Document Number: 45016-00

Q Document Iteration.Revision.: A.2

N

Engenio Storage Group, LS| Corporation

THIS DOCUMENT AND INFORMATION HEREIN IS THE PROPERTY OF
Engenio Storage Group, LSI Corporation
ALL UNAUTHORIZED USE AND REPRODUCTION IS PROHIBITED.

OSA Programming
Guidelines

Author: Satish Sangapu
Creation Date: 08/30/209

Copyright, 2009 by Engenio Storage Group, LSI Corporation,
All Rights Reserved, Printed in U.S.A. Confidential, Unpublished Property of Engenio Storage Group, LSI Corporation

050504G

OSA Programming Guidelines

Document: 45016-00
Document Iteration.Revision: A.2

Change Sheet

Rev. Date Section Change
Al 08/31/2009 All Initial Revision_ — used for internal review
A.2 09/27/2009 1.2,1.3 Introduced Related Documents and Future Topics sub-sections
2.4 Clarified how DPL runs its tasks
3 Additional guidelines for OS abstractons,
4 Added Licensing Guidelines
5 Split the section into user-space and kernel-space guidelines

Engenio Storage Group, LSI Corporation ii
Confidential Information

- {Formatted: Font: Not Italic

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

Table of Contents

L. INTRODUGCTION L..oiiitieitieetie ettt ettt te st teesteeeteesteesae e s s beasteesseeaseesseesaeesbseassesseeaaseesseanseenbeesbesssesaseenseenteenteenseenseesneenes 1
1.0 PUIPOSE/GOAIS ...ttt ettt b ekt h e bt eh e ee bt e s b e et e ek e e a b e e b e e AR e e ket e e e e R et eh et n e bt e beenRe e neennee e
1.2 Related Documents.
IR B U (U= o] o (o= SRR

2. OPERATING SYSTEM CONCEPTS ...ttt ettt s sttt e e ettt e e e e s s bbbt e e e e e nbb e e e e e sansbbaaeeessbsaeeanannns 3
2.1 TaSKS VS. PrOCESSES/TRIEAUSueeeiiieitiie ittt ettt ettt et e sttt e e et e e e et e e s eae e e e e taeeessaeeasaeessaeesnsseeenneeessreas 3

2.2 Kernel vs. User Space................. .4
2.3 Linux POSIX Threads (pThreads).. .5
b S Tod a 1=To [0 11T T STV PTUTOUU P USTPROPNt 5
3. OPERATING SYSTEM ABSTRACTIONiiiiiiiiiiitiii e e 7
4. LICENSING GUIDELINESottt ettt h ettt e st e s st e s st et e eat e e st e e e be e e eaneeeenneeenane 8
5. LINUX PROGRAMMING GUIDELINES FOR CFW.....cccitiiiiitiiiie ittt sttt st iee st sibeessnnee e 9
5.1 USEr SPACE GUIAEINEScoiiiiiiiii i s s e s e sa e 9

5.2 Kernel mode Guidelines....

6. LINUX CONCEPTS............... .12
LIRSS (=Y g I o PP TP PR 12
[0 o T o T [SRR 12

6.2 POSIX Threads
(30 R I =TT IO =T T IO OPR TP 13
6.2.2 Thread SPECIfiC DALA (TSD)uuieiuieeeiieeeiieeiiieeeieeeeeeeesteeesrteeesneeeesneeesseeesbeeeasaeesnseeessneeanseeeanneeeannees 13
6.2.3 Thread Deletion............... ...13

6.3 Synchronization...........13
6.3.1 Mutual Exclusion.

6.3.2 Semaphores........... .14

6.3.3 Condition Variables .14

LS o - | PSSR 14

6.5 Communication between ProCeSSES (IPC)cuiiiiiiiiiiieie ettt b et e be b s neeane s 14

6.6 DEDUGGING 1M LINUX...iiiiiiiie et b e sbe e s n s e saneeane s 14

7. START OF DAY ON DOMAINDocuiiiiiiitiiieie e bbbt b 16

8. REFERENCES / RESOURGCES ...ttt ettt ettt ettt e sat e e ebe e e et e e s ettt e e s be e e e saneesbb e e e bbeesnneenan 17
Engenio Storage Group, LSI Corporation iii

Confidential Information

http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
https://computing.llnl.gov/tutorials/pthreads/�
https://computing.llnl.gov/tutorials/pthreads/�
http://www.vmware.com/products/player/�
http://www.vmware.com/products/player/�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
https://computing.llnl.gov/tutorials/pthreads/�
https://computing.llnl.gov/tutorials/pthreads/�
http://www.vmware.com/products/player/�
http://www.vmware.com/products/player/�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
https://computing.llnl.gov/tutorials/pthreads/�
https://computing.llnl.gov/tutorials/pthreads/�
http://www.vmware.com/products/player/�
http://www.vmware.com/products/player/�

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

List of Figures

Figure 1: AHHDULES Of 8 PTOCESSc.eiiiiiiiei e e s ae e be e e e 3
Figure 2: ProcesS VS THIEAU (LWP)uiiiieieieiiieitie sttt ettt b e bt e he e b e s hb e st et e et e et e e be e ke e beesreeaneesnee e 4
Figure 3: Threads/Processes controlled by the LINUX SChedUIETcoiiiiiiiiiii e 6
Figure 4: Advantages/Disadvantages Of USEr-SPace COUEcccuiiiuiiiieriieiieiie ettt nes 9
Figure 5: CFW OSA Environment for the Linux Virtual Machings............ccceeiiieriiie i 10

List of Tables

Table 1: RElAtEA DOCUMENLScccviiiiitieeeitieeeitieeetee e sttt e sttt e e ssteeesseeeasteeeasseeeaseeeanseeesnseeeanteeesnseeenseeesnseeesaneeeeaneeesnneeennns 1

Engenio Storage Group, LSI Corporation iv
Confidential Information

http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

1. INTRODUCTION

1.1 Purpose/Goals

Currently, all the controller firmware developers comprehend the non-pre-emptive multi-tasking model that exists
with Data Path Layer (DPL) in VxWorks. In addition, it is known that the VxWorks kernel is very lightweight and
normally does not interfere with embedded RAID programming. Both of these environments will change for the
Open Storage Architecture (OSA) Linux virtual machines.

Therefore, this document is meant to aid development in an Open Storage Architecture environment that features
one or more Linux virtual machines. It will present high-level differences between the current environment and the
new Linux environment. Guidelines such as these must be documented and propagated to the development
organization or else, the code-base will eventually lead to incompatible implementations resulting in unstable and
un-maintainable system.

The initial sections in the document will give an overview of key operating system concepts, especially ones
specific to the Linux environment. It will attempt to compare/contrast Linux, with its pre-emptive task scheduling
model with a distinct kernel and user space separation, to that of VxWorks. Finally, the document will conclude
with programming guidelines for the CFW organization, catered to the embedded storage environment, to develop
on the Linux virtual machines in OSA. Note that at this time, embedded Linux operating system has not been
seriously considered for any of the virtual machines.

Detailed information about each of the topics can be referenced online or in a textbook; however, note that some
of the online resources are stale and in some situations, completely inaccurate.

This document is meant to be refined as the design and architecture matures for the Linux virtual machines,
especially during the early phases of development. Therefore, please note items that should be covered as part of
this document as that material can be covered in future versions.

- ‘[Formatted: Indent: Left: O pt

1.2 Related Documents

Document Number Name of Document
44682-00 OSA Development and Build Environment FAM (PR
200012473)
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23 | Coding Standards Document

Table 1: Related Documents

OSA Development and Build Environment FAM documents the source code management system, build
environment, compiler details, and packaging tools/process for the OSA environment. Moreover, this document
complements the Coding Standards Document.

Engenio Storage Group, LSI Corporation 1
Confidential Information

http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�
http://cfwweb.lsi.com/docgen/docgen_view.php?docid=23�

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

1.3 Future Topics

Future topics that can be covered as part of this document:

1) Initial high-level component dependencies for Domain0

2) SOD sequence for components in Domain0. (ODP, ODC, DOMI, RAS/IPIVM, SOD component, initial
Hypervisor related activities) [Maybe-Perhaps this doesn’'t make sense for this type of document....]

3) .There will be many scripts on Domain0 and Service VM. This document may need to be evolved to cover

4) Evaluate ACE (Adaptive Communication Environment) to understand how it can used in this environment. It
could be used to abstract the OS dependencies as well as use tried and true patterns for various
functionalities, such as concurrency, IPC, and memory management,

77 ~ {Formatted: Font: Helvetica

A
5) Research about Linux having thread-safe STL containers.

6) Research if the application code should run as a daemon since there will not be standard in/out usage and
will be run in the background until the Linux OS reboots.

7) Extend the kernel guidelines, signals, and IPC sections.,

Engenio Storage Group, LSI Corporation 2
Confidential Information

ffffffffffffffffffffffff - ‘[Formatted: Font: Helvetica

- ‘[Formatted: Font: Helvetica, Not Highlight

o ‘[Formatted: No bullets or numbering

- ‘[Formatted: Font: Helvetica, Not Highlight

<«

L J (N N

. \[Formatted: No bullets or numbering

Formatted: List Paragraph, No bullets or

numbering, Adjust space between Latin and

Asian text, Adjust space between Asian text and
o numbers

Formatted: List Paragraph, No bullets or
PN numbering, Adjust space between Latin and
R Asian text, Adjust space between Asian text and
RN numbers

\
\\{ Formatted: Font: Helvetica
{Formatted: Indent: Left: 0 pt

(N

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

2. OPERATING SYSTEM CONCEPTS

2.1 Tasks vs. Processes/Threads

In VxWorks, every unit of execution is referred to as a task. In Linux, a process defines the unit of execution which
the eperation-operating system uses for its scheduling purposes. Each process is identified by its unique process
ID, sometimes called pid.

A process on Linux system consists of the following fundamental elements: memory mapping table (page
mappings), signal dispatching table, set of file descriptor set (locks, sockets), signal mask and machine context
(program counter, stack memory, stack pointer, registers). On every process switch, the kernel saves and
restores these ingredients for the individual processes, therefore, context switch is heavyweight.

Memory Map

Signal Dispatch Table

File Descriptors

Signal Mask
Program Counter
Stack Memory
Stack Pointer
Registers

Process

Figure 1: Attributes of a Process

Linux threads are lightweight processes (LWP) and represent a finer-grained unit of execution than processes.
Threads share all of the above attributes except the machine context and signal mask. In other words, a thread
consists of only a program counter, stack memory, stack pointer, registers and signal mask. All other elements, in
particular the virtual memory, are shared with the other threads of the same parent process. Threads require less
overhead than "forking" or spawning a new process because the system does not initialize a new system virtual
memory space and environment for the process, therefore, the context switch is lightweight than for processes.

Engenio Storage Group, LSI Corporation 3
Confidential Information

OSA Programming Guidelines

Document: 45016-00
Document Iteration.Revision: A.2

Memory Map

Signal Dispatch Table

File Descriptors

Signal Mask
Program Counter
Stack Memory
Stack Pointer
Registers

Memory Map

Signal Dispatch Table

File Descriptors

Signal Mask
Program Counter
Stack Memory
Stack Pointer
Registers

LWP (Thread)

Parent Process

Memory Map

Signal Dispatch Table

File Descriptors

Signal Mask
Program Counter
Stack Memory
Stack Pointer
Registers

LWP (Thread)

Figure 2: Process vs Thread (LWP)

| The concept is that a single process can have a number of threads or LWPs and everything thatis shared
between them except the machine context and signal mask. This way, if a shared resource is modified in one
thread, the change is visible in all other threads. The disadvantage is that care must be taken to avoid problems
where multiple threads try to access a shared resource at the same time.

The Linux kernel does not distinguish between a process and a thread with regards to the structure that defines it.
| Both use the task_struct definition and both are scheduled globally by the operating system.

Terminology

Multi-threading — technique that allows a program or application to execute multiple threads concurrently. Multi-
threading can provide many benefits for applications: (1) Good runtime concurrency (2) Parallel programming
(multi-core SMP) can be implemented more easily (3) Performance gains and reduced resource consumption

(compared to multi-process).

2.2 Kernel vs. User Space

In an embedded operating system like VxWorks, the kernel is very lightweight and does not interfere excessively
with DPL application programming and the context switch between non-kernel tasks and kernel tasks is minimal.

Engenio Storage Group, LSI Corporation

Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

In a-non-embedded, multi-tasking operating systems, such as Windows or UNIX, there is a solid separation
between user space and kernel space. In fact, there are two different modes of operation for the CPU(s): user
mod___e, which allows normal user programs to run; kernel mode, which allows special instructions to run that
only the kernel can execute such as /O instructions, processor interrupts, etc...

When a user space program needs to execute a kernel call, it must make a system call, which is a library function
that starts out by executing a special trap (int 0x80) instruction. This allows the hardware to give control to the
kernel, which verifies the user mode’s permissions and performs the requested task.

It should be obvious from the above text that there is a performance penalty in making a system/kernel call in
Linux since it has to switch from running the user space process to executing its own kernel and back again. It is
a good idea to keep the number of system calls used in a program to a minimum and get each call to do as much
as possible; for example, read/write large amounts of data versus a single character at a time.

Kernel is sometimes referred to as drivers as normally, performance critical code, such as drivers, are written in
kernel mode. However, the current trend seems to be minimizing driver logic and keeping the intelligence in user
space with some communication mechanism between kernel and user spaces.

2.3 Linux POSIX Threads (pThreads)

POSIX threads, commonly called pThreads, is a portable, standard threading API for C/C++ that is supported on
a number of different operating systems, including many different flavors of Unix, MacOS, and Microsoft
Windows.

With the introduction of Linux 2.6 kernel, the Native POSIX Thread Library (NPTL) was included into the Linux
distributions so that multi-threaded user-level application code could make use of multiple processors or cores.

POSIX threads are built around a 1:1 threading model, which basically means that there is one and the same
entity that describes a thread or a process. In other words, each thread (or process) has its own task_struct. The
task_struct for a thread shares many of the attributes such as memory mapping table (page mappings), signal
dispatching table, and set of file descriptor set {locks,-sockets)-with the parent process that contains it. What is
immensely important here is that each thread is independently schedulable by the Linux scheduler and portable to
symmetric multiprocessor environments. This also implies that threads can block independently of each other.

2.4 Scheduling

The DPL RAID application is designed on one fundamental assumption — the main-RAID application tasks is-are
not pre-empted by another RAID task-within-the-application, but the tasks are scheduled based upon their priority
level.

Under VxWorks, the RAID application is non-pre-emptive, and system tasks are pre-emptive. The non-preemptive
behavior is achieved by having the current RAID task run at a priority that is higher than all other RAID tasks.
When the current RAID task blocks, one of the lower priority waiting RAID tasks is selected for execution, at
which time its priority is raised and the previously running RAID task’s priority is lowered. This was designed to
capitalize on the performance and embedded aspects of the core RAID engine.

In the Linux environment, the Linux processes are preemptive. In preemptive scheduling, the scheduler lets a
thread execute until a blocking situation occurs (usually a function call which would block) or the assigned time
slice elapses. Then it detracts control from the thread without a chance for the thread to object. There are several
scheduling policies that are applicable with the POSIX library, however, the default preemptive, time-sliced model

is sufficient for most non-realtime environments.

Engenio Storage Group, LSI Corporation 5
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

™
Memory Map
Signal Dispatch Table
File Descriptors
Signal Mask
Program Counter
Stack Memory
Stack Pointer
Registers
I
Parent Fjrocess User
| ~
Memory Map I Memory Map Space
I
Signal Dispatch Table | Signal Dispatch Table
I
File Descriptors | File Descriptors
-
1 Signal Mask i l Signal Mask
| Program Counter | I Program Counter
} Stack Memory } | Stack Memory
1 Stack Pointer } | Stack Pointer
i Registers i | Registers
,,,,,,,,,, i |
N\
LWP (Thread) | LWF (Thread)
N I Ve
N 7/
N\ | / -
\ Kernel
Space
_J

Figure 3: Threads/Processes controlled by the Linux Scheduler

Even though the above diagram depicts a process and threads in user-space, they can also reside in kernel
space. This main purpose of the diagram is to illustrate that the Linux kernel scheduler is responsible for all
scheduling, both processes and threads (LWPs).

Engenio Storage Group, LSI Corporation 6
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

3. OPERATING SYSTEM ABSTRACTION

In DPL, there is a Virtual Kernel Interface (VKI) and Virtual Network Interface (VNI) layer that is used as an
abstraction layer between the operating system and the RAID application. A similar abstraction layer VKI/VNI will
exist for the Linux VMs. This will exist in the user space since most of the application code in Linux that is written
for OSA will exist in user space plus there will be no licensing issues with that direction.

VKI/VNI interfaces can be categorized based upon the underlying components they interact with. In brief, VKI/VNI
can be categorized as follows:

e Interfaces using direct Linux system calls

e Interfaces using kernel module to get kernel services

* Interfaces that are implemented in user application itself and does not depend upon lower layers

* Interfaces that combine multiple system calls as a single call to ease development

The advantage of a VKI/VNI layer is to ease portability such that the operating system interface is called from one <~ - - - Formatted: Space After: 0 pt, Don't adjust
location rather than from all the users of that OS service. Also, it prevents the developer from misusing or abusing space between Latin and Asian text, Don't
the system calls. For example, there could be a system call where one of the options of the parameters is not adjust space between Asian text and numbers
allowed in this specific environment — in that case, the VKI layer can prevent that from happening. Another reason - { Formatted: Font: Helvetica, Not Highlight
for wrapping through VKI,is the ability to add tracing, debugging, and functionality beyond what the OS provides. { Formatted: Not Highlight

“The VKI layer will also be used to wrap the POSIX thread API. This is a contentious subject area as the POSIX {Formatted Font: Helvetica, Not Highlight
thread API is already a standard. However, code developed by CFW will only allow a subset of the features of ‘[Formatted Font: (Default) Tahoma

U

POSIX; in fact, some of the options of the Linux POSIX library are non-portable outside of Linux. For example, the
mutex portion of the POSIX library in Linux provides multiple types of mutexes (fast, recursive, and error-
checking), however, only the fast mutex is portable and the other two are not. In addition, combining multiple
POSIX functions in a single call to ease developer usage should be considered.

Note that the ease-use of the VKI/VNI layer will be mandated for code developed by the CFW organization. It will
not be enforced for library packages or organizations outside of the CFW team such as the DML
applicationsteam(s). Currently, the VKI in DPL is VxWorks-centric; the goal would be to use the same VKI to fit
Linux abstractions but some interfaces may need to be made more general to accommodate both OSes.

Application code should not include OS header files but rather include VKI header files that include OS header
files. Moreover, there will be a common definition file that will identify primitive types — they will be defined with the
number of bytes in the definition name, such as INT32, CHARS8, UINT32, ULONG64 — this will ease portability.

Currently all the VNI calls are defined in the vniWrap.h header file in DPL. These calls can be split in to two
sections: VNI RPC calls and VNI non-RPC calls.

The VNI implementation for Linux should implement all the necessary calls and provide the exact same
functionality that is currently available on VxWorks implementation. For two non-RPC macros
VNI_HOST_GET_BY_ADDR(addr, name) and VNI_HOST_GET_BY_NAME(name) the return values in Linux are
different from that in VxWorks. The return values should be made compatible to that in VxWorks.

Engenio Storage Group, LSI Corporation 7
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

4. LICENSING GUIDELINES

Kernel resident modules are released as open source under the GPL. User-space applications may remain
closed. However, including other GPL libraries or SW modules in a Linux application may trigger the GPL
requirement. This excludes .h files, run-time libraries and other libraries that are distributed with Linux. However,
libraries that are not distributed as part of Linux and distributed as open-source components work differently.
LGPL (L stands for Lesser or Library) was created for open source libraries and removes the viral clause in GPL.
You can link LGPL libraries into a closed application. However, many open source libraries are available and
distributed under GPL and they are viral. A common mistake is to assume that an open source package is a
library covered under LGPL.

Furthermore, if LSI develops a kernel module, that kernel module is subject to GPL, however, LS| owns the IP
from that module. Since LS| owns the IP, we can use the same kernel source in our closed application without
contaminating the closed application. In other words, the kernel module can be distributed with multiple sets of
licenses, one with GPL for the kernel-only module; and one as closed with kernel/application together. If LS| uses
someone else's kernel module that is "not part of Linux", then we cannot use it in our closed application without
contaminating our closed application unless there is a “private contract” to own the IP for that kernel module.

CFW will not be using embedded Linux which has less restrictive GPL requirements than a non-embedded Linux.
We could re-evaluate the licensing requirements if embedded Linux ever becomes POR for OSA.”

All licensing issues within CFW should be routed through the Firmware Architecture group as they are responsible
for setting the guidelines and direction for the CFW organization. The FW Architecture group will perform a
periodic audit with Ken Gibson, especially after some of the initial OSA design is matured. The group will be pro-
active as matters not caught early in the development process can result in severe consequences.

General quidelines are documented on the OSSRB Wiki at
http://ictwiki.ks.Isil.com/index.php/Open_Source Leadership_Team (See the section titled: “Guidelines for

Common Licenses”)

Engenio Storage Group, LSI Corporation 8
Confidential Information

http://ictwiki.ks.lsil.com/index.php/Open_Source_Leadership_Team�

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

5. LINUX PROGRAMMING GUIDELINES FOR CFW

Almost all of the code written by CFW for the Linux OSes will reside in user-space. There will be some kernel

modules;-especiallysuch as-fer the SCSI coupling driverthat-will-reside-in-kernelspace-but most of the code will

exist in user space. Here are few of the advantages and disadvantages with user-space code:

Advantages Disadvantages

Debugging is easier than with kernel modules. In other | High latency/context switch when
words, a crash in the module will not result in rebooting | communicating with system calls
the OS

Open source issues are manageable

Figure 4: Advantages/Disadvantages of User-Space code

~ -| Formatted: Heading 2, Indent: Left: 0O pt,

H H “ Hanging: 28.8 pt, Space Before: 12 pt, After:
5' 1 User S D ace Gu Id el Ines 3 pt, Don't adjust space between Latin and
The code should make use of POSIX threads with VKI abstractions — this will enable the code to be SMP- Asian text

complaint and that option can be used, if necessary. In addition, all kernel/system calls should be abstracted via
the VKI/VNI layer.

The initial direction for the user-space program for the Linux VMs is to use (POSIX) threads versus creating
multiple processes. Granted, this direction will most likely change/evolve over time as more design and
functionality matures for the Linux VMs. Multiple processes can belong to a single program but given the
heavyweight attributes associated with multiple processes, this will only be introduced when deemed necessary.

The scheduling policy will be time-sliced, preemptive environment. The priorities of the threads of the process will
not change from the default. Once again, this can be examined as the OSA project progresses.

The guidelines for the threads will follow functional separation for the most part. In other words, functionality with
a distinct purpose is created as a taskthread. It may optionally create multiple threads. For example, the health-
check service will be created as a thread; the IP communication layer (RAS/IPIVM) for the VMs will be created as
multiple threads.

All threads within a process share the same address space so only related tasks should be added as part of the
same process. In this situation, all tasks are part of the ESG CFW OSA functionality. Do note that since the
address space is shared between the tasks, care must be taken to protect critical sections. As mentioned above,
if properly coded, this implementation can automatically take advantage of SMPs.-

Engenio Storage Group, LSI Corporation 9
Confidential Information

Document: 45016-00

OSA Programming Guidelines
Document Iteration.Revision: A.2
) [Formatted: Centered
!
!
|
CFW OSA User Module |
1
1
1l
Thread2 Thread3 Non-CFW ',
OSA User
Modules ’
Thread1 ThreadN)
/)
Open-Source |
User User !
Modules > Space |
//
l
1

ESG CFW
Process

Virtual Kernel Interface
Virtual Network Interface
Kernel
s Space

~ -| Formatted: Heading 2, Indent: Left: O pt,
Hanging: 28.8 pt, Space Before: 12 pt, After

Figure 5: CFW OSA Environment for the Linux Virtual Machines
3 pt, Don't adjust space between Latin and

Asian text

5.2 Kernel mode Guidelines
In general, kernel threads should only be used for highly optimized functionality that needs direct control of

hardware devices. Kernel development is much more difficult than user space work because of the lack of
memory protection and debugability. In addition, kernel modules must be released to the open-source community

under General Public License (GPL).
Kernel development is debuggable using kdb or kgdb.

10

Engenio Storage Group, LSI Corporation
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

If there is code that needs to support multiple operating systems, then the KERNEL VERSION preprocessor
macro should be used for compilation purposes. Gears variation cannot be used for kernel modules as that will
end up being GPL as well.

The mechanism to add a new IOCTL API when there is a user to kernel interface is deprecated and should not be
used for new development. Instead, netlink sockets should be considered for fast user to kernel communication.

Guidelines for kernel modules a d-will be extended

as the document evolves.

Engenio Storage Group, LSI Corporation 11
Confidential Information

« - ‘[Formatted: Space Before: 12 pt

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

6. LINUX CONCEPTS

This section lists useful constructs in Linux that would be applicable for OSA CFW - it is not exhaustive by any
means. As with the rest of the document, this portion will be updated as the OSA program progresses.

Note that even though the interfaces are being referenced directly in the below sub-sections, they must be called
with a VKI/VNI interface in the CFW code. It is done in that manner here since the VKI/VNI layer is not present in
the Linux VMs. To some extent, these sub-sections should be used for that VKI/VNI layer.

6.1 System calls

In Linux, a system call is the fundamental interface between an user process and the Linux kernel. It allows user
processes to request services from the operating system. There are blocking {asynchreneus)-and non-blocking
{synchronous)-system calls. System calls are not invoked directly; instead C library wrapper functions perform the
steps required (such as trapping to kernel mode) in order to invoke the system call. From the developer
standpoint, it looks the same as invoking a normal library function.

More information about system functions can be gathered by looking at their header files, which reside in
lusr/include and /usr/include/sys. Also, they could be found by invoking the manual pages on system calls (man
syscalls).

Private system files that should not be directly included from the user programs are located in /usr/include/bits,
Jusrfinclude/asm, and /usr/include/linux. They are included from the other “main” system files that reside
Jusrfinclude and /usr/include/sys.

6.1.1 Error Codes

Majority of system calls return zero if the operation succeeds or a nonzero value if the operation fails. Most
system calls use a special variable named errno to store additional information in case of failure.

convenient function, strerror, that returns a character string description of an errno error code, suitable for use in
error messages. Include <string.h> if you use strerror.

functions, such as read, select, and sleep, can take significant time to execute. These are considered blocking
functions because program execution is blocked until the call is completed. However, if the program receives a
signal while blocked in one of these calls, the call will return without completing the operation.

In this case, errno is set to EINTR. Usually, you'll want to retry the system call in this case.

returned by the OS is not interpreted by the application code.)

6.2 POSIX Threads

Linux implements the POSIX standard thread API (known as pthreads). All thread functions and data types are
declared in the header file <pthread.h>. The pthread functions are not included in the standard C library; instead,
they are part of libpthread so “-Ipthread” should be used at the command line to link the library - note that this will
be handled by the makefile(s). The -Ipthread says to link with the system pthread library.

There is thread ID of type pthread_t.

Engenio Storage Group, LSI Corporation 12
Confidential Information

[Formatted: Font: Helvetica

[Formatted: Font: Helvetica

[Formatted: Font: Helvetica

[Formatted: Font: Helvetica

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

6.2.1 Thread Creation
pthread_create creates a new thread and takes the following 4 parameters:
Pointer to pthread_t

Pointer to thread attribute object. Attributes such as scheduling policy, scope, stack address, and stack
size can be specified. The VKI layer will prevent some of the options allowed for the attribute object.

Pointer to thread function “void* (*) (void*)” — this is the starting function that is called when the thread
(NWP) is created.

Thread argument value of void* (this is passed into the above thread function)

6.2.2 Thread Specific Data (TSD)

Programs often need memory for a given thread that should not be shared with other threads. Since threads
share one memory space of the parent process, POSIX provides a way to possess memory that is private to
individual threads. This memory is called “thread specific data” (TSD) and there is a key associated with such
memory. The keys are common to all threads, but the value associated with a given key can be different in each
thread.

pthread_key_create creates a key with a passed-in destroy function that is called on cleanup
pthread_key_setspecific is used to change the value associated with the key
pthread__getspecific is used to return the value of the associated key

When the thread is destroyed (when thread terminates or via pthread_exist), the destroy function is called with the
value of the key as the argument.

pthread_key_thread de-allocates a TSD key but the destroy function is not called. This does not seem like a good
interface to be provided by VKI.

It might be worthwhile to present an interface where the thread specific data is created at the time the thread is
created. Instead of calling the above interfaces separately from the create routine and individually as specified
above, the VKI layer can provide one interface that not only creates a thread but also sets up the thread specific
data. This will not only allow the developer to understand the memory model at the time of the thread creation but
also prevent misuse of the steps required to obtain/destroy thread specific data.

6.2.3 Thread Deletion
Threads can be terminated explicitly by calling pthread_exit or by letting the function return.
All cleanup handlers that have been set for the calling thread with pthread_cleanup_push are executed.

These interfaces need to be analyzed for VKI inclusion.

6.3 Synchronization

Synchronization is the methods for ensuring that multiple threads do not accidently modify the data that another
thread is using. This can be an issue for functionality that is multi-threaded as threads of the same parent process
have the same memory space. The race condition of multiple threads trying to access same data could result in
either stale access or a crash (segmentation fault).

To eliminate race conditions, operations must be atomic. Atomic operation is indivisible and uninterruptible; not
pause or be interrupted until it completes and no other operation can take place meanwhile.

Critical section is that chunk of code and data that must be allowed to complete atomically with no interruption.
They should normally be short as possible since concurrency of the program is affected if they are not. All data
structures that can be accessed by multiple threads must be protected or locked.

Engenio Storage Group, LSI Corporation 13
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

6.3.1 Mutual Exclusion

The mutual exclusion lock is the simplest synchronization mechanism. It provides a way to lock the critical section
such that only one thread can access it at any given time. POSIX provides pthread_mutex_init,
pthread_mutex_lock, and pthread_mutex_unlock for this purpose. There is also a non-blocking mutex test called
pthread_mutex_trylock. This will test to see if the mutex is locked; if it is not locked, then it will lock, else it will
return immediately with error code EBUSY. This is a good mechanism to use if the program wants to perform
some other task when it's locked.

6.3.2 Semaphores

Semaphores can also be used to protect critical sections. Mutexes are a restrictive form of semaphores called
binary semaphore, where the section can either be locked or unlocked. Semaphores are perfect for a situation
there is a need to count protected information. sem_wait and sem_post are defined in semaphore.h and are used
for this purpose.

There are some clear distinctions between mutexes and semaphores that are worth noting:

1) With mutexes, thread that owns it is responsible for freeing it, however, with semaphores, any thread can
free it.

2) Semaphores are system-wide and remain in the form of files on the filesystem, unless otherwise cleaned
up. Mutex are process-wide and get cleaned up automatically when a process exits.

3) Mutex are lighter when compared to semaphores. What this means is that a program with semaphore
usage has a higher memory footprint when compared to a program having Mutex.

4) The nature of semaphores makes it possible to use them in synchronizing related and unrelated process,
as well as between threads. Mutex can be used only in synchronizing between threads and at most
between related processes.

There are several locks in DPL such as MasterTransactionLock that can used globally across the application.
These type of overall locks will be introduced in the Linux VMs, depending on the requirement, as the OSA
program progresses.

6.3.3 Condition Variables

A condition variable is a variable of type pthread_cond_t and is used with the appropriate functions for waiting and
continuation. The condition variable mechanism allows threads to suspend execution and relinquish the processor
until some condition is true. A condition variable must always be associated with a mutex to avoid a race
condition.Any mutex can be used, there is no explicit link between the mutex and the condition variable.
pthread_cond_init, pthread_cond_wait, pthread_cond_signal, and pthread_cond_broadcast are all used for this
purpose.

6.4 Signals

Signals are UNIX mechanisms to interrupt a running process and to communicate with that process. More on this
will be provided in a later iteration.

6.5 Communication between processes (IPC)

This section will be covered in later iterations of the document as currently, the design will be based on a single
process with multiple threads.

6.6 Debugging in Linux

GNU Debuggers (GDB) is the debugger used by most Linux programmers. You can use GBD to set through your
code, set breakpoints, and examine the values of local variables.

Engenio Storage Group, LSI Corporation 14
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

To use GDB, compile the code with debugging information enabled. The —g switch on the compiler allows that to
occur. The compiler generates extra information in the object files and executables, which is useful when the gdb
is actually executed.

Engenio Storage Group, LSI Corporation 15
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

7. START OF DAY ON DOMAINO

Processes are created via startup scripts kicked off by the init process. This is done with /etc/rc* scripts and
newer systems use upstart, which is event based (More on this information in later revisions).
Since threads will be defined by functionally — here are a list of threads that are applicable on DomainO so far:

Health-check monitoring thread
Virtual watchdog monitoring thread (design has yet to be matured)
IPIVM threads (for IP communication between VMs)
General threads needed for processing requests from other VMs
Similar to non-RW threads
Waits on semaphore or queue and executes if a request arrives

Note that these threads will be created as start-of-day processes in DomainO.

Engenio Storage Group, LSI Corporation 16
Confidential Information

OSA Programming Guidelines Document: 45016-00
Document Iteration.Revision: A.2

8. REFERENCES / RESOURCES

Here are many-some good resources on POSIX threads:
http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

https://computing.linl.gov/tutorials/pthreads/

If the development environment or Linux servers are not ready, VMware software could be used on any Windows
desktop platform to run Linux. It could be used for education, experiments as well as coming up to speed to
develop for the OSA program.

VMPlayer can be downloaded from http://www.vmware.com/products/player/. After which, Linux images (such as
CentOS) can be downloaded from http://www.thoughtpolice.co.uk/vmware/.

Engenio Storage Group, LSI Corporation 17
Confidential Information

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html�
https://computing.llnl.gov/tutorials/pthreads/�
http://www.vmware.com/products/player/�

	1. 0BINTRODUCTION
	1.1 8BPurpose/Goals
	1.2 9BRelated Documents
	1.3 10BFuture Topics

	2. 1BOPERATING SYSTEM CONCEPTS
	2.1 11BTasks vs. Processes/Threads
	2.2 12BKernel vs. User Space
	2.3 13BLinux POSIX Threads (pThreads)
	2.4 14BScheduling

	3. 2BOPERATING SYSTEM ABSTRACTION
	4. 3BLICENSING GUIDELINES
	5. 4BLINUX PROGRAMMING GUIDELINES FOR CFW
	5.1 15BUser space Guidelines
	5.2 16BKernel mode Guidelines

	6. 5BLINUX CONCEPTS
	6.1 17BSystem calls
	6.1.1 23BError Codes

	6.2 18BPOSIX Threads
	6.2.1 24BThread Creation
	6.2.2 25BThread Specific Data (TSD)
	6.2.3 26BThread Deletion

	6.3 19BSynchronization
	6.3.1 27BMutual Exclusion
	6.3.2 28BSemaphores
	6.3.3 29BCondition Variables

	6.4 20BSignals
	6.5 21BCommunication between processes (IPC)
	6.6 22BDebugging in Linux

	7. 6BSTART OF DAY ON DOMAIN0
	8. 7BREFERENCES / RESOURCES

