SystemX Software Upgrade
 725-xxxx-0001
Draft 1.2

	 document no.

725-xxxx-0001
	revision no.

1.2
	status
DRAFT

	department

Engineering
	Author/Contact

Jonathan Goldick
	Email

jonathan.goldick@onstor.com

Component Overview:

SystemX Shell

Approvals:
	Name/ Title
	ECO

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
[image: image1.png]ON

Always-On Data

	Abstract

This document describes the administrative management shell in SystemX.

Contributors

	Name
	Email

	Jonathan Goldick
	jonathan.goldick@onstor.com

	
	

Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, (2007, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

	Rev
	ECO
	Written By
	Page/Sect
	Revision Summary
	Date

	V1.0
	
	Jonathan Goldick
	All
	Draft
	11/08/07

	V1.1
	
	Jonathan Goldick
	All
	Review feedback
	12/03/07

	V1.2
	
	Jonathan Goldick
	2.1
	Review feedback
	12/04/07

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Table of Contents

2Contributors

2Disclaimer Notice

2Copyright Notice

41
Related Documents

52
Requirements

52.1
Must Have

62.2
Highly Desirable

62.3
Desirable

73
Relation to Roadmap

74
Proposal

74.1
Bash

84.2
Integration with MXA

84.2.1
Stopped Jobs and Timeouts

84.2.2
Killing Jobs

84.3
Home Directories

84.4
Login Uid/Gid

94.5
Cron Jobs

94.6
Text Editor

94.7
Comments for Windows Administrators

94.8
Shell Tools

94.9
Command Help

94.10
Limits

95
Project Dependencies

106
Performance Criteria

1 Related Documents

1. Overview of SystemX http://intranet.onstor.net/md/software/systemx/talks/SystemX.ppt
2. SystemX Messaging component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Messaging.doc
3. SystemX Management Execution Agent component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Management_Execution_Agent.doc
4. CLI Help text conventions http://intranet.onstor.net/md/software/smt/howto/CLIHelpStyleGuide.txt
5. Description of BASH http://www.gnu.org/software/bash/manual/bashref.html
6. The workflows of the management operations http://intranet.onstor.net/md/software/systemx/mgmt.vsd
7. SystemX Clustering component document http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_Clustering.doc
8. Documentation for the Pico text editor http://www.uni.edu/its/us/document/sun/picoqref.html
2 Requirements

2.1 Must Have
The shell must be able to run every command that the GUI management interface provides. There will no doubt be substantially more ease of use features in the GUI but the CLI must be fully functional.
The shell must have full UTF-8 support. Typical use cases are Japanese characters in user names, volume names, host names, etc. This includes having UTF-8 font support for as many languages as possible, if not all of the ones that Linux contains. It is not a requirement to support non-UTF-8 shell encodings.
We must be able to have diagnostic commands that customers do not see, even if they log in as root. While in reality root can do anything, we should attempt to hide these commands, perhaps by something as simple as having diagnostic commands only available in a different shell program.

We must support two levels of users:

· Root – can do anything and is trusted not to destroy the system. Has full access to repair a damaged operating system. Note that no commands needed to run or repair the system should only be available as root unless they are inherently destructive and require L3 support or above to understand them. Troubleshooting commands should not require root access nor should repair processes that can reasonably be anticipated as needed in the field. While we could create a pseudo root account for this purpose, we still want standard Linux utilities to work properly and they will generally check for root.
· Normal administrative user – can see every non-diagnostic shell command and run those that the privilege checks allow.
All error messages must be written to stderr, all regular output should be written to stdout, and all inputs must come from stdin.
We should localize all messages into catalog files that can be used by the management shell. We intend this system to be OEM friendly and that means that we should make it easy to provide alternate message catalogs, like one for Chinese.
We should make sure that the vendor string ONStor is localized as well to make the shell OEM friendly.

We should provide a mechanism to prevent prompting the user for additional inputs, like confirmations on dangerous commands. Prompts make shell scripts more difficult to implement. All prompt text should come from a message catalog, as should the affirmative and negation text. Consider a prompt in Chinese and a Chinese equivalent of yes and no.
We must be able to run multiple commands in parallel, with the usual support for background, foreground, stopping, and killing processes. The normal Unix Control-C and Control-Z behaviors should be provided. Note that all shell commands must be written to handle being stopped via Control-Z and put in the background. This has implications if they are running some sort of heartbeat protocol over a network; see the messaging reference document ‎2. Our CLI interface to MXA will have to consider the impacts of Control-Z on correct operation. It is required that killing a process be immediate. If some operation takes far longer than the administrator expected, we want to give them the ability to cancel the job as soon as possible.
We must allow administrators at least some limited ability to customize the shell; this can include command aliases, setting the locale, setting the prompt, etc. Even more we must allow each administrative user to have a login script that preserves their customizations across login sessions. These login scripts must be available cluster-wide so that they are available no matter what filer is used. It is assumed that these scripts will be highly available, backed up, and restored.
We must use only a few standard command verbs to manage objects. These will be add, delete, modify, and show.
We must have a standard help text format and model. See reference document ‎4.
We should use a standard method of specifying command line options. Each option will be a case-sensitive, single character so that we can use the standard command line parsers. We will also use full words in the standard form like -–user=USERNAME.
Every option that can be used in an add operation must be available in the modify operation, and vice versa.

The management shell should not have command implementation logic within it. All management operations must be isolated into a separate library/service. This even includes tasks as simple as reserved values detection. See the reference document on the management execution agent ‎3.
We must support administrative logins using local accounts, Windows domain accounts, and NIS/NIS+/LDAP domain accounts as defined by the privileges configuration information in the cluster. While the details of that are handled in the SSH daemon integration, what is important here is that the privileges associated with a user account must be stored in a manner in which the administrator cannot hack. For example we cannot allow an administrator to become a more privileged user by hacking memory or some environment variable.

2.2 Highly Desirable
It is highly desirable that the shell prompt be controllable by the user, and that we have options like identifying the current virtual server context in the prompt.
We have trained our current customers to use “?” to list command completions so preserving that is highly desirable. It may be acceptable to use the more common standard of tab completion but having both is even better.
It is highly desirable to preserve an administrator’s shell history across logins, see .bash_history for an example. As with other administrator state we would like have this available in a cluster-wide fashion, not configured on every filer individually.
It is highly desirable to allow administrators the ability to store and execute bash scripts on the filer. Today we force administrators to store scripts on remote hosts, and run something like Expect to get the commands to the management shell. It increases ease of use if these scripts are stored on the cluster in a highly available, and backed up, manner. This would allow administrators to just execute a script without learning something like Expect or Perl. To be specific:
· The ability for administrators to run a user supplied bash style shell which includes bash built-ins and any Linux and ONStor utilities commands we choose to provide. We must provide some additional infrastructure so that they can execute the work flows that they would reasonably need. It is expected that they will need to copy output files off of the box through either a file transfer protocol or email, scp, ftp, and sendmail are likely candidates.
· The ability for these scripts to redirect I/O with the restriction that output redirection to a file must go to a restricted path (i.e. /tmp)

· The ability to have these scripts available at login during “normal” operations. That is, these special scripts may not be available if the Filer is in a state which needs repair, or storage is offline, etc. (In other words, I don’t see user provided scripts/programs as critical for serious repair operations)

· We’ve not addressed if these programs are limited to scripts or can be executables. I think they should be limited to scripts (though I know we’ve discussed the fact that things like shar files are ‘scripts’ which can be made into binary executables). I don’t think binaries should be supported. It’s a matter of implied consent.

Administrators need the ability to schedule scripts to run at later times, a cron-like facility would suffice here.

2.3 Desirable
It is desirable that we keep commands similar to SystemW but that is not a requirement. Many of the current commands make little sense as structured.
It is desirable to have the “?” or tab completion work for arguments as well as command options. A representative example here is having “filesystem modify” return a list of file systems that the administrator has rights to modify when a completion character is typed. This can get fairly involved when there are large numbers of objects; like in a quota modify command where there are thousands of users.

While it may be desirable from an ease of use point of view to allow administrators to have access to any Linux utility shipped on the box, we will not allow this. The problem is that there is just too much risk involved and too much difficulty in testing if they have access to the full suite of Linux utilities. Note that the root user will have no such restrictions but we should strongly encourage customers not to do things that damage the system, hopefully we can work that into the support contract in some fashion.
3 Relation to Roadmap

An important goal of the SystemX architecture is to be easy to use. The shell is a primary management interface to our system, especially for Unix administrators, so this is a key area where ease of use should be implemented. Additionally, scriptable management commands are a must have as they allow customization and automation of administrative workflows.
4 Proposal
4.1 Bash
The shell of choice is Bash. This is a well-known and powerful shell that has full UTF-8 and POSIX support. The details of Bash will not be provided here but are available in reference document ‎5. Some relevant notes on Bash are as follows:

· For each CLI command, a completion specification (compspec) can be defined during bash shell initialization. Compspec does support parameter completion (with single tab) or displaying a list of completion possibilities (with tab-tab). So there shouldn't be any need to modify bash source code to provide the hierarchical commands that we have in SystemW. Also, not only can there be completion on static parameters but dynamic ones as well (such as volume names generated via execution of another command). The compspec can run other executables (grep, awk, scripts) but is subject to the restricted bash shell mode if used.
· The help command in bash returns text defined in a .def file for each CLI command. This is not the same result as one would get if using ‘man’. The downside of using the builtin help command is that the help text is not localized, whereas man pages can be localized as desired. We will focus our CLI help on man pages for this reason.
·
· Bash does not support ‘?’ completion, instead it uses two tabs in a row to mean the same thing. In SystemW this character is trapped and generates a list of legal commands and options based on what has been typed so far. This is a very nice feature of SystemW but will be hard to preserve exactly as is so we will likely not do so.
· Bash does have a concept of running in restricted mode. This turns off many commands that would allow a user to gain access to areas of the system we might not want them to. This will not be used because it prevents users from running scripts as well as external commands that we might choose to provide.
· Bash does have the concept of running in interactive and non-interactive modes. This will be useful for the GUI’s need to avoid unnecessary prompting.

· Bash is GPL code so we must ensure that we do not directly reference our intellectual property. This will be handled by adding commands through the standard bash ‘.def’ interface but then calling our own user space program to execute the operation.
At any point in time the administrator must be able to use tab completion to list the child commands, sub-commands, or command options relative to what has been typed previously. When an argument must be something that is already defined in the configuration DB we will obtain the list of choices and display

 them at tab completion; an example is listing the virtual servers when ‘vsvr modify <tab><tab>’ is typed. We will not do this in every case because some completion options are just too numerous to usefully displayed, like user quotas. This is a grey area, how many is too many?
A normal administrative user will have their shell root directory set to something other than / to limit them to utilities that we consider to be safe. This allows us to provide a set of functionality like ‘more’, ‘tail’, ‘scp’, etc. without letting them have access to the operating system or programs that we think should be restricted to root. It is considered worth the single extra copy of system utilities to provide isolation.
We will have to do some work with Bash to ensure that it does not execute arbitrary programs, as described in the requirements section. By itself, Bash either runs in restricted mode where nothing can be executed or in normal mode where there are no restrictions at all. To add in a file type test before allowing execution will likely require changes to bash source code.
4.2 Integration with MXA

For the most part, the shell will be communicating only with MXA to view or change the system configuration and state. The detailed work flows are shown in the Visio reference document ‎6.

4.2.1 Stopped Jobs and Timeouts

As described in reference document ‎2 on messaging, we will be using an SCTP-based protocol to communicate between the shell and MXA. Now if the process communicating with MXA is stopped, the internal heart beating will stop and MXA will not be able to communicate any results. The MXA design is intended to handle this case

, the shell process need only use the job handle given to it by MXA when the request was initially queued to MXA to request the results, should they be available. As long as this request for results is sent whenever a stopped job is restarted there will be no problem. Note that there is also the case of a job that is stopped before MXA returns the handle for the job. In that case the process should queue the entire job again, trusting that MXA will recognize the resend and give the appropriate job handle.
4.2.2 Killing Jobs

If a shell process is killed we will send an asynchronous cancel to MXA. We do not want to delay the termination of the shell process in any significant way but it is assumed that the administrator does want MXA to cancel the associated job as soon as possible.
4.3 Home Directories

Every administrator will have a home directory that will be created dynamically when they log into a filer. This home directory will reside on the management volume for the cluster. The management virtual server NFS exports this file system to the cluster members, which will in turn automount it when an administrator logs in. If the management volume is not available, or does not exist, the administrator will have no writable home directory.
It is up to the quota administrator to ensure that no single administrative user fills up the management volume, or they will choose to suffer the consequences of having put no quotas in place.

It is the administrator’s responsibility to make a backup of the home directories. We will not attempt to make them highly available, beyond the fact that the management virtual server is always running somewhere in a cluster but its associated management volume may not be up.
4.3.1

4.3.2

4.4 Login Uid/Gid

We must have some Uid and Gid associated with every administrative login so that they will own the files in their home directory. While this is easy for administrators defined in the local user accounts file, we must deal with Windows, NIS, NIS+, and LDAP-based administrators. Even the latter three account types may have uid or gid values that conflict with what is defined in the local user accounts file. The proposed solution is to assign a local unique uid and gid for every administrator that has the privileges to log in. On the first connection we will create this association in the cluster DB after having obtained their credentials
 from
 the domain controller. We will give preference to assigning them the same uid and gid that the domain controller has, but if those are in use they will get a different pair. For first time Windows domain logins will use any id mapping rules that are available to get their Unix identity, and then follow the above rules.

4.5 Cron Jobs

We will provide a management API to allow administrative scripts to be run at scheduled times. These must be scripts that exist in the administrator’s home directory. We must be careful to ensure that the cron job run in as restricted an environment as the interactive user would experience.
4.6 Text Editor

In SystemW we have made CLI commands leverage the vi editor when making changes to file-oriented configuration data. This is not a very friendly user interface

, although well known in the Unix world. While we can still include vi, we should also include a simple text editor like pico and let the administrator set a bash editor environment variable to control which one they use. See the reference document ‎8 on pico.
4.7 Comments for Windows Administrators

Our choice of Linux tends to make this is a very Unix-centric shell environment. Windows administrators will have to cope with this but it does hurt our ease of use story. We can perhaps make things somewhat better by providing Windows-centric aliases in the default .bashrc script or using something like the scripts found at http://downloads.techrepublic.com.com/download.aspx?docid=173236
4.8 Shell Tools

We are going to have to work out a list of shell programs that administrators will need to meaningfully run scripts on the filer as well as do interactive management. Programs like vi, pico, more, less, scp, ftp, sendmail, top, etc are sure to be needed but it will take some time out work out an exhaustive list. Given that we intend non-root administrators to operate in a chroot’d environment, we will have to explicitly make these programs available.
4.9 Command Help

We will follow the help text conventions for the CLI commands that are added by ONStor, see reference document ‎4. We do not plan to create conforming help text for the Shell tools we leverage from Linux, like more, less, and ftp.

4.10 Limits

It’s important that the management shell operations not consume so much memory and processor resources that the internal management and service processes are starved out. This can be enforced with Linux ulimit functionality. We will also set the nice level for the management shell below that of all ONStor processes.
5 Project Dependencies

This component depends on:

· Bash.

· The management execution agent subsystem.

· The cluster-wide reliable messaging subsystem to communicate with MXA.

· Integration between SSHD and the domain login services. This is necessary to allow administrators to log in using NIS, NIS+, LDAP, or Windows domain accounts.

6 Performance Criteria

We will need to quantify how many parallel processes we should allow on each physical model. While this is likely to be a large number, it cannot be unbounded. It’s important that the management shell operations not consume so much memory and processor resources that the internal management and service processes are starved out.

�There is no reason to hack bash, each top level word can be a implemented by a separate utility which will do any hierarchical processing inside.

�This was assuming that we would be using a restricted bash shell which prevents using outside programs. Regardless, some new code needs to implement the hierarchical logic, whether it be bash or not.

�Anything wrong with “man”? How is the localization support done there?

�It needs to be a help command, not man since Windows admins would not be used to typing man. I have to look into how man pages are localized.

�I don’t think you need to add our commands as bash internal commands. They should simply be external utilities as everything else.

�See comment above about a restricted shell.

�Currently we do not provide the completion for the choices that are in the cluster database.

�True, it has been on the RFE list for years.

�SCTP does not run the hardbeat at the user level as far as I know, stopping the process will not have any affect on the SCTP connection

�If you can find a reference that would be useful to know.

�It can become cumbersome for administrators that manage more than one cluster. They will have to manually copy their home directory between each cluster they are managing. It may be simpler to allow them mount their home directory from some shared location that administrator chooses.

�We want the cluster to be standalone. The most likely place they would nfs mount would be shares within the cluster and that has bad failure modes.

�What about perl scripts, sed scripts and awk scripts? Why do we need to make any files transient if we will have the quota system? Let them persist there, this will not affect anybody. There is also the issue of running the cron scripts, if nothing is persistent, how the administrator is going to find the output of his cron job?

�This was discussed with Josh and Sudheesh for a long time. The idea was to control the type of files so that we could prevent them from doing potentially dangerous things. Perl was an example of something they specifically didn’t want allowed. There is also the test aspect if we allow arbitrary programs. Finally, the output of cron-like jobs can be sent via scp, or sendmail. The goal is not to allow them to avoid having an external system to manage our box, but to keep this an appliance.

�We need to make sure that the ID that we automatically assign will not potentially clash with any IDs that already exists or may exist later. It may be better to have the administrator to make sure there always is a mapping for any user that logs into the filer. It is unlikely that there will be a host of administrators, so this is not unreasonable amount of work.

�There is no problem if end up colliding, we just assign the collided one a different number. We cannot require local admin accounts to exist in the domain, that would violate the requirements we currently have on local user accounts.

�You are hurting Andy’s feelings here. I have a better idea, lets put emacs in there, it has vi and pico emulation modes.

�I’ve never tried the emulations, not sure how friendly they are. It might be confusing if there was still some emacs commands.

 STYLEREF Title * MERGEFORMAT
PAGE
(2007 ONStor, Inc., Company Confidential
Page 3 of 10
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

_1106667564.bin

