SystemX Messaging
      725-xxxx-0001
Draft 1.0

	 document no.

725-xxxx-0001
	revision no.

1.1
	status 
DRAFT

	department

Engineering
	Author/Contact

Jonathan Goldick
	Email

jonathan.goldick@onstor.com



Component Overview:

SystemX Messaging


Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	


	
[image: image1.png]ON

Always-On Data





	Abstract

This document describes how we will be reliably deliver management messages between user space processes and between cluster members in SystemX.


Contributors

	Name
	Email

	Jonathan Goldick
	jonathan.goldick@onstor.com

	
	


Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jonathan Goldick
	All
	Draft
	10/19/07

	V1.1
	
	Jonathan Goldick
	All
	Incorporate review comments
	10/19/07

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	


Table of Contents

2Contributors


2Disclaimer Notice


2Copyright Notice


41
Related Documents


52
Requirements


52.1
Must Have


52.2
Highly Desirable


52.3
Desirable


63
Relation to Roadmap


64
Proposal


64.1
SCTP


64.1.1
Comparison with RMC


64.1.1.1
Attributes in Common


64.1.1.2
SCTP-Only Attributes


64.1.1.3
RMC-Only Attributes


74.2
RPC


74.3
Sessions


74.4
Connecting to a Service


74.5
Failures


74.5.1
Failures during RPC(s)


84.6
Security


85
Performance Criteria



























1 Related Documents

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Management Execution Agent component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Management_Execution_Agent.doc
3. Stream Control Transmission Protocol
      http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
      http://tdrwww.exp-math.uni-essen.de/inhalt/forschung/sctp_fb/
      http://linux.die.net/man/7/sctp
      http://www.sctp.de/sctp.html
      http://tools.ietf.org/html/rfc3286
      http://lksctp.sourceforge.net/
4. SCTP Security http://www.ietf.org/rfc/rfc4895.txt
5. Reliable Management Communications http://intranet.onstor.net/md/Software/DMIP/doc/design/rmc.doc
6. Open clustering standard http://www.openais.org/
7. Asynchronous event mechanism http://aem.sourceforge.net/
8. TIPC reliable messaging http://tipc.sourceforge.net/doc/Programmers_Guide.txt
9. Open MPI http://www.open-mpi.org/faq/
10. LINX http://www.enea.com/EPiBrowser/Literature%20(pdf)/LINX/LINX%20Protocols.pdf
11. OpenSAF http://www.opensaf.org/blog/2007/06/20/what-is-opensaf/
12. Partial reliability extensions to SCTP http://www.tools.ietf.org/html/draft-ietf-tsvwg-prsctp-03
13. Multi-casting http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzab6/rzab6xmulticast.htm
2 Requirements

2.1 Must Have
We must be able to reliably send a message from a user or kernel space process to any process on any node in the cluster.  We will NOT use a timeout retry model for communications.  This must ensure reliable delivery in the face of crashes, process restarts, network link failures, etc.
We must support multi-homed servers so that we can failover across management network interfaces.
A message that is destined for a virtual server must reliably be sent to the filer that is currently offering it, even if the send races with a failover.

The transport must support a message construct.
The transport must support flow control.

The messaging component must detect a connection going down and give the application the chance to reconnect.
The transport must support messages of arbitrary size, although in practice most messages a few KB and the largest we expect would

 be a complete copy of the configuration DB which is unlikely to be more than a few tens of Mbytes in size.  It is acceptable for the application to have to split up payloads into multiple RPC(s) but the configuration DB case requires the entire payload to be delivered before any of it is usable.
This component must be usable between clusters.  The IP-based mirroring product needs to send messages between geographically separated clusters but it still have the same reliability needs as any other network application.

In SystemW we use the ONStor-developed Reliable Management Communications (RMC) component described in reference ‎4.  Any alternative must be at least as reliable and easier to use
.  It is not required that we preserve the RMC feature where multiple sessions can exist on a single connection as long as creating multiple connections is fairly cheap.  In practice there will be few connections needed as most communications are between the kernels of each cluster node and MXA.  It is not required to maintain the RMC feature of allowing applications to do their own memory allocations as long as performance is acceptable.  Finally, it is not required that we preserve the RMC ability to wait for delivery of a specific message, we are assuming that it doesn’t make sense to ignore the messages that have arrived.
The kernel and user API(s) must be asynchronous

.


2.2 Highly Desirable
It is highly desirable that we support separate message streams within a single connection to avoid head of line blocking.
It is highly desirable that the user space application API be asynchronous.  It is required to be asynchronous in the kernel.
2.3 Desirable
It is desirable that it support built in multi-cast functionality but in practice there is no real need for that at this time.  The communications are generally between the kernel running on each cluster node and the MXA process that runs on the management virtual server.  While it’s possible that we will eventually have additional user space processes, there are just not enough end points to have to worry about supporting anything beyond a point to point protocol.
To be clear, we do NOT require that this component support anonymous subscribers to events.  Processes that generate events can always send a message to a constrained set of end points and know that they have reached their intended recipient.
3 Relation to Roadmap

A primary goal of the SystemX architecture is to build on top of reliable components.  A method for reliable messaging is key to providing a stable, scalable architecture.  The alternative of timeout-retry models for communications and lost messages creates an inherently non-scalable and unreliable architecture.
4 Proposal
Note that while we have listed several open source eventing and message queuing systems in the references 5

 REF _Ref179084226 \w \h 
‎, 6

 REF _Ref179084227 \w \h 
‎, 7

 REF _Ref179084229 \w \h 
‎, 8

 REF _Ref179084233 \w \h 
‎, 9, ‎10 none of them provide the kernel support that we really need.  In practice the eventing systems offer reliable delivery when the publishers do not know the subscribers but not reliable handling of the events at the subscribers.  What this means is that these systems will guarantee that a message is delivered to a user space subscriber but will not ensure that it successfully runs an associated callback before considering its responsibility to be complete.  Even the message queuing solutions in the references do not support kernel subscribers, and they have persistent storage requirements that would greatly complicate matters
.
4.1 SCTP
We will be standardizing on the streams control transmission protocol for communications.  This will be used for all messaging communications that involve user to kernel space processes, and those that span machines.  Typical examples are CLI/GUI communications with MXA, MXA communications with kernel processes, IP-based mirroring, and communications between MySQL client nodes and MySQL application nodes.  Note that this does not include Linux HeartBeat communications.
4.1.1 Comparison with RMC

4.1.1.1 Attributes in Common
· Connection-oriented messaging protocols
· Preserves the message boundaries
· Ordered delivery

· Flow control

· Tunable retransmissions

· Connection failure notifications
4.1.1.2 SCTP-Only Attributes
· Multi-homing – Applications can set up the connections to multiple IP addresses with automatic failover inside the protocol.  We would use this to connect to multiple MGMT# IP addresses and let failover be handled within the protocol.
· Separate streams inside one connection like TCP.  RMC has the head-of-line blocking problem which SCTP solves with multiple streams.
· Optional unordered delivery.

· Congestion control

· MTU path discovery

· Down connections are detected by a heartbeat inside the protocol

· Kernel implementation
· The delivery time can be controlled on a message granularity

· Flow control is window based

· Simple API
· Multi-cast infrastructure

· IPV6 ready

4.1.1.3 RMC-Only Attributes
· Flow control is xon/xoff based
· Session management – With SCTP you get the socket id(s) and any additional session management has to be done separately.
· RPC and higher level protocol support – Allows request/response matching, user level control on the message memory allocation, etc. SCTP will require using another RPC protocol on top of it and re-implementing some of the high level protocol features. 

· Wait for specific message – We shouldn’t be using this anyways as an application should not be blocking waiting for something while there are other messages to process
· RPC versioning included in the protocol header – currently unused.
4.2 RPC

As mentioned above, SCTP does not provide an RPC layer.  There are many to choose from, with SUN RPC being the most common and the one we plan to use.  Note that XDR uses big-endian order and all ONStor platforms are little-endian.  It’s a little painful to waste the overhead of converting byte order for no real gain beyond the ability to use XDR natively.  This is a performance versus coding tradeoff.  While performance is not critical for management operations, consciously wasting cycles is to be avoided.
Just as with other SUN RPC services we will use a program number and a protocol version negotiation layer.  We will also use the port mapping service, again just like any other RPC server.
Note that we will include a field in a common header for all internal messages for use in tracing a flow of execution through the system, even when it spans processes and machines.  A 64-bit tracing id (unique transaction indentifier) should suffice
.
If any RPC is not idempotent, it is the responsibility of the application to make it so by leveraging the MXA infrastructure.  See the reference document ‎2 for details.

4.3 Sessions

Applications using SCTP should use separate sockets for each session, the socket id can be used as a session handle.  There is no use case currently envisioned that would require a session library to be created on top of a single SCTP socket.

4.4 Connecting to a Service

It is possible that a client application will start before the server application is listening, or even before it has registered with the port mapping service.  In this case we must wrap the call to connect to the server with either a blocking retry loop or an asynchronous callback when the connection is established; in fact we want both API(s) to be available.
4.5 Failures

SCTP already handles failovers when one network path fails and another is available.

SCTP can also be provided a callback to run when a connection fails completely.  This is needed so that our applications, specifically DMIP can quickly determine when a remote server is unavailable.  While there are some SCTP application libraries that have explicit callbacks implemented for such cases, the standard socket and select interfaces can be used to determine when a connection has failed.  In most cases, when a connection has failed we will asynchronously try to reconnect as the typical case is a server process that has crashed and been restarted by the cluster services.
4.5.1 Failures during RPC(s)

If the client gets a connection failure it will retransmit RPC(s) for which is does not have a returned status handle; it is the server’s responsibility to look for duplicates (MXA).  If there were any previously acknowledged RPC(s) that had not yet completed to the client’s knowledge, the client should reconnect to MXA and ask for all failed completion messages to be resent.  If that fails the client should retry all of these RPC(s) as well.  The server (MXA) should keep track of any completion messages that it was unable to send to a client due to a connection failure so it can respond to a client asking for them at reconnection time.  This queue of lost completion messages will need a garbage collection mechanism so that a client that goes away forever doesn’t leak messages.
4.6 Security

We cannot assume that all management traffic is happening on a physically or virtually private network.  We must therefore have some method of authenticating the messages that are received.  SCTP has some limited security, with more on the way.  This is described in reference document ‎4.  We can depend on shared secrets within a cluster, perhaps by leveraging the Linux HeartBeat secret that all cluster nodes have.  This cannot be used in the inter-cluster communications that take place when replicating file systems over the WAN.

For inter-cluster communications we can choose to only accept traffic from IP addresses that are defined in a replication configuration record, but that creates difficult dependencies when changing the network configuration in one of the clusters.  A shared secret is the preferred approach where we authenticate a connection.

5 Performance Criteria

If this is to be used by mirroring, we must be able to maintain high performance streaming writes between two geographically separated processes.
We must have rapid detection of failed network paths, preferably sub
-second
.



























�In practice, you should not be sending the messages of such size over the message-oriented protocols. The messages of such size require the kernel to reserve too much of kernel memory because it must have complete message before giving it to the user. 


�Whether it’s split up into separate RPC(s) or not, we still need to get the configuration information into the kernel.  I will make a note about that.


�You certainly are not setting the bar too high here.


�The user API must be asynchronous as well, if you don’t have it from the start, may be hard to bolt on later, like our cluster database api for example. Synchronous api can be built on top of asynchronous but not vice versa.


�Yup


�Contradicts 2.3 which says we don’t need reliable multicast.


�OK


�4.1 is missing.


�You can not insert fields in the sun rpc header. This should say that we will have a common header for all internal messages which will include unique transaction identifier.


�Not sure what you mean by that. In most cases the only way you can detect that the path has failed is by timeout. It is entirely to application to decide after which time the network path is considered failed.


�SCTP does heartbeating on connections to determine if a path has failed so it can rapidly fail over to alternates.





 STYLEREF Title \* MERGEFORMAT 
PAGE  
(2007 ONStor, Inc., Company Confidential
Page 8 of 8
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.


_1106667564.bin

