SystemX FileSystems MetaData
 725-xxxx-0001
Draft 1.0

	 document no.

725-xxxx-0001
	revision no.

1.0
	status
DRAFT

	department

Engineering
	Author/Contact

Jobi Ariyamannil
	Email

jobi.ariyamannil@onstor.com

Component Overview:

SystemX FileSystems Snapshots

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes the requirements for filesystem snapshots with systemX.

Contributors

	Name
	Email

	Jobi Ariyamannil
	jobi.ariyamannil@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jobi Ariyamannil
	All
	Draft
	11/08/07

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

41
Related Documents

52
Requirements

52.1
Must Have

62.2
Highly Desirable

62.3
Desirable

63
Relation to Roadmap

74
Options

75
User Interface

86
Project Dependencies

87
Performance Criteria

88
Implementation Plan

1 Related Documents

The goal of this document is to describe the requirements in our file system to have an industry leading snapshot implementation in terms of performance and scalability. Today ONStor has no differentiation in the areas of snapshots; we have a subset of NetApp features.

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Filesystem metadata component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Metadata.doc
3. SystemX Filesystem log document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Log.doc
4. SystemX Eventing Filesystem Directories document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Directories.doc
5. SystemX Filesystem policies document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Policies.doc
6. SystemX Filesystem Allocator document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_FS-Allocator.doc
2 Requirements

2.1 Must Have
To have a leadership role in filesystem snapshot technology (a point-in-time image of the filesystem), we must at a minimum support larger numbers of snapshots than anyone else, support snapshots at very rapid intervals (think seconds), and to do so on larger amounts of storage than anyone else.

NetApp will be hard-pressed to support say 1024 snapshots, taking on a few second interval, on 25 TB of storage. While the technical details are included below a quick fact is that on 25 TB of storage and taking snapshots every 15 minutes there is a ~10 Mbytes/sec continuous load for snapshot deletion that never ends. A one minute intervals this load goes up to ~150 Mbytes/sec. Global file systems do not make this load decrease, neither does splitting up the data into one or more file systems.

All the basic snapshot operations supported (create/remove/revert/rename/pin/unpin etc) in SystemW must be supported in SystemX as well. There will be a directory called .snapshot at all directory levels from where every snapshots of the filesystem can be accessed. Note that our asynchronous replication and NDMP products rely upon read-only snapshots.
These snapshots must be fast to create and delete, independent of the file system size or usage. Additionally, there should be no limits on the number of snapshots a file system can have other than those limited by practical limitations like space availability. Individual snapshots should not consume a lot disk space for its own metadata (1 bit per filesystem block is acceptable).
Snapshots must be writable, but only by the same virtual server as the primary read/write copy of the file system. A read only snapshot must be mountable by any virtual server in the cluster. If the filesystem is mounted in read only mode, modifying snapshots also not allowed. A snapshot can not be mounted if the primary filesystem is not online. Modifications to snapshots must follow the same privilege rules, policies and transactional guarantees as the primary filesystem.
When a snapshot is taken, all the blocks in use in the primary filesystem will be shared between the new snapshot and the primary filesystem. These shared blocks are never modified and copy-on-write (COW) procedure is triggered if an attempt is made to modify their data. This minimizes the storage requirements when a lot of data is not modified. If applications are reading the shared blocks from different snapshots around the same time, the filesystem must not overload the caches by loading multiple copies of the same data.
Snapshot operations like creations/removals must be instant from the user’s point view. Other filesystem services should not see any noticeable latency due to the snapshot operations in progress, with the exception of revert the filesystem to a snapshot. The design must allow snapshot operations in parallel, meaning a snapshot creation and many snapshot removals can happen in parallel. SystemW allowed only one snapshot operation at a time.

The filesystem must track space consumed by primary filesystem and all the snapshots individually. We must be able to report this information instantly. This should include the amount of space that will be freed for each of the snapshots if they are individually removed.
Both administrators and fsck must be able to revert a filesystem to a snapshot if necessary. All the changes in the filesystem after the snapshot is taken must be undone while doing so. This includes any new snapshots, any filesystem resize, filesystem version changes etc. As in SystemW, all clients will need to remount the filesystem after this operation.

The filesystem must support both scheduled and on-demand snapshots. The scheduled snapshots can be configured to be taken monthly, weekly, daily, hourly, minutes and seconds intervals. It must be also possible to configure how many of those are retained and how often those are recycled. The filesystem data replication and backup can be scheduled as well, which also use filesystem snapshots. If any of the scheduled snapshots overlap, instead of taking multiple snapshots around the same time, the filesystem must be smart to take a single snapshot and link all the snapshot names to that snapshot. This will save a lot of computation time, I/Os and disk space. Unlike SystemW, we don’t plan to use cron jobs for taking scheduled snapshots, the filesystem itself can decide when the snapshots are needed.
It must be possible to take snapshots of writable snapshots. Also it must be possible to separate a writable snapshot from the filesystem and copy the data to a new filesystem. This must be similar to the clones in WAFL and ZFS.
The administrators must be able to specify a high water mark of block usage by all the snapshots in the filesystem. Once usage reaches that threshold, no new snapshots must be allowed in the filesystem except those created internally for replication and backup purposes. If this high water mark is not configured, new snapshots are not allowed once the filesystem becomes nearly full. Optionally, the administrators could configure a low water mark for the space usage of all the snapshots and if that threshold is reached, an email notification will be sent out about the same.
The administrators must be able to optionally choose the filesystem to remove externally created unpinned snapshots automatically before filesystem becomes full in order to prevent application write failures due to space pinned by those snapshots. There should be ways to specify policies for picking snapshots for automatic removal (for example – pick oldest snapshots first, pick snapshots which consume largest amount of space first etc).
If the filesystem is taken offline (planned or not) while some snapshot operations are in progress, the snapshot operations must be completed or undone when the filesystem is brought online next time.

The fsck must be able to validate any snapshot individually [2]. Verification of the snapshots can be done without stopping filesystem services as long as the snapshot is not mounted for write operations. The fsck in SystemW used to remove snapshots even for minor errors since the snapshots were read only, but SystemX must be able to repair most of the inconsistencies in snapshots without removing the snapshots.

2.2 Highly Desirable
It is highly desirable to be able to specify some policies to exclude temporary files from the snapshots. For example, most of the temporary obj files do not have to be preserved in the snapshots. Also we should be able to exclude some directories from the snapshots.
It is highly desirable to provide a CLI to recover files and policies from snapshots to the primary filesystem.
2.3 Desirable
It is desirable to support snapshots of directories and files. This is useful when somebody wants snapshots for portions of a large filesystem. This can be further enhanced to replicate changed blocks from those snapshots. For example, a customer may want to take a snapshot of a tree quota. Also somebody may want to take a snapshot of single file to track changes to it (multiple versions), and ignore rest of the changes in the filesystem.
3 Relation to Roadmap

TBD
4 Proposal
We need to replace the snapshots design and implementation in SystemW with a totally new scalable one to meet the requirements of SystemX. The filesystem snapshots will still be block based. Various snapshots share blocks which are not changed after their creation and they will have separate blocks for data which is different between snapshots.
5 User Interface

TBD
6 Project Dependencies

TBD
7 Performance Criteria

TBD

8 Implementation Plan

TBD

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 6 of 7
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

