

Open Storage Architecture Programming
Guidelines

Author: Satish Sangapu

Date: 08/30/2009

 1

Table of Contents

1. Purpose/Goals ... 4

2. Operating System Concepts.. 5

2.1. Tasks vs. Processes/Threads .. 5

2.2. Kernel vs. User Space .. 7

2.3. Linux POSIX Threads (pThreads) ... 7

2.4. Scheduling.. 8

3. Operating System Abstraction .. 10

4. Licensing Guidelines .. 11

5. Linux Programming Guidelines for CFW .. 12

6. Linux Concepts ... 14

6.1. System calls ... 14

6.1.1. Error Codes ... 14

6.2. POSIX Threads .. 15

6.2.1. Thread Creation .. 15

6.2.2. Thread Specific Data (TSD) ... 15

6.2.3. Thread Deletion .. 16

6.3. Synchronization ... 16

6.3.1. Mutual Exclusion .. 16

6.3.2. Semaphores ... 17

6.3.3. Condition Variables .. 17

6.4. Signals.. 17

6.5. Communication between processes (IPC) ... 17

6.6. Debugging in Linux ... 18

7. Start of Day on Domain0 .. 19

 2

pradeepv
Callout
Most of our user space code need to run as a service in the background. This is done by converting a process in to daemon. I think we should add a section on daemons how to daemonize a process in linux.

ssangapu
Sticky Note
Marked set by ssangapu

8. References / Resources ... 20

Table of Figures
Figure 1: Attributes of a Process... 5

Figure 2: Process vs Thread (LWP).. 6

Figure 3: Threads/Processes controlled by the Linux Scheduler.. 9

Figure 4: Advantages/Disadvantags of User-Space code ... 12

Figure 5: CFW OSA Environment for the Linux Virtual Machines 13

 3

1. Purpose/Goals
Currently, all the controller firmware developers comprehend the non-pre-emptive multi-
tasking model that exists with Data Path Layer (DPL) in VxWorks. In addition, it is
known that the VxWorks kernel is very lightweight and normally does not interfere with
embedded RAID programming. Both of these environments will change for the Open
Storage Architecture (OSA) Linux virtual machines.

Therefore, this document is meant to aid development in an Open Storage Architecture
environment that features one or more Linux virtual machines. It will present high-level
differences between the current environment and the new Linux environment. Guidelines
such as these must be documented and propagated to the development organization or
else, the code-base will eventually lead to incompatible implementations resulting in
unstable and un-maintainable system.

The initial sections in the document will give an overview of key operating system
concepts, especially ones specific to the Linux environment. It will attempt to
compare/contrast Linux, with its pre-emptive task scheduling model with a distinct kernel
and user space separation, to that of VxWorks. Finally, the document will conclude with
programming guidelines for the CFW organization, catered to the embedded storage
environment, to develop on the Linux virtual machines in OSA. Note that at this time,
embedded Linux operating system has not been seriously considered for any of the
virtual machines.

Detailed information about each of the topics can be referenced online or in a textbook;
however, note that some of the online resources are stale and in some situations,
completely inaccurate.

This document is meant to be refined as the design and architecture matures for the Linux
virtual machines, especially during the early phases of development. Therefore, please
note items that should be covered as part of this document as that material can be covered
in future versions.

OSA Development and Build Environment FAM documents the source code
management system, build environment, compiler details, and packaging tools/process
for the OSA environment. (Document 44682-00)

Future topics that can be covered as part of this document:

1) Initial high-level component dependencies for Domain0

2) SOD sequence for components in Domain0. (ODP, ODC, DOMI, RAS/IPIVM, SOD
component, initial Hypervisor related activities) [Maybe this doesn’t make sense for
this document….]

 4

2. Operating System Concepts

2.1. Tasks vs. Processes/Threads

In VxWorks, every unit of execution is referred to as a task. In Linux, a process defines
the unit of execution which the operation system uses for its scheduling purposes. Each
process is identified by its unique process ID, sometimes called pid.

A process on Linux system consists of the following fundamental elements: memory
mapping table (page mappings), signal dispatching table, set of file descriptor set (locks,
sockets), signal mask and machine context (program counter, stack memory, stack
pointer, registers). On every process switch, the kernel saves and restores these
ingredients for the individual processes, therefore, context switch is heavyweight.

FIGURE 1: ATTRIBUTES OF A PROCESS

Linux threads are lightweight processes (LWP) and represent a finer-grained unit of
execution than processes. Threads share all of the above attributes except the machine
context and signal mask. In other words, a thread consists of only a program counter,
stack memory, stack pointer, registers and signal mask. All other elements, in particular
the virtual memory, are shared with the other threads of the same parent process. Threads
require less overhead than "forking" or spawning a new process because the system does
not initialize a new system virtual memory space and environment for the process,
therefore, the context switch is lightweight than for processes.

 5

pradeepv
Sticky Note
Nitpick: There is a typo here, it Operating System

ssangapu
Sticky Note
Marked set by ssangapu

File Descriptors

Signal Dispatch Table

Memory Map

Signal Mask
Program Counter

Stack Memory
Stack Pointer

Registers

Parent Process

File Descriptors

Signal Dispatch Table

Memory Map

Signal Mask
Program Counter

Stack Memory
Stack Pointer

Registers

File Descriptors

Signal Dispatch Table

Memory Map

Signal Mask
Program Counter

Stack Memory
Stack Pointer

Registers

LWP (Thread) LWP (Thread)
FIGURE 2: PROCESS VS THREAD (LWP)

The concept is that a single process can have a number of threads or LWPs and
everything that is shared between them except the machine context and signal mask. This
way, if a shared resource is modified in one thread, the change is visible in all other
threads. The disadvantage is that care must be taken to avoid problems where multiple
threads try to access a shared resource at the same time.

The Linux kernel does not distinguish between a process and a thread with regards to the
structure that defines it. Both use the task_struct definition and both are scheduled
globally by the operating system.

Terminology

Multi-threading – technique that allows a program or application to execute multiple
threads concurrently. Multi-threading can provide many benefits for applications: (1)
Good runtime concurrency (2) Parallel programming (multi-core SMP) can be
implemented more easily (3) Performance gains and reduced resource consumption
(compared to multi-process).

 6

ssangapu
Cross-Out

ssangapu
Sticky Note
Marked set by ssangapu

2.2. Kernel vs. User Space

In an embedded operating system like VxWorks, the kernel is very lightweight and does
not interfere excessively with DPL application programming and the context switch
between non-kernel tasks and kernel tasks is minimal.

In a non-embedded, multi-tasking operating systems, such as Windows or UNIX, there is
a solid separation between user space and kernel space. In fact, there are two different
modes of operation for the CPU(s): user mode, which allows normal user programs to
run; kernel mode, which allows special instructions to run that only the kernel can
execute such as I/O instructions, processor interrupts, etc...

When a user space program needs to execute a kernel call, it must make a system call,
which is a library function that starts out by executing a special trap (int 0x80)
instruction. This allows the hardware to give control to the kernel, which verifies the user
mode’s permissions and performs the requested task.

It should be obvious from the above text that there is a performance penalty in making a
system/kernel call in Linux since it has to switch from running the user space process to
executing its own kernel and back again. It is a good idea to keep the number of system
calls used in a program to a minimum and get each call to do as much as possible; for
example, read/write large amounts of data versus a single character at a time.

Kernel is sometimes referred to as drivers as normally, performance critical code, such as
drivers, are written in kernel mode. However, the current trend seems to be minimizing
driver logic and keeping the intelligence in user space with some communication
mechanism between kernel and user spaces.

2.3. Linux POSIX Threads (pThreads)

POSIX threads, commonly called pThreads, is a portable, standard threading API for
C/C++ that is supported on a number of different operating systems, including many
different flavors of Unix, MacOS, and Microsoft Windows.

With the introduction of Linux 2.6 kernel, the Native POSIX Thread Library (NPTL) was
included into the Linux distributions so that multi-threaded user-level application code
could make use of multiple processors or cores.

POSIX threads are built around a 1:1 threading model, which basically means that there
is one and the same entity that describes a thread or a process. In other words, each thread
(or process) has its own task_struct. The task_struct for a thread shares many of the
attributes such as memory mapping table (page mappings), signal dispatching table, and
set of file descriptor set (locks, sockets) with the parent process that contains it. What is
immensely important here is that each thread is independently schedulable by the Linux
scheduler and portable to symmetric multiprocessor environments. This also implies that
threads can block independently of each other.

 7

delang
Sticky Note
I'm not sure it's necessary to describe what a file descriptor set is, or at least I don't quite understand the mention of locks whenever a file descriptor is mentioned. FDs span all kinds of IO devices, basically anything that can be read or written. In today's environment, you are right that sockets are the primary IO device that a file descriptor represents and there may be use of FDs for some types of locks, but historically FDs were used as unique identifiers for any raw or block device, serial port, pseudo-ports, pipes, etc.

jzeller
Sticky Note
I hear, although I haven't verified this myself, that there is a way to run everything in supervisor mode. This might be nice because you could then access registers, etc., from user space and good performance. I know that Quanta had to write a whole bunch of functions to access things from user space when implementing diagnostics. It makes them create many times more extra debug functions. You'd still want kernel memory space / heap space protected from non-OS tasks but that may still work in this environment. What I mean is, you don't want to allow them to write into each others memory spaces and crashing things with bad pointers.

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Unmarked set by ssangapu

2.4. Scheduling

The DPL RAID application is designed on one fundamental assumption – the main RAID
application task is not pre-empted by another task within the application, but the tasks are
scheduled based upon their priority level.

Under VxWorks, the RAID application is non-pre-emptive, and system tasks are pre-
emptive. The non-preemptive behavior is achieved by increasing the RAID application
task’s priority level to more than that of the highest priority task’s (of RAID application),
but less than that of the system tasks. This way when a RAID application task under
VxWorks is scheduled to run, it will not be preempted by another RAID application task
until it relinquishes the CPU through a VxWorks system call. This was designed to
capitalize on the performance and embedded aspects of the core RAID engine.

In the Linux environment, the Linux processes are preemptive. In preemptive scheduling,
the scheduler lets a thread execute until a blocking situation occurs (usually a function
call which would block) or the assigned time slice elapses. Then it detracts control from
the thread without a chance for the thread to object. This is usually realized by
interrupting the thread through a hardware interrupt signal (for kernel-space threads) or a
software interrupt signal (for user-space threads), like SIGALRM or SIGVTALRM.

There are several scheduling policies that are applicable with the POSIX library,
however, the default preemptive, time-sliced model is sufficient for most non-realtime
environments.

 8

delang
Sticky Note
Is this new to POSIX threads? I've been out of programming in an Unix environment for almost 10 years now, but I don't recall any interrupt signal occurring when a thread or process gave up control. Like VxWorks, often a process/thread gives up control when invoking a system call, but of course the time slice could also expire in which case the process just gets swapped out and is not notified. Maybe that's different with POSIX threads, I'm not sure.

SIG 14 (SIGALRM) should only occur at least in a non-thread environment when a process has set an alarm previously and then blocks in some sort of system call.

Take this comment with a grain of salt, though, I've been out of this way too long :-)

kdenton
Note
I've never heard of a UNIX kernel that uses software interrupts to perform a context switch. Software interrupts are sent to the user process, which can choose to execute a handler function or ignore the interrupt entirely, neither of which would be appropriate in a normal preemptive environment.

In particular, SIGALRM and SIGVTALRM would not be appropriate for the kernel to use for a context switch since they are specifically intended for the user process to set time-outs for its own use.

jzeller
Sticky Note
by having the current RAID task run at a priority that is higher than all other RAID tasks. When the current task blocks, one of the lower priority waiting RAID tasks is selected for execution at which time its priority is raised and the previously running RAID tasks priority is lowered.

jzeller
Sticky Note
Not sure what this last sentence means or what its significance is.

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

Linux Scheduler

User
Space

Kernel
Space

File Descriptors

Signal Dispatch Table

Memory Map

Signal Mask
Program Counter

Stack Memory
Stack Pointer

Registers

Parent Process

File Descriptors

Signal Dispatch Table

Memory Map

Signal Mask
Program Counter

Stack Memory
Stack Pointer

Registers

File Descriptors

Signal Dispatch Table

Memory Map

Signal Mask
Program Counter

Stack Memory
Stack Pointer

Registers

LWP (Thread) LWP (Thread)

FIGURE 3: THREADS/PROCESSES CONTROLLED BY THE LINUX SCHEDULER

Even though the above diagram depicts a process and threads in user-space, they can also
reside in kernel space. This main purpose of the diagram is to illustrate that the Linux
kernel scheduler is responsible for all scheduling, both processes and threads (LWPs).

 9

3. Operating System Abstraction
In DPL, there is a Virtual Kernel Interface (VKI) and Virtual Network Interface (VNI)
layer that is used as an abstraction layer between the operating system and the RAID
application. A similar abstraction layer VKI/VNI will exist for the Linux VMs. This will
exist in the user space since most of the application code in Linux that is written for OSA
will exist in user space plus there will be no licensing issues with that direction.

VKI/VNI interfaces can be categorized based upon the underlying components they
interact with. In brief, VKI/VNI can be categorized as follows:

• Interfaces using direct Linux system calls

• Interfaces using kernel module to get kernel services

• Interfaces that are implemented in user application itself and does not depend
upon lower layers

• Interfaces that combine multiple system calls as a single call to ease development

The advantage of a VKI/VNI layer is to ease portability such that the operating system
interface is called from one location rather than from all the users of that OS service.
Also, it prevents the developer from misusing or abusing the system calls. For example,
there could be a system call where one of the options of the parameters is not allowed in
this specific environment – in that case, the VKI layer can prevent that from happening.

The VKI layer will also be used to wrap the POSIX thread API. This is a contentious
subject area as the POSIX thread API is already a standard. However, code developed by
CFW will only allow a subset of the features of POSIX; in fact, some of the options of
the Linux POSIX library are non-portable outside of Linux. For example, the mutex
portion of the POSIX library in Linux provides multiple types of mutexes (fast, recursive,
and error-checking), however, only the fast mutex is portable and the other two are not.
In addition, combining multiple POSIX functions in a single call to ease developer usage
should be considered.

Note that the ease of the VKI/VNI layer will be mandated for code developed by the
CFW organization. It will not be enforced for library packages or organizations outside of
the CFW team such as the DML applications.

Currently all the VNI calls are defined in the vniWrap.h header file in DPL. These calls
can be split in to two sections: VNI RPC calls and VNI non-RPC calls.

The VNI implementation for Linux should implement all the necessary calls and provide
the exact same functionality that is currently available on VxWorks implementation. For
two non-RPC macros VNI_HOST_GET_BY_ADDR(addr, name) and
VNI_HOST_GET_BY_NAME(name) the return values in Linux are different from that in
VxWorks. The return values should be made compatible to that in VxWorks.

 10

pradeepv
Sticky Note
I am not sure if we need to implement these layers in Linux. If the objective is to abstract the code from OS interfaces then there are multiple open source libraries available which serve this purpose. One library that is widely used is ACE:

http://www.cse.wustl.edu/~schmidt/ACE-overview.html

We can explore the possibility of using this library instead of implementing VKI/VNI over POSIX.

delang
Sticky Note
Use

jzeller
Sticky Note
Another reason for wrapping that isn't mentioned is the ability to add tracing, debugging, and functionality beyond what the OS provides.

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

4. Licensing Guidelines
Ignore this section for now – I have the material but I would like Ken Gibson to approve
my summary

 11

5. Linux Programming Guidelines for CFW
Almost all of the code written by CFW for the Linux OSes will reside in user-space.
There will be some kernel modules, especially for the SCSI coupling driver that will
reside in kernel space but most of the code will exist in user space. Here are few of the
advantages and disadvantages with user-space code:

Advantages Disadvantages

Debugging is easier than with kernel modules. In
other words, a crash in the module will not result
in rebooting the OS

High latency/context switch when
communicating with system calls

Open source issues are manageable

FIGURE 4: ADVANTAGES/DISADVANTAGS OF USER-SPACE CODE

The code should make use of POSIX threads with VKI abstractions – this will enable the
code to be SMP-complaint and that option can be used, if necessary. In addition, all
kernel/system calls should be abstracted via the VKI/VNI layer.

The initial direction for the user-space program for the Linux VMs is to use (POSIX)
threads versus creating multiple processes. Granted, this direction will most likely
change/evolve over time as more design and functionality matures for the Linux VMs.
Multiple processes can belong to a single program but given the heavyweight attributes
associated with multiple processes, this will only be introduced when deemed necessary.

The scheduling policy will be time-sliced, preemptive environment. The priorities of the
threads of the process will not change from the default. Once again, this can be examined
as the OSA project progresses.

The guidelines for the threads will follow functional separation for the most part. In other
words, functionality with a distinct purpose is created as a task. It may optionally create
multiple threads. For example, the health-check service will be created as a thread; the IP
communication layer (RAS/IPIVM) for the VMs will be created as multiple threads.

All threads within a process share the same address space so only related tasks should be
added as part of the same process. In this situation, all tasks are part of the ESG CFW
OSA functionality. Do note that since the address space is shared between the tasks, care
must be taken to protect critical sections. As mentioned above, if properly coded, this
implementation can automatically take advantage of SMPs..

 12

jzeller
Sticky Note
I disagree with this except for performance related code (if that is still a priority for us). Uses multiple processes and preventing other processes / threads access to your stack and heap space will provide very good protection against errant code. This is something that is lacking in our current VxWorks implementation and it sometimes leads to difficult to find / solve bugs. Sometimes these bugs go undetected for a long time whereas they would have been caught right away if this type of a memory scheme was setup.

ssangapu
Sticky Note
Unmarked set by ssangapu

In general, kernel threads should only be used for highly optimized functionality that
needs direct control of hardware devices. Kernel development is much more difficult than
user space work because of the lack of memory protection and debugability. In addition,
kernel modules must be released to the open-source community under General Public
License (GPL).

FIGURE 5: CFW OSA ENVIRONMENT FOR THE LINUX VIRTUAL MACHINES

Guidelines for kernel modules are not mentioned in the document. However, that can be
added as the document evolves.

 13

6. Linux Concepts
This section lists useful constructs in Linux that would be applicable for OSA CFW - it is
not exhaustive by any means. As with the rest of the document, this portion will be
updated as the OSA program progresses.

Note that even though the interfaces are being referenced directly in the below sub-
sections, they must be called with a VKI/VNI interface in the CFW code. It is done in
that manner here since the VKI/VNI layer is not present in the Linux VMs. To some
extent, these sub-sections should be used for that VKI/VNI layer.

6.1. System calls

In Linux, a system call is the fundamental interface between an user process and the
Linux kernel. It allows user processes to request services from the operating system.
There are blocking (asynchronous) and non-blocking (synchronous) system calls. System
calls are not invoked directly; instead C library wrapper functions perform the steps
required (such as trapping to kernel mode) in order to invoke the system call. From the
developer standpoint, it looks the same as invoking a normal library function.

More information about system functions can be gathered by looking at their header files,
which reside in /usr/include and /usr/include/sys. Also, could be found by invoking the
manual on system calls (man syscalls).

Private system files that should not be directly included from the user programs are
located in /usr/include/bits, /usr/include/asm, and /usr/include/linux. They are included
from the other “main” system files that reside /usr/include and /usr/include/sys.

6.1.1. Error Codes

Majority of system calls return zero if the operation succeeds or a nonzero value if the
operation fails. Most system calls use a special variable named errno to store additional
information in case of failure.

Error values are integers; possible values are given by preprocessor macros, by
convention named in all capitals and starting with “E”—for example, EACCES and
EINVAL. Always use these macros to refer to errno values rather than integer values.
Include the <errno.h> header if you use errno values. GNU/Linux provides a convenient
function, strerror, that returns a character string description of an errno error code, suitable
for use in error messages. Include <string.h> if you use strerror.

One possible error code that you should be on the watch for, especially with I/O
functions, is EINTR. Some functions, such as read, select, and sleep, can take significant
time to execute. These are considered blocking functions because program execution is
blocked until the call is completed. However, if the program receives a signal while
blocked in one of these calls, the call will return without completing the operation.

 14

delang
Sticky Note
Aren't these backward? I.e. blocking=synchronous, non-blocking=async?

delang
Sticky Note
These are typically referred to as "man pages" or "manual pages"

kdenton
Note
VxWorks also uses a global variable called errno, but it is used a little differently than in Linux or UNIX. I think errno will have to be abstracted, but we might be able to use the macros in errno.h directly. We should be using them now in many cases where we are not.

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

In this case, errno is set to EINTR. Usually, you’ll want to retry the system call in this
case.

(Note: Need to investigate if VKI should abstract these values or not.)

6.2. POSIX Threads

Linux implements the POSIX standard thread API (known as pthreads). All thread
functions and data types are declared in the header file <pthread.h>. The pthread
functions are not included in the standard C library; instead, they are part of libpthread so
“-lpthread” should be used at the command line to link the library - note that this will be
handled by the makefile(s). The -lpthread says to link with the system pthread library.

There is thread ID of type pthread_t.

6.2.1. Thread Creation

pthread_create creates a new thread and takes the following 4 parameters:

 Pointer to pthread_t

Pointer to thread attribute object. Attributes such as scheduling policy, scope,
stack address, and stack size can be specified. The VKI layer will prevent some of
the options allowed for the attribute object.

Pointer to thread function “void* (*) (void*)” – this is the starting function that is
called when the thread (NWP) is created.

 Thread argument value of void* (this is passed into the above thread function)

6.2.2. Thread Specific Data (TSD)

Programs often need memory for a given thread that should not be shared with other
threads. Since threads share one memory space of the parent process, POSIX provides a
way to possess memory that is private to individual threads. This memory is called
“thread specific data” (TSD) and there is a key associated with such memory. The keys
are common to all threads, but the value associated with a given key can be different in
each thread.

pthread_key_create creates a key with a passed-in destroy function that is called on
cleanup

pthread_key_setspecific is used to change the value associated with the key

pthread__getspecific is used to return the value of the associated key

When the thread is destroyed (when thread terminates or via pthread_exist), the destroy
function is called with the value of the key as the argument.

 15

delang
Sticky Note
I'm not sure what you mean by abstract these values, but errno values are so well-known I don't see any reason to avoid using them directly. As a matter of fact, it would actually confuse programmers used to working in Unix/Linux environments...checking errno values is very common when making system calls.

jzeller
Sticky Note
In our DPL, people just use the return values to tell if an OS / VKI call failed. They don't look at the errno or try to interpret it.

ssangapu
Sticky Note
Marked set by ssangapu

ssangapu
Sticky Note
Marked set by ssangapu

pthread_key_thread de-allocates a TSD key but the destroy function is not called. This
does not seem like a good interface to be provided by VKI.

It might be worthwhile to present an interface where the thread specific data is created at
the time the thread is created. Instead of calling the above interfaces separately from the
create routine and individually as specified above, the VKI layer can provide one
interface that not only creates a thread but also sets up the thread specific data. This will
not only allow the developer to understand the memory model at the time of the thread
creation but also prevent misuse of the steps required to obtain/destroy thread specific
data.

6.2.3. Thread Deletion

Threads can be terminated explicitly by calling pthread_exit or by letting the function
return.

All cleanup handlers that have been set for the calling thread with pthread_cleanup_push
are executed.

These interfaces need to be analyzed for VKI inclusion.

6.3. Synchronization

Synchronization is the methods for ensuring that multiple threads do not accidently
modify the data that another thread is using. This can be an issue for functionality that is
multi-threaded as threads of the same parent process have the same memory space. The
race condition of multiple threads trying to access same data could result in either stale
access or a crash (segmentation fault).

To eliminate race conditions, operations must be atomic. Atomic operation is indivisible
and uninterruptible; not pause or be interrupted until it completes and no other operation
can take place meanwhile.

Critical section is that chunk of code and data that must be allowed to complete
atomically with no interruption. They should normally be short as possible since
concurrency of the program is affected if they are not. All data structures that can be
accessed by multiple threads must be protected or locked.

6.3.1. Mutual Exclusion

The mutual exclusion lock is the simplest synchronization mechanism. It provides a way
to lock the critical section such that only one thread can access it at any given time.
POSIX provides pthread_mutex_init, pthread_mutex_lock, and pthread_mutex_unlock
for this purpose. There is also a non-blocking mutex test called pthread_mutex_trylock.
This will test to see if the mutex is locked; if it is not locked, then it will lock, else it will
return immediately with error code EBUSY. This is a good mechanism to use if the
program wants to perform some other task when it’s locked.

 16

kdenton
Note
Does Linux have thread-safe STL containers?

ssangapu
Sticky Note
Marked set by ssangapu

6.3.2. Semaphores
Semaphores can also be used to protect critical sections. Mutexes are a restrictive form of
semaphores called binary semaphore, where the section can either be locked or unlocked.
Semaphores are perfect for a situation there is a need to count protected information.
sem_wait and sem_post are defined in semaphore.h and are used for this purpose.

There are some clear distinctions between mutexes and semaphores that are worth noting:

1) With mutexes, thread that owns it is responsible for freeing it, however, with
semaphores, any thread can free it.

2) Semaphores are system-wide and remain in the form of files on the filesystem,
unless otherwise cleaned up. Mutex are process-wide and get cleaned up
automatically when a process exits.

3) Mutex are lighter when compared to semaphores. What this means is that a
program with semaphore usage has a higher memory footprint when compared to
a program having Mutex.

4) The nature of semaphores makes it possible to use them in synchronizing related
and unrelated process, as well as between threads. Mutex can be used only in
synchronizing between threads and at most between related processes.

There are several locks in DPL such as MasterTransactionLock that can used globally
across the application. These type of overall locks will be introduced in the Linux VMs,
depending on the requirement, as the OSA program progresses.

6.3.3. Condition Variables

A condition variable is a variable of type pthread_cond_t and is used with the appropriate
functions for waiting and continuation. The condition variable mechanism allows threads
to suspend execution and relinquish the processor until some condition is true. A
condition variable must always be associated with a mutex to avoid a race condition.Any
mutex can be used, there is no explicit link between the mutex and the condition variable.
pthread_cond_init, pthread_cond_wait, pthread_cond_signal, and
pthread_cond_broadcast are all used for this purpose.

6.4. Signals

Signals are UNIX mechanisms to interrupt a running process and to communicate with
that process. More on this will be provided in a later iteration.

6.5. Communication between processes (IPC)

This section will be covered in later iterations of the document as currently, the design
will be based on a single process with multiple threads.

 17

6.6. Debugging in Linux

GNU Debuggers (GDB) is the debugger used by most Linux programmers. You can use
GBD to set through your code, set breakpoints, and examine the values of local variables.

To use GDB, compile the code with debugging information enabled. The –g switch on
the compiler allows that to occur. The compiler generates extra information in the object
files and executables, which is useful when the gdb is actually executed.

 18

7. Start of Day on Domain0

Processes are created via startup scripts kicked off by the init process. This is done with
/etc/rc* scripts and newer systems use upstart, which is event based (More on this
information in later revisions).

Since threads will be defined by functionally – here are a list of threads that are
applicable on Domain0 so far:

 Health-check monitoring thread

 Virtual watchdog monitoring thread (design has yet to be matured)

 IPIVM threads (for IP communication between VMs)

 General threads needed for processing requests from other VMs

Similar to non-RW threads

 Waits on semaphore or queue and executes if a request arrives

Note that these threads will be created as start-of-day processes in Domain0.

 19

pradeepv
Sticky Note
We may need to write number of scripts in the dom-0 and the application VM running on Linux. We need to evolve this guidelines to cover scripting best practices, what scripting languages to use etc.

ssangapu
Sticky Note
Marked set by ssangapu

 20

8. References / Resources
Here are many good resources on POSIX threads:

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

https://computing.llnl.gov/tutorials/pthreads/

If the development environment or Linux servers are not ready, VMware software could
be used on any Windows desktop platform to run Linux. It could be used for education,
experiments as well as coming up to speed to develop for the OSA program.

VMPlayer can be downloaded from http://www.vmware.com/products/player/. After
which, Linux images (such as CentOS) can be downloaded from
http://www.thoughtpolice.co.uk/vmware/.

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html
https://computing.llnl.gov/tutorials/pthreads/
http://www.vmware.com/products/player/
http://www.thoughtpolice.co.uk/vmware/
pradeepv
Sticky Note
I think we need to add a section on logging and tracing. Since most of the code we write for these VMs run as a daemons we cannot use console to log messages, we need to extend this document to include usage of syslog facility in Linux. If we choose to use ACE like library we get OS independent logging and tracing facilities.

Some application running on these systems need configuration data, in DPL we store the configuration data in stable store and NVSRAM we need a mechanism on the Linux VM to store application specific configuration data. We can also consider using open source tools like sqllite (http://www.sqlite.org/index.html) to store configuration data. sqllite is a light weight SQL targeted for embedded systems, it also provides C/C++ interfaces which are easy to use and portable across multiple platforms.

ssangapu
Sticky Note
Marked set by ssangapu

	 Purpose/Goals
	2. Operating System Concepts
	2.1. Tasks vs. Processes/Threads
	2.2. Kernel vs. User Space
	2.3. Linux POSIX Threads (pThreads)
	2.4. Scheduling

	3. Operating System Abstraction
	4. Licensing Guidelines
	5. Linux Programming Guidelines for CFW
	6. Linux Concepts
	6.1. System calls
	6.1.1. Error Codes

	6.2. POSIX Threads
	6.2.1. Thread Creation
	6.2.2. Thread Specific Data (TSD)
	6.2.3. Thread Deletion

	6.3. Synchronization
	6.3.1. Mutual Exclusion
	6.3.2. Semaphores
	6.3.3. Condition Variables

	6.4. Signals
	6.5. Communication between processes (IPC)
	6.6. Debugging in Linux

	7. Start of Day on Domain0
	8. References / Resources

