OSA VM CM Synergy project Options - version A.2

Terms
For purposes of supporting the discussion / proposals in this document the following terms apply.

1. Asset— A set of related files tied to a string identifier. Within a single VM the Asset is tied to a
specific set of responsibilities. These responsibilities may change in other VMs. As an example,
CMGR exists in both Domain0 and IOVM, but does not have the same set of responsibilities on
both VMs.

2. Asset Element — A subset of the files of an asset that are grouped under a specific directory.
Examples of element are api, src, document, etc.

3. Asset Aspect — An instance of an asset that is tied to one or more VMs. Examples of Asset
aspects: [IOVM]rmi, [Domain0]rmi, [IOVM]ipras, [DomainOQ]ipras, [Servicelipras, etc.

4. Product Repository — A directory structure that is created using a set of assets and their
elements. The product repository consists of directories and links to files under change
management.

5. Project — Top level CM Synergy project such as RAIDCore, Domain0 and Serviceability.

6. Subproject — A CM Synergy project that is included in a top level project as a member. By
Convention we place the subprojects in the first directory of the project. Examples of
subprojects are fwarch, Foundations_1, Platforms, ios, vios, etc.

7. Common Subproject — A CM Synergy subproject that is used across 2 or more top level projects
with different names. Existing example: fwarch is used in both RAIDCore and DomainQ.

8. Shared Common Subproject — A single instance of a common CM Synergy subproject that is
shared between 2 or more top level projects. This is a special method of using a common
subproject to optimize an individual developer’s environment. It is not a special type of common
subproject

9. Common Code — code that is present in 2 or more VMs. The code may or may not be used.

10. Automatic Subproject Advancement (Auto Advance) — The library build tools support a
mechanism to use the latest tip version of a subproject if a newer integrated version is found
during configuration. The tip version is used as the baseline for the new build. The mechanism is
only on for trunk builds. If the version number of the project has a dot (.) in it, then the
mechanism is disabled.



OSA VM CM Synergy project Options - version A.2

Requirements:

1. The OSA VMs will be independently buildable and versionable. (separate projects)

2. To be compatible the VMs must be built from the same version of the common code. This
includes the APl and any common source code. This does not specify the method used to access
the common code. The code is considered to be the same version if it is identical to the code
used to build the other VM.

3. Some VMs such as NAS may not use the same change management system. As such the method

of sharing source and API may vary from one VM to the next. To state this explicitly, a VM that
works outside of CM Synergy will not be able to use CM Synergy subprojects as a sharing
mechanism and will need to import/export common code through another mechanism.

CM Synergy / Library Build Tools Behavior/Limitations

1.

You cannot store a file name or a directory name with dashes in CM Synergy. We overcome this
by mapping ‘%%’ to - during product repository generation.

Changes to a common subproject do not automatically pop up in other projects that use the
common subproject. Auto Advance can be used to bring these changes into library builds. When
it is on, the changes checked in for one VM that uses a subproject will automatically be used in
the newly created baselines of other VM projects that use the common subproject. Note: For
twigged projects the changes for common subprojects will have to be checked in against a single
top level project and then cloned to the other top level projects that use the common subproject.
If this is not done carefully, the subproject may branch and changes may be lost.

Objects changed in one version of a common subproject will not automatically propagate to a
different version of the common subproject used by another project. As an example: Domain0-
wookie and RAIDCore-wrath both use the common fwarch subproject. If a file is checked out
under fwarch-wookie, the change in version number will not been seen in fwarch-wrath until
the RAIDCore-wrath or fwarch-wrath subproject is reconfigured to using a task that is associated
with the newly checked-out object. Changes made to objects that are checked out will be seen
in both projects.

It is possible to share a common subproject between the 2 projects. Example: Domain0O-ewok
and RAIDCore-boxcar both use instances of fwarch with the same baseline. The user can use the
GUI to select version fwarch-boxcar in the Domain0-ewok project. At that time any new
checkouts or changes in fwarch-boxcar will be visible in both projects. Care should be taken
when reconfiguring either the RAIDCore or Domain0 project as it may have unintended and
unexpected effects on the shared common subproject.



OSA VM CM Synergy project Options - version A.2

5. The cort tool as presently written does not cleanly support checking out /managing Domain0
projects and RAIDCore projects with the same version. Example RAIDCore-homerun is already
checked out. The checkout of Domain0-homerun is noisy and not guaranteed to be correct.

6. We are not considering the use of Open reconfig to facilitate the sharing of changes across OSA
VM projects under CM Synergy. It is difficult to control and produces unintended results.

7. CRsthat contain changes outside a common subproject will not be automatically picked up by
other projects. If the CR is targeted to the CM Synergy project for the wrong VM, the changes
outside the common subproject will be lost. Example: A CR contains changes for Domain0 and
the common subproject. The CRis incorrectly targeted to the RAIDCore project. The changes to
the common subproject will be picked up in the next RAIDCore build and carried into the next
Domain0 build. The changes to the Domain0 code will be lost and must be added to Domain0
with a clone of the original CR that is targeted to the Domain0 project. Also, The CRs that are
added by Auto Advance will only be recorded in build sheets for the first project where it is
incorporated.

Options

Option 1 - add new assets to RAIDCore project
Pro: keeps everything in sync across assets. No compatibility matrix needed.

Con: does not allow for independent versioning of VM products.

Option 2 - new projects with no subprojects
Pro: VM products can be independently versioned. No complicated management of subproject content

Con: Maintenance problem. Any sharing of source code is done at a file level. Very easy to have missing
CRs. Files can branch. It can be difficult to characterize the interface version for the compatibility matrix.

Option 3 - new projects with common subprojects

Option 3a - single common subproject per team.

Pro: VM products can be independently versioned. Sharing is at a subproject level. If two projects use
the same versions of the common subprojects, they are in sync.

Con: Assets will appear in projects where they are not used. Delivery of content changes to projects can
be complicated (where do | check in my changes?) It can be difficult to characterize the interface version
for the compatibility matrix.



OSA VM CM Synergy project Options - version A.2

Option 3b - combination of common and uncommon subprojects per team

(current implementation)
Pro: subprojects that are only used in 1 VM are clearly identified as such.

Con: Unless we add a new sharing scope for each possible combination of asset use, there will be
projects where some assets in a shared subproject are unused. If we do add new sharing scope
definitions, number of sharing scopes will get unmanageable and developers will need yet another
decoder ring.

Option 3¢ - combination of uncommon subprojects per team and one common
subproject.

(proposed new standard)

Pro: subprojects that are only used in 1 VM project are clearly identified as such. Any asset that may be
common in any of the VM projects will be in the common subproject. A change to any of the common
assets changes the interface version. This allows us to easily know when VMs are in sync at the interface
level. We can leverage the Auto Advance features to allow the shared subproject to automatically
advance to the most recent version.

Con: There will be both Linux and VxWorks implementations for some assets. These assets will be
present in the project work areas. The common content for an asset team maywiH be separate from the
uncommon content. Auto Advance means that we cannot block changes in a VM build. Damage to one
is potential damage to all. Auto Advance may confuse some developers.



OSA VM CM Synergy project Options - version A.2

This figure illustrates the proposed new scheme.

Unshared
subprojects

Unshared
subprojects

RAIDCore

Domain0

Shared
Subproject

Unshared
subprojects

Serviceability




OSA VM CM Synergy project Options - version A.2

| This change moves the content of the earlier named _linux and _osa sub-projects into the common
OSACore subproject. Additionally, assets under ios_domain0 and cas_domainO that are proven to be
common will be moved under OSACore.

DomainO
MakeFfile
0SACore € new subproject
foundations2_domain0
hypervisor_domain0O
platforms_domainO

Table 1 - New DomainO Structure

RAIDCore
OSACore < new subproject
foundations
hypervisor
platforms
etc...

Table 2 — Modified RAIDCore Structure

The content of OSACore is organized by team names at the top level. The below that are assets and
elements. Some assets will have multiple asset aspects. For those assets, the asset file will sit under the
aspect directory rather than the top level directory of the asset.

cas/
rmi/
Common/
rmi.asset ([Common]rmi )
api/
Linux
rmi.asset ([DomainO]rmi )
api/
ksrc/ < kernel space source
usrc/ & user space source
VxWorks/
rmi.asset ([IOVM]rmi )
src/
foundations2/
osa/
api/
fwarch/
(common assets)
ios/
ipras
Linux
ipras.asset ([DomainO,Serviceability]ipras )
api/
ksrc/
usrc/
VxWorks/
ipras.asset ([10VM]ipras )
api/
src/

Table 2 -— Proposed OSACore structure




OSA VM CM Synergy project Options - version A.2

A possible extension of this would be to move both aspects of assets such as CMGR to the OSACore
subproject.

This figure below illustrates the affects of CRs on the common subproject where automatic subproject

advancement has been allowed. Specifically it shows how and when the common subprojects will
advance.



OSA VM CM Synergy project Options - version A.2

+A 2|
RAIDCore- AlDCore-
2141 2142
L 2
g g
CRs ﬂ CRs E
1 9
12}
(8}
(O]
=
i
O G
OSACore-2 OSACore-3 OSACore-4
4 6 O 8
+A +D/
OSACore-2 OSACore-3 OSACore-3 OSACore-4
1]
(&)
(9]
=
L
CRs B CRs C CRs D
3 5 7
©
=
©
|_
Domain0-10 Domain0-11 Domain0-12 Domain0-13

In this scenario RAIDCore and DomainO share the subproject OSACore.

1. CRgroup Ais targeted to RAIDCore. It affects OSACore-2
8



10.

OSA VM CM Synergy project Options - version A.2

RAIDCore-2142 is created with changes to OSACore that produce version 3. [+A indicates that
both RAIDCore-2142 and OSACore-3 have accounted for CRs A.]

CR group B is target to DomainO. It does not affect OSACore.

Domain0-11 is created. It uses OSACore-3 as the baseline for OSACore. [+B indicates that
Domain0-11 now accounts for CRs B.]

CR group Cis targeted to Domain0. It does not affect OSACore.

Domain0-12 is created. There are no changes to OSACore. [+C indicates that Domain0-12 now
accounts for CRs C.]

CR group D is targeted to DomainO. It affects OSACore.

Domain0-13 is created with changes to OSACore that produce version 4. [+D indicates that both
Domain0-13 and OSACore-4 have accounted for CRs D.]

CR group E is targeted to RAIDCore. It does not affect OSACore.

RAIDCore-2143 is created and uses OSACore version 4. [+E indicates that RAIDCore-2143 now
accounts for CRs E.]



	Terms
	Requirements:
	CM Synergy / Library Build Tools Behavior/Limitations
	Options
	Option 1 – add new assets to RAIDCore project
	Option 2 – new projects with no subprojects
	Option 3 – new projects with common subprojects
	Option 3a – single common subproject per team.
	Option 3b – combination of common and uncommon subprojects per team
	Option 3c – combination of uncommon subprojects per team and one common subproject. 





