SystemX Logical Volume Management
 725-xxxx-0001
Draft 1.2

	 document no.

725-xxxx-0001
	revision no.

1.2
	status
DRAFT

	department

Engineering
	Author/Contact

Jonathan Goldick
	Email

jonathan.goldick@onstor.com

Component Overview:

SystemX Logical Volume Management

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes the requirements on the logical volume manager for SystemX. The LVM will be the primary interface to storage for the file system and must support a rich enough API to support our data management features going forward.

Contributors

	Name
	Email

	Jonathan Goldick
	jonathan.goldick@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jonathan Goldick
	All
	Draft
	07/26/07

	V1.1
	
	Jonathan Goldick
	All
	Changes to reflect plan to use LVM2
	09/18/07

	V1.2
	
	Jonathan Goldick
	4.1, 4.8, 4.14
	Cluster access notes
	12/03/07

	
	
	
	
	
	

Table of Contents

41
Related Documents

52
Requirements

52.1
Must Have

62.2
Highly Desirable

62.3
Desirable

73
Relation to Roadmap

74
Proposal

74.1
Cluster Issues

74.2
Snapshots

74.3
Synchronous Mirroring, Striping and General RAID

74.4
Asynchronous Mirroring

74.5
Open Storage and Multi-Pathing

84.6
iSCSI Target Service

84.7
ADM

84.7.1
Block Relocation

84.7.2
Spanning Classes of Service

84.8
Disk Labels

84.9
LUN Migration

84.10
Growing, Shrinking, and Thin Provisioning

84.11
Variable Block Size

84.12
Mounting Volumes with Missing LUN(s)

84.13
Coalescing IO(s)

84.14
Volume Import/Export

95
User Interface

96
Project Dependencies

97
Performance Criteria

1 Related Documents

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Clustering component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Clustering.doc
3. SystemX Management Execution Agent component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Management_Execution_Agent.doc
4. SystemX Run-Time State Repository component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_RunTime_State_Repository.doc

Linux LVM2
5. http://sourceware.org/lvm2/
Solaris Volume Manager
6. http://opensolaris.org/os/community/volume_manager/
SGI XVM
7. http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi/linux/bks/SGI_Admin/books/XVM_AG/sgi_html/ch01.html
8. Linux multi-path implementation http://christophe.varoqui.free.fr/refbook.html http://christophe.varoqui.free.fr/faq.html
9. Linux RAID support http://www.tldp.org/HOWTO/Software-RAID-HOWTO.html
10. Linux Enterprise Volume Management System http://evms.sourceforge.net/
11. Redhat cluster LVM (CLVM) http://www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Cluster_Suite_Overview/s1-clvm-overview-CSO.html
12. For VxVM there are a ton of web pages, but few are compact enough to reference here.
2 Requirements

2.1 Must Have
We must have the ability to plug in our open storage technology into the LVM, or it must be provably superior for all of our target storage systems in the areas of multi-pathing, discovery, and SCSI command throttling. This superiority must also apply when multiple backend storage solutions are involved.

It must support sub-LUN allocation. In the near future it will be very difficult to have a RAID disk group that is less than 5TB when a single disk is going to be 1TB. It is not a viable solution to have 5TB as the smallest unit of growth. It is understood that having multiple file systems using different pieces of the same disk group will cause performance contention, but this is still going to happen.
The LVM must enforce the restriction that a volume is only mounted read/write from a single filer at a time. Today we handle this at the file system layer but it belongs in LVM. This logic must handle failovers and split brain scenarios without imposing long latencies before the remount on a new filer. Today we write an owner field on a LUN at a granularity that ensures that failovers take at least 30 seconds for a volume. This requirement is a tradeoff between IO(s) per second to write the owner area, split brain detection latency, and confidence that all in-flight IO(s) have completed or been canceled. Note that some solutions depend on features like SCSI reservations which probably will not allow us to do sub-LUN allocations. Fencing off IO(s) from a filer in failure scenario is necessary to avoid waiting the maximum SCSI IO period before safely assuming all IO(s) to have completed. The capabilities of the clustering solution may greatly impact the need to do work at the LVM layer.
It is required that the LVM support read-only mounts. Furthermore it must be able to switch from a read-only mount to a read/write mount, and vice versa, without having to take the file system offline. The use case here is when one virtual server has a file system mounted read/write and another has it mounted read-only. If these virtual servers are running on the same filer the volume must be mounted read/write. If the read/write virtual server is moved to another filer, the volume must be changed to read-only. If the read/write virtual is moved back the volume must be changed to read/write. This use case is not handled properly today.

The LVM must allow us to implement cluster-readable snapshots. This is a feature wherein a read-only snapshot can be mounted by any filer.

It is required that a volume can be grown on demand without downtime and from within a policy-controlled storage pool. It is also required that a volume can be shrunk on demand, assuming that an allocation unit is actually unused.
It is required that the LVM support block relocation. This is needed for shrinking a volume and for the Automatic Data Migration (ADM) feature we are planning.

It is required that a single filer be able to rapidly mount at least 1000 volumes. In this context, rapidly should be considered less than 5 seconds. Given that mounting a logical volume is a prerequisite to mounting a file system and replaying file system logs, we need this step to be as fast as possible to achieve quick failovers.

It is required that the LVM provide an API to efficiently report the class of service for range of blocks. ADM will be creating volumes that span a single class of service. It will be necessary for ADM to know where the service boundaries are so it can allocate and move blocks appropriately.

It is required that the LVM load spread IO(s) across all paths to a LUN when the underlying array supports it. Some arrays will go into controller flapping mode when this is done so it must be controllable when this is done.

It is required that we be able to label LUN(s) with policy ids, the associated policies will be stored in the cluster DB. These policies will include storage pool identifiers, class of service indicators, and type of data that should be stored there like logs, metadata, or types of user data.
It is required that the LVM support standard Linux file systems, specifically EXT3. We want the ability for all file systems on a filer, including the boot file system and the cluster DB, to be on the SAN. While we may continue to use a compact flash, using a common storage layer in the SAN has a great deal of appeal.
It is required that volume labels be associated with a unique cluster id. Multiple clusters of filers may coexist in the same SAN environment and we cannot depend on zoning to ensure safety.
We must have source level access to the logical volume manager we choose. Licensing a binary-only solution is not an option from a supportability and extensibility point of view.
We should make every effort to send a sequential write stream to the arrays in order. Most arrays have lower performance when IO ordering is violated.
2.2 Highly Desirable
It is highly desirable that we be able to support writable snapshots and mirroring at the volume layer. Without this capability we will be forced to implement iSCSI volumes on top of the full file system layer. This could possibly be done with some efficiency but would not easily fit into the existing Linux iSCSI target implementations. A read-only snapshot or mirror must be mountable from any filer in the cluster.
It is highly desirable for the LVM to support thin provisioning. This is not strictly required due to our AutoGrow feature for regular file systems but will help iSCSI volumes to be more efficient.
It is highly desirable that the LVM support synchronous mirroring across LUN(s). There will be some fairly restrictive latency constraints when one of the arrays is far away for disaster protection. This is necessary because we won’t be able to rely upon filer-based NVRAM to hide the latency, which would eliminate the value of the remote copy as it would only be a partial file system. It is desirable, but not required that mirroring could be selectively enabled for different sub-LUN(s). The idea here is to perhaps mirror only metadata and log sub-LUN(s) but not all of user data. A policy control for which sub-LUN(s) to mirror would be the most desirable choice.
It is highly desirable that we be able to detect performance problems in how storage is configured when multiple file systems are using the same disk group. This level of performance problem is hard to detect with today’s infrastructure because the IO load could be coming from any file system running on any node in the cluster.
It is highly desirable that the LVM layer be able to coalesce sequential IO(s) into larger transfers. Larger IO(s) yield faster performance and reduce array resources by reducing the IO(s) per second. This must be balanced against the latency added by holding up IO(s) to see in a future sequential IO comes in.
2.3 Desirable
It is desirable that it support MAID storage systems. Using Copan as the primary example of this class of storage, we need the LVM to avoid executing operations that would require too many LUN(s) to be powered or spun up. We also need to expose some API that reports when LUN(s) change their service state, to or from powered up. This is a longer term item as vendors will need to be directly involved, but this will be a likely part of future storage systems as power management continues to be a serious data center concern.
It is our intent to support variable block sizes in a single file system, say 1KB, 2KB, up through 8KB. This support will likely be handled at the file system layer but it does mean that the logical to physical block mapping logic will have to support the concept that not all block numbers have the same number of bytes associated with them. It is desirable that the LVM support this, but it this can be handled at a high layer of the software stack if necessary. It should be noted that we do not require the LVM to support volume-level snapshots with variable block size, although that is also desirable.
It is desirable for the LVM to support a transparent LUN to LUN migration. This would have to support our any to any storage model. This helps when taking arrays out of service without the downtime associated with a mirror and promote operation.

It is desirable to be able to mount a volume for which some LUN(s) are not available. As long as the metadata and log data are available, the file system could offer partial service until the LUN(s) are restored. This is available from the StorNext file system and can be of value when dealing with enormous file systems.

It is desirable that the LVM support striping across a list of LUN(s) but this can just as easily be handled at the file system layer. It’s really where iSCSI is involved that striping across LUN(s) becomes valuable.
3 Relation to Roadmap

A primary goal of the SystemX architecture is to add data management features that depend on a reliable and feature-rich logical volume manager. The current LVM used by ONStor has excellent SAN discovery, multi-pathing, and SCSI command throttling, but only simple LUN aggregation for data management. This is not a rich enough base on which to implement features like Automatic Data Migration, iSCSI snapshots and mirroring, variable block size, MAID, and a host of other block-dependent services.
SystemX has an additional goal to leverage open source wherever reasonable. If we are able to meet the function and business requirements by using open source, or a widely used licensable LVM, we will be able to deliver a higher quality product on a better tested base.
4 Proposal

We will be using LVM2 because licensing an LVM or writing a new one is not an option. This open source option meets most of the requirements but does shift our implementation plans significantly.
4.1 Cluster Issues
LVM2 is not a cluster LVM so it is considered very dangerous to mount the same volume on multiple filers. We only intend to do multiple mounts when the additional ones are read only but we must be careful not to make LVM configuration changes while there are other mounts. This has a major impact on the ability to implement features like AutoGrow when combined with DataMirror or Cluster Readable Snapshots. In SystemW these features would be completely compatible but that would require major work in LVM2, which assumes that all other nodes first unmount the read only copies. This can be solved at the file system/DataMirror layers to temporarily and transparently unmount read only file systems during a configuration change.
A further cluster note relates to sub-LUN allocation. If a single LUN is split into extents that are in turn allocated to different file systems we can get into a situation where the LUN is being written by multiple filers, but in non-overlapping ranges of blocks. Aside from controller-flapping issues this is safe with an important distinction. If any changes are made to the extent map or label for the LUN, only one filer should do the updates and all the others need to know that they must refresh their in-core copy of that information. The only planned workflows where this would happen is when a new LUN extent is allocated, or one is freed. In these cases it’s important that all filers either avoid caching this information or that they refresh it when told it is invalid. Note we will only do LUN extent and label changes from MXA so we can easily funnel all updates to a single filer, the one running MXA.
4.2 Snapshots
While we will leverage LVM2 snapshots for our EXT3 file systems we will not be using it for the ONStor file systems. We will continue to implement our snapshots at the file system layer instead of moving them to the LVM layer. This is being done to speed implementation, avoid some GPL risk, and have higher performance. The implications for iSCSI and other features are described below.
4.3 Synchronous Mirroring, Striping and General RAID
In Linux this is handled by the multi-disk driver described in reference document ‎9. Additionally we can build a volume out of regions that are not all at the same RAID level. This allows us to meet the goal of having regions that are synchronously mirrored, say for metadata, and regions that are not, like user data.
4.4 Asynchronous Mirroring
We will continue to implement our mirroring at the file system layer instead of moving it to the LVM layer. This is a direct consequence of snapshots being a file system feature.
4.5 Open Storage and Multi-Pathing
In Linux this is handled by the multi-pathing driver. There is already substantial support for open storage here but we will port our existing logic to the provided API(s).
4.6 iSCSI Target Service
In order to provide an iSCSI service that has snapshots and asynchronous mirroring we will have to implement the storage layer within the file system. The likely implementation is to create a file system with a single file that contains the iSCSI target volume. This will require us to implement a new file type to ensure that there are no performance problems due to unnecessary file system locking.
4.7 ADM
4.8 Block Relocation
This is the major project we will have for LVM. This feature doesn’t exist in any form for LVM2 so we will need to start from scratch.
Spanning Classes of Service
We have to investigate whether LVM2 needs to be modified to allow it to create a single volume that spans classes of storage. All the evidence indicates that this is in fact well supported. We will still likely need to add some API to export the class of service information to the file system layer.
5

Disk Labels

There does not appear to be an existing API to add class of service indications, cluster identification, and policy ids to the LVM2 labels. We will have to either add this or choose to move that information into the cluster configuration database. The latter option is appealing because of the increased flexibility.
5.1 LUN Migration

LVM2 supports the removal of any device from a volume group and can move data to a specific alternative.
5.2 Growing, Shrinking, and Thin Provisioning

LVM2 supports growing and shrinking volumes. There are indications that without some high risk patch you must unmount EXT3 file systems first to resize them but that information may be out of date.
LVM2 does not support thin provisioning. We could say that a combination of AutoGrow and shrink are a superior solution to thin provisioning but that may not fit with what customers are coming to expect. Adding this to LVM2 would be a significant task. Note that we can still make an iSCSI target volume look thinly provisioning using standard file system interfaces and AutoGrow.
At present you cannot shrink a volume that has LVM2 snapshots. This is yet another reason why we will be using file system level snapshots for ONStor file systems.
5.3 Variable Block Size
LVM2 does not support variable block sizes. This feature will be moved into the file system layer.
5.4 Mounting Volumes with Missing LUN(s)

LVM2 does not support this.
5.5 Coalescing IO(s)

This is handled by the Linux SCSI driver. We will assume that we will not need to alter it in any way.
5.6 Volume Import/Export

Volume import across clusters must deal with sub-LUN allocations. Imagine a LUN with multiple volumes using extents within it. It is not possible to move only a LUN extent to a different cluster, which means that we cannot move one volume without moving all volumes that use the same LUN(s). We must have a tool that detects this case and warns the administrator appropriately.
6 User Interface

We will be substantially extending our existing CLI interface for volume management. Our current interface combines creating file systems with create volumes to too great an extent. While we will preserve some convenience interfaces for simple operations, we will need entirely new ones to support logical volume management. At a minimum, we will need to be able to:

1. Be able to label LUN(s) for use by a specific cluster. This label must be rewritable to move LUN(s), allocated to volumes or free, between clusters. This would typically be a part of a volume import operation.
2. Assign policies to LUN(s)

3. Partition LUN(s) into sub-LUN(s)

4. Create logical volumes out of one or more sub-LUN(s), either by explicit choices or automatic selection by policy. Note that it must be possible to add multiple sub-LUN(s) in a single operation.

5. Grow
6. Shrink

7. Delete

8. Mount read/write or read-only
9. Snapshot management

a.
b. Create
c. Delete

d. Enumerate

e.
f.
g.
10. Software RAID management, specifically synchronous mirroring
a.
b.
c.
d.
11. Show performance and usage statistics

a.
b.
12. Move data from one LUN to another.
7 Project Dependencies

The clustering component determines which volumes should be mounted on which filer and how.
The management execution agent processes all the configuration operations.

The run-time state repository holds all of the information about which volumes are mounted on which filers and usage statistics.
8 Performance Criteria

A sequential streaming write load should coalesce IO(s) to the point where we are doing at least a 64KB IO size.
When the array supports it we should be able to spread load evenly over all paths and get a linear, or near linear, improvement in performance.
When snapshots are used the overhead to write a block that is COW should be no more than 5% in terms of added latency. The added CPU and memory overhead should be negligible.
When software RAID is enabled for synchronous mirroring the added latency should be no more than 10% over that of the slowest storage plex. If a mirror rebuild is in progress we are willing to accept substantial latency, 50% is not uncommon or unexpected.
When the block relocation feature of ADM is enabled there must be no significant overhead to access blocks that are not relocated, basically << 1%.

The overhead to access a block that has been relocated between tiers of storage must be less than 1%. The added CPU and memory overhead should be negligible.

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 3 of 9
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

