TuxRx Functional Specification
      725-xxxx-0001
Version 1.0
TuxRx Functional Specification
      725-xxxx-0001
Version 1.0

 document no.

725-xxxx-0001
revision no.

1.0
status 

RELEASED

department

Engineering
Author/Contact

A. Sharp
Email

andy.sharp@onstor.com

Function Specification:

TuxRx: Linux on TXRX Processor

Approvals:

Name/ Title
ECO

Brian Stark/ VP of Coolness























[image: image1.jpg]Stor

Storage Solutions for the Content Generation





Abstract

Replace EEE based software on Sibyte 1480 processor on Cougar platform with Linux based approach.

Contributors

Name
Email

A. Sharp
andy.sharp@onstor.com




Disclaimer Notice

This document is provided “as is” with no warranties whatsoever, including any warranty of merchantability, non-infringement, fitness, for any particular purpose, or any warranty otherwise arising out of any proposal, specification or sample.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted herein.

This document is subject to change without notice, and does not represent any commitment by ONStor, Inc. to develop any product or service based upon the information contained herein.

Copyright Notice

This document is Copyright, ©2009, ONStor, Inc., all rights reserved. No copies may be made without the express, written permission of ONStor, Inc.

Revision History

Rev
ECO
Written By
Page/Sect
Revision Summary
Date

V0.1

A. Sharp
All
Draft


V0.2

A. Sharp
All
Incorporate review comments
Jan 13, 2009

V1.0

A. Sharp
All
Incorporate review comments; additional clarifications
Jan 19, 2009








Table of Contents

1Related Documents
1

2Relation to Requirements
2

3Relation to Roadmap
3

4Problem Statement
4

5Solution
5

5.1Software layout
5

5.2Memory layout and allocation
5

5.3Debugging and support
6

6User Interface 
7

6.1Usability Considerations
7

7Dependencies
8

7.1EMRS Dependencies
8

8Migration Strategy
9

9Testing Strategy
10

9.1Key Limits
10

9.2On Disk Formats
10

9.3Cluster Operations
10

9.4Cooperative Testing
10

10Performance Criteria
11


1Related Documents
1

2Relation to Requirements
2

3Relation to Roadmap
3

4Problem Statement
4

5Solution
5

5.1Software layout
5

5.2Memory layout and allocation
5

5.3Debugging and support
6

6User Interface 
7

6.1Usability Considerations
7

7Dependencies
8

7.1EMRS Dependencies
8

8Migration Strategy
9

9Testing Strategy
10

9.1Key Limits
10

9.2On Disk Formats
10

9.3Cluster Operations
10

9.4Cooperative Testing
10

10Performance Criteria
11


1 Related Documents

System-X Networking Document:

http://intranet.onstor.net/md/software/systemx/Component_Docs/SystemX_IP_Networking.doc
2 Relation to Requirements

This project seeks to, in part or in full, address the following Marketing requirements.

· Increased performance

· 10 Gigabit capability

· SMP transport protocols

· Hardware independence

· IPv6

· iSCSI

· DMIP compression, ToS, QoS
3 Relation to Roadmap

The Cougar platform has to have a product life of at the very least two years.  The current Cougar software isn’t in a position to be relevant for that time frame when new features, increased performance and increased reliability are considered.  This project seeks to address that roadmap issue.

In addition, this is an initial foray on implementing System-X.  There are other initial forays also in development, and there will be still more others.  A full fledged System-X will be the eventual result.

Follow-on efforts are expected to be in the areas of multithreading our file sharing protocols, NFS and CIFS, as well as the other development work necessary to fully deliver iSCSI and IPv6.

4 Problem Statement

Revenue: we have two processor cores on the TXRX 1480 node that currently are sitting idle, leaving capability, and therefore revenue, on the floor with every Cougar we ship.

Converting our product implementation over to System-X in one giant step is never going to be realistically possible.  I will call that the System-X roadblock.

There is no practical way to implement a multi-threaded version of our TCP/IP code, yet such a thing is needed for System-X as well as better performance of the current Cougar hardware.

New protocol features: there is no viable way to add additional protocols like IPv6, iSCSI, FTP, or DMIP compression, ToS and QoS, to EEE for a reasonable cost.

In a similar vein, adding 10 GigE to our EEE based product would cost more than the return on sales of such a feature in the near term, and it would not be well received by customers considering the performance limitations it would have: little better than our current performance with 4 * GigE.

5 Solution

5.1 Software layout

The solution to the System-X roadblock is to put together a number of smaller steps.  This project is one of those steps, and it allows us to take advantage of what comes with it to also solve other long lingering Marketing requirements, like 10 GigE and so forth.  In addition, it allows us to actually start making use of the two cores on the TXRX processor that are sitting idle in our current shipping Cougar product implementation, leaving capability on the floor that we could offer our customers and thereby increase our revenue.

The scope of this project is to take an initial step to converting our TXRX software over to something that begins looks like System-X.  In this first project, we will put Linux on the TXRX processor, running all four cores as a single SMP incarnation.  Our file sharing protocols, NFS and CIFS, often referred to as the ACPU, will be implemented as a thread group (possibly only containing one thread), and will be pinned to a single core.  All other threads will be excluded from running on that core.  This will allow us to make the ACPU retain its polling architecture without being disturbed by the vagaries of the kernel scheduler, as this thread group will be the only one runnable on its core, so it will never be preempted.  Interrupts will be similarly directed to CPU cores as appropriate for the proper performance of the software.
The Linux transport protocols will be used, allowing us to spread out their associated processing work load across the other three cores, thereby, we believe, eliminating some of the bottlenecks in the current implementation and affording us more overall performance.

In follow-on projects, the NFS and CIFS code will be made multithreaded, as well as many of the System-X networking features and design that won’t be possible in this first step.

5.2 Memory layout and allocation

EEE uses a static memory allocation scheme that is highly appropriate for the I/O task at hand.  Linux being a general purpose OS, its memory allocation is much more dynamic.  Memory allocation in an OS like Linux can be highly complex because of the interaction between addressing, memory allocation and so forth.  Because of that, an attempt to concoct a hybrid scheme for TuxRx is likely to handcuff the network processing, and hence the plan is to convert ACPU to utilize standard Linux memory allocation facilities, except where it relates to data passing with the FP.  Standard Linux networking data structures are very similar to the ones used in ACPU, so this is expected to be a relatively straight forward exercise.

In theory this means that both the ACPU and the network protocols will have more memory available for their use than they currently do under EEE, just not at the same time.  In I/O centric applications such as ours, this kind of dynamic allocation has historically been associated with memory thrashing problems, hence the design of memory allocation in EEE.

Consequently, there has been some concern mentioned about not being able to quantify ahead of time what kind of impact this implementation change might have on performance, however it is not expected to have an overall negative impact.  Actual testing will be required; if it does prove to have a negative impact, we can fairly easily go to a scheme where a chunk of memory is set aside for the ACPU thread to utilize without going through the Linux kernel’s memory allocation facility.

5.3 Debugging and support

1. Core dumps
No kernel core dumps are projected at this time, instead stack traces as we do currently on the SSC will be utilized.  The ACPU thread may make use of task core dumps as we utilize in user-space tasks.  There will be some user space daemons running on the TuxRx -- currently we are planning on using a chunk of the Compact Flash for TuxRx to put core dumps and log files.  We can go to 4GB or larger CF cards as necessary for this purpose.  If this proves unworkable, we can implement core dump capabilities via the FP as they currently are implemented.  Code stack traces for certain kinds of signals and exceptions for a thread can be enabled and logged to the CF.  This would supplant the current use of “code dumps” in the TXRX space.

FP core/code dumps will be unaffected.

2. Rcon and console commands
Rcon to the TXRX in its current incarnation will be available to the ACPU thread similar to how it works today.  There may be some new Onstor specific utilities in the TuxRx user-space as well which are specific to the TuxRx environment.  The nfsperf, req and eee console commands will likely be there in some form, as well as being available for the ACPU in their current form.  For example, some memory usage data will be more readily and conveniently available via the data available in the pseudo file /proc/slabinfo.  Yes, you will have to log into the TuxRx environment, but we will explore optimizations for that process: proxies; short-cut command; etc.

Rcon to the FP will be unaffected.
3. Debugging paradigm shift.  This project represents a significant paradigm change for engineers doing analysis and debugging, and not just because of the existence of a user-space.  While some things of the past go away, several more new ones open up.  For instance, gdb can be utilized from user-space to analyze certain kernel goings ons, without requiring a special debug build of the kernel.  Kernel FTRACE and other such tracing facilities will be available in the later stages of this project, again without a special build or performance impact when not in use.  There will be a learning curve impact, and the onus will be on the project engineers to help their co-workers in this area.
6 User Interface 

There are no anticipated user interface changes of any large significance beyond those already mentioned.  Reference section 5.3 concerning rcon and logging into the TuxRx environment.

6.1 Usability Considerations

The only usability consideration is that there be no negative impact on usability.

7 Dependencies

At this time there are no known dependencies.

7.1 EMRS Dependencies

None at this time.

8 Migration Strategy

There are no known migration roadblocks.  At this time it is unclear if the resulting software will be sold as a new product model or merely arrive as just an upgrade.  Possibly one or two cores can be turned off for the same model number as we currently ship -- 6700 and 3700 -- and a new model number designated for the 4 core version.

9 Testing Strategy

The testing strategy will be two fold.  Since this change will have to be part of a serious release, there should be a lot of testing happening in QA for other reasons.

Additionally, the following testing points will deserve special attention:

· virtual server functionality

· general networking functionality on FP ports

· DMIP

· VLAN functionality

· port bonding

· performance testing: SPEC and streaming

· uptime testing

· limits testing

The development plan for this project includes considerable development of testing code.  The plan calls for such testing code to test and exercise the following areas:

· Message passing and handling from the SSC to the TUXRX.

· Virtual server functionality

· Network configuration and functionality

· Interface creation, enable, disable

· Bonding

· VLAN

· Routing

· Streaming performance

· Pkts/sec performance

· TCP/IP relay over management bus

9.1 Key Limits

N/A

9.2 On Disk Formats

No changes to on disk formats will be incurred.  Correctness verification will be performed by porting the NFS perftest program from EEE to Linux.

9.3 Cluster Operations

This project will have no effect on cluster operations.

9.4 Cooperative Testing

This project will affect DMIP and DMIP testing will be included as part of the testing strategy.

10 Performance Criteria

Measurements of ops performance during SPEC runs indicated that the limiting factor for Cougar at the time was the TXRX processor.  It is expected that adding 2 more CPU cores to job of processing the TCP/IP protocols will alleviate some of that bottleneck and afford an increase in the SPEC ops performance as well as streaming performance with the addition of 10GigE hardware.  Exactly how much that increase will be is hard to calculate precisely, but it is hoped to be as much as a 10% increase in SPEC ops, and ideally more than 25% in the streaming performance.

The performance of the ACPU is expected to remain very close to the current profile.  This is because, although it will be living under the Linux scheduler, it will be the only thread runnable on its core, so it should never be preempted or rescheduled.  The ACPU polling loop will remain as it is currently.
































































CPU 0








CPU 1








CPU 3








CPU 2








ACPU thread group








Transport protocols; vsvr processing




















©2009 ONStor, Inc., Company Confidential
Page 11 of 15
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.

©2009 ONStor, Inc., Company Confidential
Page 11 of 15
Any printed copy is an uncontrolled copy. The possessor is responsible to verify the document’s revision to be current.

Moreover, the possessor is responsible to remove obsolete documents from their point of use.


