkum embedded in the block may not catch problems if the system reads/sends the whole block of data from/to a different location than where it is intended to be (misdirected reads/writes) or if the write never reached disk (phantom writes) etc. ZFS solved this problem by keeping the checksum of the block in the parent block. The checksum stored in the parent block can be trusted since the parent block had gone through similar validation before reading the child blocks. By having the checksum in a different location, the filesystem needs to take care of transactional issues as well as additional I/O overhead. If a filesystem never overwrites any blocks, this approach may not cause additional I/Os. Also if the filesystem supports data de-duplication using checksums, the filesystem needs to make sure checksums and actual data are written to disk atomically or transactional. This may not be an issue for metadata writes which are usually updated transactional. The design needs to address issues due to non-atomic writes of blocks larger than disk sector size.
The filesystem must return error while reading user data which fails the checksum validation. If the metadata is corrupt, the filesystem may refuse certain filesystem services until the problem is fixed in the underlying layers and filesystem is repaired. This may include denying access to certain corrupted directories and files, denying write access to the filesystem if the free block bitmap is corrupt etc.There should not be any single point of failure in the sense loss of any one piece of metadata must not cause complete loss of data. All the metadata must be reproducible in case they get corrupted (which may cause some data loss though). If some piece of metadata cannot be recovered if corrupted/lost, they should be replicated in the filesystem so that even if one copy is not useful, we could recover the filesystem from replicas.
The filesystem must support different schemes of checksums, say simple-and-fast and slow-and-secure versions (cryptographic hash functions) which can be configured per filesystem. Also the filesystem must support operating without any checksum generation and validation which can be used during performance benchmarks etc
Our filesystem metadata must be organized in such a way that logically separate metadata must be in separate files which can be independently read and modified in parallel. Also filesystem metadata must be flexible in the sense there should not be any reserved inode numbers or block numbers for specific uses. In SystemW, the first 1088 inode numbers and first 128MB+1026blocks are reserved, which put a lot of limitations on the number of snapshots, number of metainodes etc the filesystem could support. Limited exceptions of this requirement may be possible, for example inode number 2 for root inode and superblocks.
The filesystem must remain metadata consistent at all the time unless the underlying storage is unreliable and adhere to ACID (Atomicity, Consistency, Isolation, Durability) properties. The metadata must remain consistent across any catastrophic failures like crashes, power outages, transient I/O failures etc. The filesystem services must be restored immediately after the catastrophic event without any additional time taken for validating/fixing the integrity of the filesystem. The filesystem must use transactional journaling for the metadata modifications for performance as well as faster recovery after an abnormal shutdown. The filesystem must be able to do the log replay very quickly so that client applications do not timeout after a failover (2 seconds for all filesystems).
There is no requirement of having user data written transactional to disk (the filesystem may optionally do so if that improves write performance). But after a crash, an application should never read uninitialized data from disk if the cached dirty data did not reach disk before the crash. The reads should always return the last data written to the region of the file or zeros if region was never successfully written before.
The filesystems metadata must be designed in such a way that the memory footprint should not grow out of order when the filesystem size grows and/or a large number of filesystems (around 1000) mounted on one filer. We should be able to support a few petabyte of storage behind a filer irrespective of the number of filesystems they map to. The system performance and memory footprint on a filer should not change based on the amount of storage nor the number of filesystems into which that storage is carved. All algorithms should be based on instantaneous CIFS/NFS/iSCSI load that we will be able to serve, not the amount of backing storage or file systems.
Ideally, our filesystem must perform optimally for all types of workflows, but that may not be an achievable requirement. The filesystem must be architected considering performance benchmarks like IOMeter, specSFS, postmark and iozone. TPC-C may not be a good benchmark for us since we are not planning to enter the database markets. IOMeter issues asynchronous I/Os with many different characteristics (different I/O sizes, random/sequential, reads/writes, aligned/non-aligned etc), most of which are configurable. The spec workload involves mostly random NFS I/O, but still it is important that recently retrieved pages are kept in core for when the client need them again. The filesystem will need a large buffer and inode caches. It is very important that a good percentage of the key working set is maintained in core all the time. Furthermore, SPECsfs is sensitive to the efficiency in the filesystems; unnecessary operations and/or inefficient algorithms will result in the server saturation happening earlier and at lower performance. Our filesystem must be optimized for workflows involving large number of small files, large number of big files, lots of small sized files, lots of big files, a lots of temporary files and some mixture of all these . Our filesystem must perform well for streaming workloads involving small, medium and large files separately and in mixed combination. It should perform well for workloads involving different mixture of read/write workloads as well. In ideal conditions, a single filesystem must be able to demonstrate throughput in excess of 10Gbits per second.
We must provide some configurable options to compromise certain strict compliance of filesystem standards for performance gains. There must be options to turn off updates to access time and data modify time for all inodes in the filesystem if the user decides to do so for performance reasons. Even if access time updates are enabled, our filesystem must not trigger a lot of inode updates if a file is read many times in a short period of time (for example, update inode access time on disk only once for all the reads on the same file within a fifteen minute period).
There should be enough provisions in the metadata to extend it for adding new features later. Metadata layout versioning must be supported. Individual metadata may have its own versioning (for example, filesystem log may have different versioning than the filesystem layout version). While reviving the versions of the filesystem metdata, the conversion must not cause a downtime for filesystem services. When filesystem metadata is revived, existing mirrors of the volume also must be revived without any downtime.
Heavy weight filesystem operations like large file removals and truncations must not cause client application time outs. Typically, filesystems do those kinds of operations in the background after returning success to the applications. The filesystem should have some metadata to persistently track and process these delayed operations, even if the system crashes.

There should be an efficient way to find all the paths to a file (not trivial if the file has hardlinks). This may be useful for cases like when dump is trying to find out whether a given inode is part of the directory being dumped. Also virus scanners may need to know all the paths to a file if some files are infected and needs to be removed. Some auditing applications may need to know this as well.

The filesystem must support online resize (grow/shrink) operations. We must be able to grow a filesystem which is completely full. Also we should be able to shrink a filesystem even if the region of the filesystem being shrinking is occupied. We should be able to create a filesystem of size in petabytes in a few seconds. Also a filesystem must be able to grow in large chunks (a few terabytes at a time) in a few seconds. Both automatic grow and manual grow must be supported.
Snapshots of the filesystem (a point in time consistent image) must be supported. These snapshots must be fast to create and delete, independent of the file system size or usage. Additionally, there should be no limits on the number of snapshots a file system can have. Snapshots must be writable, but only by the same virtual server as the primary read/write copy of the file system. A read only snapshot must be mountable by any virtual server in the cluster. See reference document 2 for more details. Note that our asynchronous replication and NDMP products rely upon read-only snapshots.
Unlike SystemW, the filesystem must export well defined APIs to read/modify internal filesystem metadata for the use of NDMP, data replication and MXA instead of letting them directly operating on filesystem metadata.

The filesystem must support various administrator configurable policies and some examples of those are maximum space a user/group can consume in a filesystem, maximum space a directory could occupy in a filesystem, quality of services, information lifecycle management etc. Detailed requirements for those are covered in 5.
The filesystem performance must not be affected while operating in nearly fully conditions and/or on heavily fragmented filesystems. Also filesystem functionality must be as expected while operating on a nearly full filesystem.

We should be able to perform complete filesystem consistency checks and any repair needed (fsck) in predictable time based on the filesystem size, usage, number of objects, number of snapshots etc. Some of these consistency checks and repair must be possible without causing downtime for filesystem services. We should be able to run filesystem consistency checks on multiple filesystems in parallel. If the node has other filesystems serving data, those services should not be affected by the filesystem consistency checks happening on some other filesystems. Also the fsck must be able to repair a filesystem which is 100% or nearly full.
2.2 Highly Desirable

It is highly desirable to have a history log of timelines and versions of the software which carried out major operations (mkfs/mount/unmount/grow etc) on the filesystem for debugging/tracing purposes.
2.3 Desirable
It is desirable to detect inconsistencies in the filesystem in the background without blocking access to the filesystem. This is easy since if checksum is maintained for every filesystem block.
3 Relation to Roadmap

TBD
4 Proposal
Some of these requirements can be satisfied with the SystemW filesystem. The component block diagram of the filesystem is shown below.

[image: image2]
The filesystem will be implemented as linux device driver running in threads. These threads will be bound to specific cores for performance, but could run co-located with other applications like NFS/CIFS/LVM for lower end models. The filesystem from SystemW will be ported to linux and appropriate extensions will be made to support the requirements of SystemX.
Filesystem metadata layout

The layout of the filesystem in SystemW will be redefined to obtain the flexibility and scalability we needed with metadata inodes and blocks in SystemX. From the filesystem superblock, all the metadata can be reached.
Filesystem consistency

All the filesystem metadata changes will be logged, thus the filesystem will be metadata consistent all the time. The SystemW log management code satisfies SystemX requirements.
iSCSI target device

A filesystem can be used as iSCSI target device. In order to support features like snapshots, replication etc, a large file with a special new type will be created in the filesystem and used for block I/O. This file will be a real sparse file. One dedicated filesystem will be used for every iSCSI target.
LVM2 interfacing

The SystemW filesystem needs to be modified to work with LVM2 on linux. We may modify LVM2 interfaces for optimal performance with our filesystem.
Snapshots/COW
As in SystemW, the filesystem will overwrite data in place if the block is not shared between snapshots. If the block is shared, COW procedure will be triggered.
Data error detection
We can use a separate metadata file to save checksums persistently on disk. All the modifications to this file will be transactional. Since user data may be modified without logging the changes, we will use a separate log for logging changes to checksums. When we dirty a buffer incore, the new checksum is calculated for the buffer and logged. After successfully writing the dirty buffer to disk, the checksum also will be written to the checksum file. If the system crashes in between, we need to find checksum for the buffer based on what reached on disk. This can be the old checksum, if none of the data reached disk, the new checksum if all of the data reached disk or a totally new checksum if the data reached partially on disk (if the size of the buffer is greater than the atomic I/O size guaranteed by stable storage).

The size of the buffer for which checksums are calculated independently could be same as the filesystem block size. This means for every filesystem block read from disk, we need to read additional data from the checksum file to validate the data with its checksum. If the checksum validation fails, the filesystem will retry the read one more time just to rule out errors incurred in transit. If the validation fails second time, we need to take action based on the type of data. If this happened while reading user data, the applications will receive a read failure. If the metadata is found corrupt, we may need to repair/rebuild the metadata to continue the operation, we can continue the operation by ignoring the error or picking some other region of metadata which is good. ZFS in similar situation claims to recover the data from the replicated volumes or ditto blocks.
Currently, the filesystem cannot trigger RAID rebuild when corruption is detected while reading the data. ZFS is in a better position to handle this since they integrated RAID and the filesystem into one.
5 User Interface

TBD
6 Project Dependencies

TBD
7 Performance Criteria

TBD

8 Implementation Plan

TBD
Interface to Application Core(s)

File Access API

Dump

Mirroring

Mount

Index

API

Meta Data

Cache Mgmt

Snapshots

Interface to SSC

Inode Quota

PolicyDirectories

Inode ADM

Policy

Disk

Quotas

WORM

De-Dup

Content

Indexer

Write Behind

Log Management

Inode Allocator

Block Allocator

Interface to LVM

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 10 of 10
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

