SystemX FileSystems MetaData
 725-xxxx-0001
Draft 1.0

	 document no.

725-xxxx-0001
	revision no.

1.0
	status
DRAFT

	department

Engineering
	Author/Contact

Jobi Ariyamannil
	Email

jobi.ariyamannil@onstor.com

Component Overview:

SystemX FileSystems Policies

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes various policies to be supported by the filesystem in SystemX.

Contributors

	Name
	Email

	Jobi Ariyamannil
	jobi.ariyamannil@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jobi Ariyamannil
	All
	Draft
	12/17/07

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

41
Related Documents

52
Requirements

52.1
Must Have

62.2
Highly Desirable

62.3
Desirable

63
Relation to Roadmap

74
Options

75
User Interface

86
Project Dependencies

87
Performance Criteria

88
Implementation Plan

1 Related Documents

The goal of this document is to describe the various user configurable policies the filesystem must support in SystemX.

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Filesystem metadata component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Metadata.doc
2 Requirements

2.1 Must Have
Every filesystem needs to support various user configurable policies. Some of these policies are systemwide, some of them per filesystem and some others are per object (file, directories etc) or a set of objects. The filesystem must be efficient and scalable while storing, tracking and retrieving various policies. The filesystem must support all the policies supported by SystemW and some additional ones which we lack today. Also it must be relatively easy to add new types of policies, removing the support of unwanted policies or modifying the semantics of existing policies to the filesystem.
2.1.1 (Mention current SystemW policies)

2.1.2 Space Management Policies

Once file systems have the capability to span hundreds of terabytes and billions of objects, the task of provisioning and controlling space becomes more one of quota management. While ONStor, and its competitors, provide user, group, and limited directory tree quotas, there is a large market for tools that take this management to the next level. Today ONStor has some differentiation with the nested quota tree feature relative to NetApp and EMC but little to compare with the leading products in this space, StorageCentral from Veritas (originally W.Quinn and Associates) and QFS from NTP Software.

The market for advanced space management tools is roughly a $50M market, with much of that targeting the Windows customers. If we are to be successful in enabling widespread consolidation of Windows file servers we will need to provide comparable space management tools.

A primary advantage ONStor has over the tool vendors is that it can create an integrated solution that scales. Tools from vendors like Veritas and NTP Software depend on maintaining external databases that duplicate the namespace of the file systems that they are managing, with some limited file system integration for notifications of changes; NetApp and Windows provide mechanisms for intercepting file operations to enable these 3rd-party tools. When a file system grows to millions or billions of objects this external database model will never scale, in fact tools like Arkivio don’t work past a couple of million files. ONStor can capitalize of the inherent scalability advantage of an integrated solution and provide a competitive feature set.

The following are the features that will provide a best of breed NAS space management product:

· Allow tracking and quotas based on file extension. The typical example is to set a quota on .MP3 files.

· Allow quotas to be set in terms of % of the file system size. This makes much more sense in an AutoGrow world. Instead of setting a quota of 1GB you would set a quota of 5% of the file system size, whatever that currently is.

· Allow quotas to be set in terms of % of a parent policy limit. For example, quota trees having a limit of 25% of the parent quota tree limit.

· Allow file extension to be combined with user or group or tree to create rules like disallowing the creation of certain file types in certain directory trees, or by specific users, see the FileScreen product. A further extension is support of policies that limit the operations that can be performed on various file types. For example, setting deny-read, deny-write, deny-rename, deny-link, allow-read, allow-write, allow-rename, allow-rename, and allow-link policies by file extension, quota tree, user, group, etc. File extensions should be specified using the same rules as for virus scanning, like .mp3, .mp?, etc.

· Record history on each quota policy object for trend analysis. This doesn’t have to be a very long history or very granular, but without this information it is not practical to generate usage trends without an external database. Trending is perhaps the most valuable feature we can provide.

· Have counters and history of at least allocations, deallocations, block modifies, and copy on writes for objects covered by each quota policy. We should consider measuring all FS activity as part of enabling a complete load analysis infrastructure. This component would yield a measure of FP load, but TXRX load will also have to be measured.

· Have an email and/or popup box when a policy limit is triggered. These can go to the user doing the write, to the owner of the file, and/or to the administrator. Today the user only gets an application failure when they run out of disk space, with no warnings of any kind beyond the administrative quota log.

· Support an overdraft quota with a time limit. You can go over your quota by a certain amount/% for say 1 hour so you can save data and then delete unneeded files. Writes are not blocked for that period of time.

· Support multiple remedial actions at different usage levels. Instead of warning only, we support N thresholds with associated actions, popups to user doing write and/or owner and/or admin, emails at another level, bumping quota at another.

· Add the ability to have different policies for different times of the day. For example, automatically bumping quota limits only during off hours would be something very new and powerful. This eliminates application failures when there is likely no user or administrator available to respond to a warning message. We could also just temporarily not enforce a policy during off-hours.

· For UNIX users we should support an optional RPC applet to provide the popup support.

· Add exemption lists, at least for users. It is likely that root and other administrative accounts will need to be able to bypass all quota restrictions in some environments.

· Policies state can be either active or inactive.

· Support linking a deletion policy to a quota policy. For example, if over quota then delete *.TMP.

· Typical reports that should be supported include:

· All Quota Policies with Status Information - This report shows all disk quota policies sorted by percent full.

· All Active Quota Policies - This report shows all disk quota policies with a status of active and sorted by name.

· All Non-Active Quota Policies - This report shows all disk quota policies whose status is not active (i.e. Suspended or Timed Suspended).

· Quota Policies Over 75% Threshold - This report shows all disk quota policies whose percent full is 75% or greater of the limit, sorted by percent full.

· Quota Policies over Quota - This report shows all disk quota policies that have exceeded their limit.

· Usage by User - This report shows how much disk space users are currently consuming. This report shows the areas (directories and shares) and users controlled by quota policies.

· Policy Status with User Scope - This report shows the status of each policy in effect, including which types of users/groups are affected by the policy and which are exempt from the policy.

· Space Consumption by User by Directory -This report shows how much disk space each user is currently consuming in each directory on which you've placed a quota policy.

· Statistical Report - This report shows detail and summary information about policies and disk space usage for each user currently under quota management.

· Threshold Report - This report shows threshold details broken down by users currently under quota management.

· Policy Details - This report shows the details of each quota policy. Details include: policy name, policy type, policy quota, and the directory or file(s) controlled by the policy.
2.1.3 Performance Management
A key value proposition for ONStor is server consolidation through the use of virtual servers. While we will work to provide filers with industry leading price/performance ratios and a global file system to scale up the single volume performance, we must also address carving up the performance of a single filer across multiple virtual servers. If one virtual server can monopolize the performance capabilities then our consolidation story is substantially weakened. We will need to support performance-related quotas that encompass both operations per second and throughput.

There is an additional class of tool which Enterprise-class customers spend a great deal of money on. These tools generate a report on which files are changing the most at given intervals, such as snapshot intervals. The intent is to capture where resources are going, down to the file level, and which clients are doing it. A non-integrated tool will never scale for the same reasons describe in the Space Management section.

A primary advantage ONStor has over the tool vendors is that it can create an integrated solution that scales. 3rd-party tools that depend on NetApp or Windows change notifications will not scale, and they will have limited ability to track resource usage down to the file and client levels.

The following are the features that will provide a best of breed NAS performance management product:

· Allow performance quotas for both operations/sec and throughput. These quotas can be in either absolute terms, like 10Mbytes/sec, or relative terms, like 30% of the total filer operations/sec. The quota should include a minimum guaranteed level of performance and an optional maximum.

· If possible we should attempt to model the available back-end performance and assign at least a tracking quota policy object with it. Even if our filer could handle 37K operations/sec it doesn’t mean that the back end storage has enough spindles and memory to achieve that rate. Quantifying back end performance in a cluster would be an enormous value add feature. This would enable tools that determine when the shared storage backplane that is the SAN has insufficient performance to meet the client load. In a simpler incarnation we would just keep track of how often the filer was unable to meet the configured minimum guaranteed performance quotas due to back end performance.

· Allow quotas at cluster, filer group, virtual server, volume and client granularities.

· Quotas must support a GFS model wherein the available resources might be the entire filer group.

· Allow quotas to be set in terms of % of a parent policy limit. For example, volumes having a limit of 25% of the parent virtual server limit.

· Record history on each quota policy object for trend analysis. This doesn’t have to be a very long history or very granular, but without this information it is not practical to generate usage trends without an external database.

· Keep track of top N load generating clients and files in the history.

· Have an email send, log message written, and/or popup box when a policy limit is triggered. These can go to the user doing the operation and/or to the administrator.

· Allow limits to be exceeded if there is spare capacity, but keep track of how often that is happening so proper trend analysis can be performed.
· Support multiple remedial actions at different usage levels. Instead of warning only, we support N thresholds with associated actions, popups to user doing operations and/or admin, emails at another level, bumping quota at another.

· Add the ability to have different policies for different times of the day. For example, automatically bumping quota limits only during off hours would be something very new and powerful. This eliminates application failures when there is likely no user or administrator available to respond to a warning message. We could also just temporarily not enforce a policy during off-hours.

· For UNIX users we should support an optional RPC applet to provide the popup support.

· Add exemption lists, at least for users. It is likely that root and other administrative accounts will need to be able to bypass all performance restrictions in some environments.

· Policies state can be either active or inactive.

· Allow clients quotas to be specified by similar rules to those of NFS exports, like IP address group, DNS specifications, NIS Netgroups, etc.

· Use of automatic load balancing to bring a filer below threshold. A GFS may make this unnecessary but that’s unclear at this time.

2.1.4 Security

2.1.5 QoSS
2.1.6 WORM/Permanence

2.1.7 Auditing

2.1.8 Encryption
2.1.9 Retention policy

2.1.10 NetApp Fpolicies

TBD. This is nothing but generating events for applications registered to be notified during certain operations.
2.2 Highly Desirable

TBD
2.3 Desirable
TBD
3 Relation to Roadmap

TBD
4 Proposal
When we add support for quotas/policies based on file names we have the option of storing the related policies id(s) in either the directory entry or in the inode. Either one will work, but we will keep the quota ids in the inode for maximum code reuse and ease of logic.

Today, we support efficient lookups of relevant quota policies by storing the tree quota id in the inode, and the user/group quota id in the security blob associated with the file. This will not be sufficient to scale to many policies because the inode will not have room to store ids that point to the relevant policy information. Typical ways to add extendable metadata include:

· Increasing the inode size. This has the downside that memory and disk footprints go up substantially, and caching efficiency goes down. Our current inode size of 128 bytes is highly competitive, 256 bytes would not be.

· Adding resource forks as in Apple’s original file system model or the Windows NFTS extended attributes logic. This has the downside that the extra metadata is generally in a different place in the file system than the original inode and this reduces locality of access and increases latency.

· Adding a parallel metadata file that is similar to the file of inodes. In this case the new metadata file contains the extra attributes and the original inode number is used as a lookup key. This is has the same locality and latency problems mentioned above.

The way this will be handled is to take advantage of the fact that policy ids are going to be small, at most 32 bits in length. This small size allows us to leverage the b+ tree already present in our inodes for use in locating where a file’s data might be found. This b+ tree is compact, extensible, fast lookup, and is generally contiguous with the inode itself. At present the records in the b+ tree are 64-bit fs_Extent and 64-bit offset records that all us to rapidly find the location within a file system at which a particular file data offset is located. By using a few spare bits in offset, we can use the identical b+ tree to also store a policy id(s). In this use case, the offsets will be chosen to not collide with any legal value for file data, and the fs_Extent field will be used to store the policy id.

It is highly desirable to know the attributes of a policy given only the information in the inode. For example, if a policy were NOT related to the amount of disk space consumed, we would want to know that as cheaply as possible so that space-changing operations could skip the policy lookup by id. If a policy were independent of the file’s name we would not want to lookup it up when doing a rename. This optimization becomes possible by adding a mask of relevant policy attributes to the b+ entry described above. Given that a policy id uses only 32 bits of the 64 available, we have plenty for use in flags.

5 User Interface

TBD
6 Project Dependencies

TBD
7 Performance Criteria

TBD

8 Implementation Plan

TBD

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 4 of 9
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

