Z
L L L 7 7 7 7]
 Z Z]

Symantec Yellow Books

The Veritas™ Cluster File System:

Technology and Usage

Optimize utilization, performance, and availability
with Symantec’s scalable shared file storage
infrastructure

The Veritas Cluster File System:
Technology and Usage

Optimize utilization, performance, and
availability with Symantec’s scalable shared
file storage infrastructure

’ symantec.

Copyright © 2010 Symantec Corporation.
All rights reserved.

Symantec and the Symantec Logo are trademarks or registered trademarks of
Symantec Corporation or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

THE DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE
EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.
SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING OR
USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS
DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

Symantec Corporation 20330 Stevens Creek Blvd. Cupertino, CA 95014 USA
http://www.symantec.com

ISBN 0-321-446100

Forward: Why a Cluster File System?.. ... 3

ADBOUL thiS DOOK ..eeiieiiiiiii e 5
Introduction: File systems for data sharing..............ccccccoieiiiiiiiiiinnnnn, 7
Part | Understanding and using CFS

Chapter 1 What makes CFS unique..........ooooeiiiiiiiiiiiee 27
Chapter 2 Using CFS: application scenarios............ccccceeeeeeeennn, 53
Chapter 3 Using CFS: scalable NFS file servingccceeeennn. 71
Part Il Inside CFS: framework and architecture
Chapter 4 The VCS cluster frameworkccccooeviiiiiiiiiiiinn. 83
Chapter 5 CVM and CFS in the VCS frameworkcooovvvvnn. 95
Chapter 6 Inside CFS: disk layout and space allocation 113
Chapter 7 Inside CFS: transactions..........cccoovvviiiiiiiicccceeeeeen. 137
Chapter 8 Inside CFS: the Global Lock Manager (GLM) 147
Chapter 9 Inside CFS: 1/0 request floW.........ccoceveveeiiiieeieeee. 161

Chapter 10 CFS Differentiator: multi-volume file systems and

dynamic storage tiering.........oovvviiiiiiiiieeeeeeeeeeeeeee, 171
Chapter 11 CFS Differentiator: database management system

ACCElErAtOrS e 181
Part Il Installing and configuring CFS
Chapter 12 Installing and configuring CFS ..., 193
Chapter 13 Tuning CFS file Systems ...ccooeeeeeeeii 205
Afterword: CFS: meeting the technical challenge............ccooeeeinnnnnn. 237
Appendix: CFS cache organizationcccccveveeeeiiiiiiiiiiiieececccc, 239
BibliOZraphy ..o 241

Why a Cluster File System?

Distributed applications with dynamic computing and I/0 demands benefit
greatly from simultaneous access to shared data from multiple servers,
particularly if performance continues to scale nearly linearly when new
applications and servers are added to the mix. Symantec’s primary motivation
in developing the Cluster File System (CFS) has been to meet the file storage
requirements for this high growth market, as major applications evolve to be
more distributed, taking advantage of modern datacenter “scale out”
architectures.

Today, the most popular use case for CFS is active-passive clustering of single
node applications. In this scenario, CFS enables failover times that are as much
as 90% lower than single node file system solutions. Increasingly, however, the
growth in CFS deployments is coming from applications that take advantage of
the consistent simultaneous access to file data from multiple cluster nodes.
These applications include clustered database management systems, messaging
applications, workflow managers, video streaming, risk analysis, business
intelligence, and more.

In addition, an increasing number of users are replacing NFS servers with CFS
clusters that run applications directly on the servers that provide file access, for
improved reliability and data consistency, as well as elimination of the network
bottlenecks often seen with NFS based file storage solutions.

Other users retain the NFS file server data center architecture, but replace NAS
systems with CFS-based CNFS servers to improve price-performance, scalability
and flexibility. In effect, with the introduction of CNFS, CFS is commoditizing
NAS while it improves scalability and quality of service.

Still other users choose CFS because it supports the top three enterprise UNIX
platforms as well as Linux. This enables them to standardize data management
and operating procedures across the data center, no matter which UNIX
platforms they use. Finally, some users choose CFS-based solutions because they
support more disk arrays than any other suite, making it possible for users to
fully exploit their storage hardware investments.

While users deploy CFS for a variety of reasons, on closer inspection, there are

4 | Forward

common file storage and management requirements that make CFS an ideal
solution in a wide variety of situations.

Using clustering to scale out an application or a data center adds a dimension to
the sizing and tuning complexities found in single-server environments. File
sharing, distributed decision making, I/O workload asymmetry among cluster
nodes, migration of applications from node to node, are among the variables
that can make “getting it right” an arduous task.

Numerous interviews with CFS users have made it apparent that application
specific guidance for CFS deployment and knowledge of how CFS works and
interacts with other components in the storage stack are high on the list of
users’ concerns. Primarily for that reason, Symantec’s File System Solutions
team undertook the creation of this book, with the goal of putting the whole
story, from technology to administration, to use cases, in one place. It is our
sincere hope that the result addresses the concerns of our users, present and
future.

As the product manager for CFS, my thanks go out to the author, the
management team that supported this effort by granting people the flexibility to
take time from their “day jobs” to participate in the project, and the individuals
who patiently provided the knowledge and painstakingly reviewed the

manuscript.
Dawid ey

David Noy

Regional Product Manager, EMEA
Symantec Corporation

December 2009

This book describes Symantec’s Veritas Cluster File System (CFS), an
implementation of the cluster architectural model for sharing data among
multiple computers. Based on Symantec’s long-proven Storage Foundation File
System (commonly known as VXFS), CFS is exceptionally scalable, robust, and
high-performing. Building on a solid base of VXFS technology, CFS adds cluster-
wide cache coherency, distributed resource control and file system transactions,
and other features that enable scaling and enhance performance and load
balancing across a cluster of application or database servers.

An astute reviewer noted that the book seems to address different audiences,
and that is indeed the case. The Introduction sets the stage by defining the
problem of sharing data among multiple application servers and contrasts the
CFS approach with other commonly encountered solutions.

Part I presents an overview of CFS, with emphasis on the features that make it
unique and the capabilities they enable, along with some examples of scenarios
in which CFS is particularly suitable. It should be of interest to new application
designers who require an appreciation of online data management in the data
center environment.

Part IT describes the CFS “secret sauce”-the internal architecture that gives CFS
its unique combination of scalability, flexibility, robustness, and performance. It
should be of interest to experienced developers and administrators who need to
understand what’s going on “under the hood.”

Part I1I is a guide to installing CFS and tuning file systems. Multi-server cluster
environments are inherently complex, as are their file I/O requirements. This
part should be of interest to system administrators who are either installing CFS
for the first time or are tasked with monitoring and managing the performance
of a CFS cluster.

Most of the material is available in some form from other sources. The unique
contribution of this book is to “pull it all together,” and to answer the question,
“why” in addition to describing the “what.”

Books tend to live longer than software product versions. While every effort has
been made to ensure the accuracy of the material, you should consult current
product documentation and support sources before putting the principles and
techniques described herein into practice.

6 | About this book
Contributors

Contributors

This book is a collaborative effort of many experts in CFS, and indeed, in the
field of computer file systems at large. The following are the principal technical

contributors:

Jobi Ariyamannil Brad Boyer

Sai Chivukula Bala Kumaresan
David Noy Pramodh Pisupati
Hal Prince Mike Root

Meher Shah

Reviewers

The following technical experts reviewed the manuscript intensively through
the course of several drafts:

Sushil Agarwal Jobi Ariyamannil
Brad Boyer Grace Chen

Colin Eldridge Bala Kumaresan
Murthy Mamidi Hal Prince

Dilip Ranade Karthik Ramamurthy
Mike Root Chuck Silvers

Bhavin Thaker Patric Uebele

File systems for data sharing

This chapter includes the following topics:

m The role of file systems in information technology
m Shared data file system architectures

m Model 1: network-attached storage (NAS)

m Model 2: The file area network (FAN)

m Model 3: The SAN (direct data access) file system

m Model 4: The cluster file system

The role of file systems in information technology

Enterprises of all kinds increasingly depend on their digital data assets to
operate. But the business world has moved beyond simple dependence on data
availability. As information processing operations integrate across the
enterprise, not only must data sets be highly available, they must also be readily
accessible to multiple business applications running on different computers.
Moreover, as the increasing velocity of business change is reflected in
information processing, the stable, unchanging data center is becoming a thing
of the past. Instant reaction to rapidly changing business conditions and
computing requirements is a must. In short, the digital data that enterprises
need to operate must be both highly available and simultaneously accessible to
an ever-changing array of applications and servers

Moreover, the storage that holds business-critical data must be scalable-able to
grow and shrink, both in size and accessibility-as requirements fluctuate.

From a technology standpoint, this means that key data sets must be
simultaneously accessible by multiple computers and applications, in such a
way that each one perceives itself as the sole user of the data.

8 | Introduction
The role of file systems in information technology

The file system in the /O software stack

The typical application server software “I/O stack” Figure Intro-1 The file
illustrated in Figure Intro-1 can be a useful aid to system’s position in the

appreciating the advantages and limitations of application server software
different approaches to sharing data among

computers and applications. Application

Nearly all applications deal with files. Files are a or

convenient representation of both business and database manager

technical objects-transactions, activity logs,
reports, design documents, measurement traces,
audio-visual clips, and so forth. Even the so-called
“structured data” typically managed by relational
database management systems is typically stored
in container files.

File

File system

The properties of files allow applications to deal I
with data much as people would deal with the
business objects the data represents:

m Flexibility. Files are easily created, added to, poltinEanaecy

truncated, moved, and deleted I

m User-friendliness. Files’ names are human and
application-readable, and can be chosen for
convenience 1

m Hierarchical organization. Files can be
organized in hierarchies along departmental,
application, project, temporal, data type, or
other convenient lines for easy reference

| Device drivers

m Security. Files can be protected against both tampering and physical
destruction to a greater or lesser degree, depending on their value and the
cost of protection

Virtualization in the 1/0O stack

As Figure Intro-1 suggests, applications manipulate files by requesting services
from a file system®. The role of the file system is to present an application-
friendly file abstraction, and to implement it using a more primitive abstraction,
the virtual block storage device.

1. The term file systemis commonly used to refer to both (a) the body of software that
manages one of more block storage spaces and presents the file abstraction to clients,
and (b) a block storage space managed by such software and the files it contains. The
intended meaning is usually clear from the context.

Introduction | 9
The role of file systems in information technology

Virtual block storage devices resemble disk drives. To file systems, they appear

as numbered sets of fixed-size “blocks” of persistent storage capacity? in which
data can be stored and from which it can be retrieved. Functionally, they differ
from physical disk drives primarily in that the number of blocks they contain
can be increased (and in some cases reduced) administratively.

Virtual block storage devices are implemented by mapping their block numbers
to corresponding blocks on physical storage devices-magnetic or solid state disk
drives-in some way that achieves a desirable data resiliency, I/O performance, or
flexibility effect. For example, virtual blocks may be mapped to striped,
mirrored, or RAID disk configurations. Mapping virtual block numbers to block
addresses on physical storage devices can be performed at different locations in
the hardware stack:

m Application server. Volume managers run in application servers and
coordinate the operation of devices they perceive as disks

m Disk array. Disk array control firmware manages the physical storage
devices in the array

m Storage network. Firmware in intelligent network switches that connect disk
arrays to application servers manages the already-virtualized devices
presented by the arrays

There may be two or even three layers of block device virtualization in an I/O
path. A disk array may create a RAID group of several disks and present them as
logical units (LUNSs) to a network switch, which mirrors them with LUNs
presented by another array, and presents the resulting virtual LUN to a volume
manager, which mirrors it with a directly attached solid state disk for
performance and resiliency.

What’s in a file system

The file system software that implements the file abstraction using the much
more primitive virtual block device abstraction for persistent storage, is a
complex component of the server I/O software stack with multiple functions:

m Storage space management. It manages one or more “flat” (sequentially
numbered) spaces of virtual device blocks, allocating them to files and other
structures as needed, and keeping track of those that are free for allocation

m Name space management. It implements a name space, in which an
application can give a file any unique syntactically valid name. In most file

2. Persistent storage is storage whose contents persist, or last across periods of inactivity.
Information written on paper is persistent, whereas information displayed on a video
screen is not. In digital data storage terms, persistence usually means retention of con-
tents in the absence of electrical power. Thus, magnetic disk drives and solid-state flash
memories are persistent. Computers’ dynamic random access memories (DRAMs) are
not persistent.

10 | Introduction

The role of file systems in information technology

systems, a file’s full name represents the path on which it is reached when
traversing the name space hierarchy. In a UNIX file system, for example, the
file /a/b/c would be located by starting at the top of the hierarchy (/), and
traversing directory a, which contains directory b. File c is situated within
directory b. File /a/b/c is distinct from file /a/d/c, which has the same name
(c), but is located on a different path (/a/d)

m Security. It enforces file ownership and access rights, granting applications
read and write access to files only if they present the proper credentials

m File data mapping. It maps file data addresses to block numbers on the
underlying virtual block devices so that each file appears to applications as a
stream of consecutively numbered bytes, independent of the block device
locations at which it is stored

In addition to these externally visible functions, file systems perform internal
functions that are transparent to applications. These include caching of file
system objects (“metadata” that describes certain properties of data such as its
owner, its location, and so forth) and file data to enhance performance. File
system designs assume that computer main memories can be accessed four or
five orders of magnitude more quickly than persistent storage. For example,
scanning a directory in search of a particular file name is much faster if some or
all of the directory’s contents are immediately accessible in memory (“cached”),
and do not have to be read from disk.

File systems perform these tasks concurrently on behalf of as many applications
and other system software components as are running in the system. Each
application sees itself as the only user of files in the system, except where two or
more mutually aware applications explicitly share access to files. Even in this
case, file systems appear to execute application requests strictly in order. For
example, if one application writes data to a file, and another reads the same file
blocks shortly thereafter, the data returned is that written by the preceding
application.

File systems manage this complexity by a combination of:

m Careful writing. Performing their internal operations in a strictly controlled
order, particularly those that update file system metadata

m Controlling access to resources. Maintaining elaborate and constantly
changing sets of locks that limit access to parts of the file system’s data and
metadata while it is in use, so that multiple accesses by uncoordinated
applications do not corrupt data or deliver incorrect results

Typically, file system locks are in-memory data structures that record which
data and metadata are “busy” at the moment, and which therefore cannot be
perturbed by additional accesses from applications or from the file system itself.

Introduction | 11
The role of file systems in information technology

The problem with files: data islands

While files are an extremely useful abstraction, implementing the abstraction in
a file system that runs on a single application server ultimately creates an
inherent limitation that is suggested by the graphic of Figure Intro-2. In Figure
Intro-2, each set of virtual block storage devices is managed by a file system that
runs in an application server. Each file system controls its storage devices, and
presents a name space to all applications running in its server. There is no
connection between the file systems on different servers, however. Each one
presents a separate name space to the applications (“clients”) that use it,
creating uncorrelated “islands” of storage and data.

Figure Intro-2 “Islands” of data

-
f%“\
/

Islands of storage and data are costly in several dimensions:

Isolated “islands” of data

m Storage cost. Excess storage capacity connected to one application server is
not readily available to other servers that might require it. In most cases,
each application manager provisions storage for the worst case, resulting in
overall waste

m Bandwidth and time. Data required by two or more applications must be
copied between originating and consuming servers. Copying uses network
bandwidth, and perhaps more important, takes time. The degree to which
applications can be synchronized with each other is limited by the time
required to copy data from one to another

m Potential for error. Keeping two or more copies of data on different “islands”
synchronized is a fragile, error prone process. Moreover, each time
applications, data structures, system or network configurations, or operating
procedures change, data copying and other management procedures must be
reviewed and changed as well. Infrequent, non-routine operations are
generally the most error-prone, occasionally with catastrophic consequences

12

Introduction

Shared data file system architectures

As suggested earlier, applications that process digital data are becoming
increasingly integrated-from the point of origin of data, through editing and
modification, analysis, reporting, action, and finally archiving. The “islands of
data” scenario represented by Figure 2 is becoming correspondingly less
acceptable. Enterprises need technology that enables many applications (or
many cooperating instances of the same application) to access the datain a
single file system, even if they are not all running on the same application
server.

There are several architectural solutions to this problem of shared access to file
systems. The most frequently encountered are:

m Network Attached Storage (NAS)
m File Area Networks

m SAN file systems

m Cluster file systems

Each solution has its strong and weak points, and consequently, classes of
application for which it is more or less optimal. The sections that follow describe
these file sharing solutions and enumerate their strengths and weaknesses.

Shared data file system architectures

File systems that enable data sharing by multiple client applications running on
interconnected computers can generally be characterized by:

m Functions performed by the client. The file system tasks performed by the
application server

m Location of data access software. The location of the file system software
that accesses and transfers file data

m Location of metadata management software. The location of the file system
software that manages file system metadata

Shared data file system models have other characteristic properties, such as the
network technologies they use, but these are generally either historical artifacts
(for example Fibre Channel with SAN file systems or Ethernet with NAS
systems) or market-driven implementation choices (for example, Infiniband for
high-performance computing), rather than being inherent in the architectures.
This section discusses the four most frequently-encountered shared data file
system architectural models, including the cluster file system model
implemented by Symantec’s Veritas Cluster File System (CFS).

Introduction
Model 1: network-attached storage (NAS)

Model 1: network-attached storage (NAS)

Perhaps the most frequently encountered shared data file system architecture is
the network-attached storage (NAS) model depicted in Figure Intro-3. In a NAS
system, a single computer (the NAS “head” in Figure Intro-3) manages file
system metadata and accesses file data on behalf of clients. The NAS head,
which in smaller configurations is often integrated with the disk drives it
controls, communicates with client computers over a network (usually TCP/IP)
using a file access protocol such as Network File System (NFS) or Common
Internet File System (CIFS). To applications running on client computers, NAS-
hosted file systems are essentially indistinguishable from local ones.

A file access client software component running in the client computer
translates applications’ file access requests expressed by operating system APIs
such as POSIX into CIFS or NFS protocol messages and transmits them to the
NAS system.

Figure Intro-3 Network-attached storage model

NAS aggregator

P W
E ("‘/ Protocol))
-~ {NFS,CIFS,
oy >

el

CIFS, NFS, and other network file access protocols express file access and
metadata manipulation requests, which the NAS head executes on behalf of

14 | Introduction

Model 1: network-attached storage (NAS)

clients. Table Intro-1 summarizes the characteristics of the NAS model.

Table Intro-1 Properties of the NAS model

Tasks performed by Location of file data Location of metadata
application server access software management software
Translate applications’ file | NAS head NAS head

access requests to the NAS
protocol (typically NFS,
CIFS, http, DAV, or similar)

Advantages and limitations of the NAS architectural model

The NAS model has become very popular for use with both UNIX and Windows
application servers. Popularity has resulted in a high level of maturity
(performance and robustness) and integration, for example, with network
management and security tools. NAS systems are widely deployed as second-tier
data storage, and are increasingly coming into use in more performance-critical
applications.

As may be apparent from Figure Intro-3, however, the NAS model has certain
inherent limitations:

m Protocol overhead. Applications running on NAS client computers use

operating system APIs (POSIX or WIN32) to express file access requests. File
access client software translates these into CIFS or NFS messages and sends
them to the NAS head. The NAS head executes the requests using its own
operating system APIs to access file system data and metadata. Thus, client
requests are translated twice before being executed. Similarly, the NAS
system’s responses are translated twice as well.

A more pronounced effect in some applications is data movement overhead.
The CIFS and NFS protocols do not lend themselves to so-called “direct,” or
“zero-copy” file I/O, in which data is written directly from or read directly into
application buffers. Typically, CIFS and NFS client software moves data
between user buffers and the kernel operating system buffers from which I/O
is done. Particularly for streaming applications, which read and write large
blocks of data, the overhead of copying data to and from application buffers
can be substantial.

Bottlenecking. A NAS head is the single access point for the file systems it
hosts. Thus, a NAS system’s total performance is limited by the ability of the
head to process requests and to absorb and deliver data. Data centers with
more clients or greater I/O demands than a NAS system can satisfy must
divide their workloads among multiple NAS systems, creating “islands” of
unconnected data. Chapter 3 describes a novel capability of Symantec’s

Introduction | 15
Model 2: The file area network (FAN)

Veritas Cluster File System that relieves this limitation, the clustered NFS
server, or CNFS.

In addition to the inherent limitations of the model, NAS implementations have
historically lacked certain features that are important for critical enterprise
data, notably high availability (the capability of a system to sustain single
component failures and continue to perform its function), and disaster
protection (typically in the form of replication of data to a remote location). In
recent years, these features have been introduced in NAS systems, but they
remain in the minority of deployments.

NAS systems are generally most suitable for storing large amounts of file data
with modest individual client access performance requirements, and least
suitable in applications such as business transaction processing, for which the
lowest possible latency (end-to-end I/0 request execution time) is the defining
performance criterion. Historically, they have been perceived as simple to
administer relative to systems that implement other shared data file system
architectural models.

Model 2: The file area network (FAN)

The popularity of NAS systems, and the consequent growth of “data islands”
(Figure Intro-2) has led to another shared data file system model that is
sometimes called the file area network (FAN). File area networks bring multiple
NAS systems together into a single logical name space that is presented to
clients. Figure Intro-4 illustrates the FAN model.

Figure Intro-4 File area network model

NAS aggregator

- W
p £ ('/{ Protocol))

Protocol) <« — (NFS,CIFS,
(NFs,mFs,j// &*\,& otc) >/

=

16 | Introduction

Model 2: The file area network (FAN)

In a FAN file system, multiple NAS systems connect to a file system aggregator,
usually a highly specialized network router with large amounts of internal
bandwidth, network connectivity, and cache memory. As its name implies, the
file system aggregator combines the file systems presented to it by two or more
NAS into a single name space hierarchy, which it in turn presents to clients.

A FAN file system appears to clients as a single name space. The aggregator
keeps track of the locations of sub-trees within the aggregated name space and
relays each client request to the NAS system that holds the referenced data.
Table Intro-2 summarizes the distinguishing properties of the file area network
architectural model.

Table Intro-2 Properties of the file area network model

Tasks performed by Location of file data Location of metadata
application server access software management software
Translate I/O requests NAS aggregator NAS aggregator
to NAS protocol (typi- (client request (datalocation mapping)
cally NFS, CIFS, http, distribution) Subordinate file
DAV, or similar) Subordinate file servers

servers (metadata access)

(data access)

Advantages and limitations of the FAN architectural model

FAN file systems have two important advantages over other shared data file
system technologies:

m Name space consolidation. They combine isolated “islands” of data stored on
NAS systems into larger, more flexibly accessed and more easily managed
collections. For data centers with dozens of NAS systems to administer, this
is particularly important

m Advanced functions. They enable advanced functions, principally those
based on copying data from one NAS system to another under the control of
the file system aggregator. This facility has several applications; three
important ones are NAS system-based backup, load balancing across NAS
servers, and migration of data from older NAS servers to their replacements.
Copying is generally transparent to client computers, so FAN aggregators can
generally migrate data while applications are accessing it

The limitations of the FAN architectural model are similar to those of the NAS
model that underlies it, long I/O paths (even longer than with direct NAS
access), protocol translation overhead, and the bottleneck represented by the
file system aggregator itself. Thus, FAN technology is most suited for “tier 2"
applications, for which simple administration of large amounts of data stored on

Introduction | 17
Model 3: The SAN (direct data access) file system

multiple NAS systems has a higher priority than the low-latency access by client
computers that is characteristic of business transaction processing.

Variation on the file area network theme: distributed file systems

Microsoft Corporation’s Distributed File System (DFS) implements a model
similar but not identical to the FAN model illustrated in Figure Intro-4. In
addition to the files it hosts, a DFS file server stores referrals-links to directory
trees hosted by other servers. When a client requests access to a file or directory
represented by a referral, the DFS server responds with the hosting server’s
network name. The client establishes a connection with the server that hosts its
data, and communicates directly with it to manipulate files. The DFS referral
architecture is sometimes referred to as out-of-bandfile area networking,
because client access to referred files is not in the communication path between
the client and the server containing the referral.

DFS minimizes the bottleneck inherent in the in-band FAN model illustrated in
Figure Intro-4, because data transfer is distributed between clients and the
servers that hold their data, rather than being funneled through a single point.
Similarly to the in-band FAN model, it enables advanced features based on
copying data transparently to clients. It poses challenges, however,
synchronizing the copies, and in keeping referrals current as files are created
and deleted, and as directory structures change.

Model 3: The SAN (direct data access) file system

The storage area network (SAN) file system is a more recent shared data file
system architectural model. SAN file systems can also be termed parallel, or
direct data access, because they enable client computers (usually application
servers; SAN file systems are rarely used with single-user desktop computers) to
access file data directly from block storage devices, without funneling it through
an intermediate stage, as is the case with NAS systems. Figure Intro-5 illustrates
a parallel data access shared data file system.

18 | Introduction
Model 3: The SAN (direct data access) file system

Figure Intro-5 Direct access model

0sD) .~

In the model illustrated in Figure Intro-5, client computers running applications
communicate with a cluster of metadata servers to authenticate themselves and
gain authorization to access file systems. Once authenticated, clients access files
by requesting from the metadata service a map of the files’ data locations. They
use this map to form read and write requests which they communicate directly
to storage devices, as the right side of the figure suggests. Table Intro-3
summarizes the properties of the direct data access model.

Table Intro-3 Properties of the direct data access file system model

Tasks performed by
application server

Location of file data
access software

Location of metadata
management software

Request metadata from
metadata server

Access to file data is
direct from data
servers

Application server

Metadata server

Introduction
Model 3: The SAN (direct data access) file system

Advantages and limitations of the SAN file system architectural

model

The name “SAN file system” derives from the storage network that connects
client computers directly to storage devices (typically a Fibre Channel-based
storage network, although iSCSI is also used). The SAN file system architectural
model has three important advantages:

m Bottleneck elimination. It eliminates the bottleneck represented by the NAS
head) (Figure 3)

m Independent scaling. It enables storage capacity, metadata processing
power, and I/0 bandwidth to scale independently as required by applications

m Low protocol overhead. It eliminates the double protocol conversion
overhead, and for data transfer, increases the potential for zero-copy I/0, at
least with Fibre Channel

All of these advantages tend to promote scaling, particularly of I/O
performance. In fact, the SAN file system architectural model has been most
successful in the high-performance computing sector-simulation, experimental
data reduction, and similar applications.

With a SAN file system, once application servers have block storage devices’
network addresses, they can access data on the devices directly. This is a
strength of the direct data access model, because it shortens the path between
application and data. But it is also the weakness, because block-oriented storage
network protocols are typically designed to respond to any command from an
authenticated initiator. (This property is sometimes colorfully referred to as
promiscuity.)

While the danger of a “rogue” application server in a controlled data center
environment is minimal, there is no protection against a software error causing
data, or worse yet metadata, to be corrupted. Viewed from another perspective,
for a SAN file system to function correctly, all metadata servers and all client
application servershave to function perfectly all the time. Arguably, this risk
has inhibited broader commercial adoption of SAN file systems.

Variation on the direct data access theme: object-based file systems

Object-based storage devices (OSDs) are a relatively new arrival on the file
storage scene. Based loosely on the file system paradigm, OSDs and the file
systems that utilize them eliminate much of the security risk inherent in the
SAN file system architectural model.

In essence, OSDs are persistent storage devices that manage their block storage
internally and present “objects” that resemble files to clients. Clients’ read and
write requests specify block ranges within objects; they do not have access to an
0SD’s entire range of block storage.

19

20 | Introduction

Model 3: The SAN (direct data access) file system

The OSD-based file system model resembles the metadata server-data server
model illustrated in Figure Intro-5. It differs in that file data locations are
expressed in terms of object identifiers and block ranges within objects rather
than in terms of ranges of raw disk blocks.

Standards-based OSD access protocols include security mechanisms that allow
metadata servers to limit client access to specific objects, and to revoke it if
necessary, for example if a client times out or unmounts a file system. Thus,
clients can only access objects that a file system’s metadata servers have
authorized them to access. Malfunctioning clients have little or no capacity to
damage file system data integrity. Moreover, metadata servers typically detect
failing or misbehaving clients immediately and block them from accessing the
file system entirely.

Advantages and limitations of OSD-based file systems

While they are technically attractive, two factors limit the adoption of OSD-
based direct data access file systems:

m Limited availability. OSD technology is relatively new, and no OSD devices
are available on the market. Consequently, file system developers have little
motivation to create file systems for OSD devices. Generally, the object-based
file systems that have been developed are part of complete storage systems
that include both software-based OSDs and metadata servers

m Inherent access latency. Because opening a file requires access to both a
metadata server and an OSD, OSD-based file systems have inherently higher
“time to first byte” than block storage-based ones. Thus, they are not
particularly well-suited to applications such as desktop file serving in which
files are opened and closed frequently

As mentioned earlier, direct data access file systems have gained popularity in
high-performance computing, where the scale is large (petabytes), the
computing environments are generally trusted, and the magnitude of the data
storage and access problems is such that they simply cannot be solved any other
way.

Direct data access file system architectural models are evolving rapidly, at least
by data access protocol standards. The parallel network file system (pNFS) is a
proposed standard for direct client access to file data stored either on block
storage devices, OSDs, or NAS systems. Like the OSD technology after which it is
patterned, pNFS is a functionally rich model that is finding early success in the
high-performance computing sector. As the protocol itself matures, and more
storage devices and systems support it, its acceptance in the commercial sector
can be expected to broaden.

Introduction | 21
Model 4: The cluster file system

Model 4: The cluster file system

Figure 6 illustrates the cluster file system architectural model for shared access
to files. Cluster file systems provide low-latency access and a near linear
capacity and performance scaling for a moderate-size (typically 32-64) cluster of
nodes (application servers) accessing one or more common sets of files in
different file systems.

Figure Intro-6 Cluster file system model

With the cluster file system model, each node runs a complete instance of file
system software that is functionally equivalent to the single-server local file
system illustrated in Figure Intro-1 in addition to its applications. Each cluster
file system instance is aware of the others, and they all cooperate by
continuously exchanging state and resource control information over a private
network to provide coordinated file system access to their respective
applications.

In a cluster file system, all file system instances operate on the same logical
images of data. Multiple physical copies of data may exist, for example where
disk-level mirroring is used to enhance performance and resiliency, but file
system instances perceive a single data image). Table Intro-4 lists the defining
characteristics of the cluster file system model.

22

Introduction

Model 4: The cluster file system

Table Intro-4 Properties of the cluster file system model
Tasks performed by Location of file data Location of metadata
application server access software management software
Full file system functionality | Application server Application server
(cluster node) (cluster node)

In a cluster file system, all file system instances manipulate file system
metadata directly, after first coordinating with their peer instances in other
nodes via network messages to “lock” access to the metadata they are
manipulating (the icons labeled “Cluster file system” in Figure Intro-6).
Likewise, each file system instance accesses data directly, again, after locking
access to it to prevent inadvertent corruption by peer instances running
elsewhere in the cluster.

Advantages and limitations of the cluster file system architectural

model

The advantages of the cluster file system model are:

m Low latency. Direct application server access to data with minimal protocol
translation minimizes I/O request latency

m Resource scaling. Metadata processing power, cache memory available to file
systems, and storage access bandwidth all increase as nodes are added to a
cluster. Storage capacity increases independently as disk arrays are added to
the storage network

m Cache coherency. Each node’s updates to cached data are instantly available
to all nodes in a cluster so that all have an up-to-date picture of data at all
times

m Load balancing. When integrated with application clustering, cluster file
systems make it possible to redistribute application and file system workload
when a cluster node fails or when workload requirements change

m Rapid recovery. Because cluster file systems are mounted on all cluster
nodes, restart of failed applications on alternate cluster nodes (called
failover) tends to be faster than with other approaches, because file systems
need not perform full checking and restart. Typically, only replay of the
failed node’s file system log by a surviving node is required.

Cluster file systems offer low latency data transfer, and so are suitable for
business transaction processing as well as other workloads. With short data
paths and no protocol conversion during data transfer, cluster file systems are
also suitable for high-bandwidth streaming workloads.

Introduction | 23
Model 4: The cluster file system

The number of nodes in a typical cluster is relatively modest-common upper
limits are between 32 and 64. Cluster file systems are therefore not well-suited
for personal computer data sharing, where there might be hundreds, or even
thousands, of client computers, many of which are mobile. The NAS and FAN
architectural models are usually preferable for large numbers of personal
computer clients. Chapter 3 describes a novel cluster file system capability, a
clustered NFS server (CNFS) that enables a cluster of up to 32 nodes running
Symantec’s Veritas Cluster File System to be deployed as a scalable, resilient
NFS server suitable for providing file access services to dozens of application
servers or thousands of personal computer clients.

24 | Introduction
Model 4: The cluster file system

Understanding and using CFS

m What makes CFS unique
m Using CFS: application scenarios

m Using CFS: scalable NFS file serving

26

What makes CFS unique

This chapter includes the following topics:

m CFS foundation and platforms
m What makes CFS unique
m The top 10 in depth

m Using CFS

CFS foundation and platforms

The cluster file system component of Symantec’s Veritas Storage Foundation
Cluster File System package (SFCFS), known informally as CFS, evolved from
Symantec’s proven Storage Foundation File System (commonly called VXFS),
originally developed by VERITAS Software Corporation. CFS is a 64-bit fully
POSIX-compliant cluster file system available for Sun Microsystems’ Solaris
(SPARC and 64-bit Intel), Hewlett-Packard’s HP-UX, IBM’s AIX, and Linux
distributions offered by RedHat, SuSe, IBM, and Oracle.

CFS can host multiple file systems3, each encompassing up to 256 terabytes of
storage and containing up to a billion files. It includes several advanced
capabilities that make it the file system of choice in complex production data
center environments. The “top 10 list” of CFS advanced capabilities are
described later in this chapter.

CFS implements the cluster file system architectural model described in “Model
4: The cluster file system” on page 21 in UNIX and Linux-based VERITAS Cluster
Server (VCS) computer clusters, as well as Hewlett-Packard MC-Service Guard

3. The term file systemis commonly used to refer to both (a) the body of software that
manages one of more block storage spaces and presents the file abstraction to clients,
and (b) a block storage space managed by such software and the files it contains. The
intended meaning is usually clear from the context.

28 | What makes CFS unique
CFS foundation and platforms

clusters on the HP-UX operating system. CFS instances in a VCS cluster of as

many as 32 nodes* (application servers) cooperate to provide simultaneous
shared access to file systems for applications running on some or all of the
cluster’s nodes. Figure 1-1 illustrates the software topology of a cluster in which
CFS provides shared file system access.

Each CFS instance provides file access services to applications running on its
node. For example, in Figure 1-1, the CFS instance on Cluster node 1 can mount
file systems /X, /Y, and /Z, and make them available to Applications A, B, and C.
The instance on Cluster node 2 can mount the same three file systems and make
them available to Applications D, E, and F, and so forth. CFS instances
coordinate file access across the entire cluster so that all applications have the
same view of the file system state and file contents at all times, and so that
potentially conflicting updates do not interfere with each other or with other file

accesses.
Figure 1-1 CFS topology
s, s,
7 No,., Sl
0% ;?r 00’9;"

Sotiware stack o200

Application D
Application E
Application F

P A
i 4 Private network P
Crsinstance |—\(__ (Ethemet with pe CFSinstance
A VCS protocols
Virtualization Virtualization \h\\—-’\w Virtualization

— (-—\,/_‘y/_‘\\

SAN
‘[Fibre Channel, iSCSI, or-SA

File system File system File system
/X Al /Zz

~ Disk armays ~

In the scenario illustrated in Figure 1-1, the applications might be completely
independent of each other, or they might themselves be structured as high
availability cluster services. For example, Application A might be configured as
a cluster service that would “fail over” to (automatically restart on) Cluster node

4. Symantec supports CFS in clusters of up to 32 nodes at the time of publication. Readers
should consult the most recent product documentation for up-to-date product parame-
ters.

What makes CFS unique | 29
CFS foundation and platforms

2 if Cluster node 1 were to fail. The surviving nodes discover the failure, and
reconfigure themselves into a new cluster consisting of nodes 2-N. After the
reconfiguration, Application A automatically restarts on node 2. Since the CFS
instance on node 2 serves the same file systems to applications running there, it
seamlessly provides file system access to the restarted Application A.

Alternatively, applications may be structured as parallel cluster services.
Instances of parallel services run concurrently on multiple cluster nodes,
sharing access to CFS files and serving the same or different clients. If a node
fails, its clients are shifted to an instance on a surviving node, and service
continues uninterrupted.

CFS applications

With the ability to support up to 256 terabytes of storage and up to a billion files
per name space, multi-volume file systems, and individual sparse files as large

as 8 exabytes®, CFS file systems can be sized to meet demanding enterprise
requirements.

Supporting large file systems is much more than data structures. CFS is
designed for reliable high performance file data access across a broad spectrum
of enterprise applications, including:

m Media. CFS efficiently maps multi-gigabyte media files for fast access

m Science and engineering. CFS is an ideal repository for large data sets
collected during experiments or generated by modeling applications, and
reread piecemeal for analysis

m Commercial. CFS is versatile enough to support databases accessed
randomly by business transaction processing applications as well as those
accessed sequentially by decision support systems

m Unstructured. CFS file systems make high-performance platforms for file
serving where users are constantly creating, deleting, opening, and closing
large numbers of files of varying size and composition. The Clustered NFS
(CNFS) feature described in Chapter 3 extends scalable file serving to
thousands of users through the Network File System (NFS) protocol

CFS uses an efficient extent-based scheme to map blocks of file data to file
system block locations. CFS data mapping is particularly concise for large
contiguous files: in principle, it can describe the largest file that CFS supports
with a single descriptor. Concise data block mapping is an important factor in
I/0 performance. Not only does it minimize the amount of metadata required to
map a file’s data, it simplifies application read and write request execution

5. Because it supports “sparse” files (files for which no storage is allocated to block ranges
until data is written to them), CFS can create file address spaces that are larger than the
amount of block storage allotted to a file system.

30 | What makes CFS unique
CFS foundation and platforms

because it minimizes the number of file block ranges that must be read or
written with separate disk I/O commands.

CFS prerequisites

In order for CFS instances to share access to file systems, the storage devices
that hold the file systems must be directly accessible by all cluster nodes; that is,
storage devices and the cluster nodes must all be interconnected by a storage
network as Figure 1-1 suggests. CFS stores metadata and data on virtual storage
devices called vo/umesthat are managed by the Symantec Cluster Volume
Manager (CVM) component of the Storage Foundation. CVM configures volumes
by combining disks and disk array logical units (LUNs) connected to the cluster’s
nodes by Fibre Channel, iSCSI, or Serial Attached SCSI (SAS) storage networks.

In addition to their connections to shared storage devices, the nodes in a VCS
cluster must be interconnected directly to each other via an Ethernet-based
private network, as illustrated in Figure 1-1. VCS uses the private network to
transmit heartbeat messages among nodes and to coordinate cluster
reconfigurations and application failovers. CFS uses the VCS private network to
coordinate access to shared file system resources such as file and free space
metadata.

CFS packages

Four Symantec products include CFS technology:

m Storage Foundation CFS (SFCFS). In addition to CFS and CVM, the SFCFS
package includes the VCS components and configuration tools that enable a
group of computers to form a cluster, create volumes, and create, mount, and
access shared file systems. It does notinclude the VCS facilities required to
structure arbitrary applications for automatic failover

m Storage Foundation CFS for high availability (SFCFS-HA). The SFCFS-HA
package includes CFS, CVM, and full-function VCS. With SFCFS-HA, most
applications can be configured as highly available VCS service groups that
store their data in CFS shared file systems mounted on CVM volumes

m Storage Foundation for Oracle Real Application Cluster (SFRAC and
SFCFSRAC). The SFRAC package, and the companion SFCFSRAC (for Linux
platforms) include CFS, CVM, and VCS, along with additional software
components that facilitate high availability for Oracle’s Real Application
Cluster (RAC) clustered database management system software

m Storage Foundation for Sybase Cluster Edition (SFSYBCE). The SFSCE
package includes CFS, CVM, and VCS, along with additional software
components that facilitate high availability for Sybase Cluster Edition
clustered database management system software

Any of these can be installed on a supported UNIX or Linux cluster. In addition,

What makes CFS unique | 31
What makes CFS unique

CFS is the file system component of file storage systems that are based on
Symantec’s FileStore NFS and CIFS file server technology.

What makes CFS unique

The remainder of this chapter describes the CFS “top ten list”—ten features that
differentiate CFS from other cluster file systems for UNIX platforms and from
other approaches to file data sharing. The features are listed alphabetically
because it is impossible to assign relative importance to them:

Feature 1: Cluster and data disk fencing. Any cluster runs the risk of
partitioning into two groups of nodes that cannot communicate with each
other. To avoid incorrect operation and data corruption, there must be a
foolproof algorithm for dealing with partitioning that always results in one
partition continuing to operate as a reduced cluster and the other shutting
down. VCS uses coordinator disks to resolve cluster partitions that result
from failures of the private network. (Alternatively, a coordinator server can
be configured in place of one or more of the disks.) In addition, if CFS file
systems reside on volumes configured from PGR-capable disks, CVM uses
data disk fencingto protect against data corruption when a cluster partitions
(see “Feature 1: Cluster and data disk fencing” on page 33)

Feature 2: Database management system I/0 accelerators. CFS includes
three different database acceleration options that make it possible for
database management systems and other I/O intensive applications to get
the administrative convenience of using files as data containers without
incurring the performance penalty typical of this approach.

(see “Feature 2: Database management system I/O accelerators” on page 36
and Chapter 11)

Feature 3: The File Change Log (FCL). A CFS file system can be configured to
maintain a circular File Change Log (FCL) in which it records descriptions of
all changes to files in the file system. Incremental backup, auditing, and
similar applications can use APIs supplied with CFS to determine which files
in a file system were changed during a given period.

(see “Feature 3: The File Change Log (FCL)” on page 37)

Feature 4: The file system history log. CFS permanently logs all maintenance
performed on a file system in the file system itself. The file system history log
gives support engineers instant access to reliable, up-to-date information
about the state of a file system for faster problem diagnosis and resolution.
(see “Feature 4: The file system history log” on page 39)

Feature 5: Flexible snapshots and clones. Products that include CFS support
both snapshots of sets of CVM volumes and snapshots of file systems (called
Storage Checkpoints). Administrators can choose between full-size volume
snapshots that can be taken off-host for separate processing and space-
optimized snapshots of either volumes or file systems that occupy space in

32

What makes CFS unique
What makes CFS unique

proportion to amount of changed data in a data set, rather than the data set’s
size. All Storage Foundation snapshot technologies can be configured for use
either as read-only point-in-time images of data, or as writable clones of their
parent data sets.

(see “Feature 5: Flexible snapshots and clones” on page 40)

m Feature 6: Named data streams. Named data streams make it possible for
applications to attach virtually unlimited custom metadata to files.
Structured as hidden files, named data streams can contain anything from a
single byte to a video clip.

(see “Feature 6: Named data streams” on page 42)

m Feature 7: Portable Data Containers (PDC). Storage Foundation Portable
Data Container (PDC) technology makes cross-platform data sharingpossible.
CFS file systems produced by one type of VCS cluster platform (for example,
AIX) can be converted for use on a system or cluster of a different type (for
example Linux), even if the two platforms use different memory addressing.
(see “Feature 7: Portable Data Containers (PDC)” on page 43)

m Feature 8: User and group quotas. CFS enforces both hard (non-exceedable)
and soft (exceedable for a limited time) quotas that limit the file system
storage space that individual users and groups of users are permitted to
consume.

(see “Feature 8: User and group quotas” on page 47)

m Feature 9: Sparse files. CFS files are inherently sparse. By default, the file
system only allocates storage for file blocks to which applications actually
write data. No storage is allocated for file blocks that have never been
written. Sparse files simplify indexing when index spaces are large, without
exacting a toll in overprovisioned storage.

(see “Feature 9: Sparse files” on page 48)

m Feature 10: Storage tiers. CFS helps minimize blended storage cost in large
file systems that contain combinations of active and inactive or critical and
non-critical data by automatically placing files on the “right” type of storage
throughout their lifetimes.

(see “Feature 10: Storage tiers” on page 50)

In addition to these ten, all of which are shared with the single-instance VXFS
file system, many other CFS features, including its “friendliness” to thin
provisioned underlying storage devices, support for reclamation of unused
storage capacity, and SmartMove technology for data migration, make it the file
system of choice for critical enterprise applications in complex, rapidly
changing data center environments.

What makes CFS unique | 33
The top 10 in depth

The top 10 in depth

The sections that follow describe the “top 10” list of CFS differentiating features
in depth.

Feature 1: Cluster and data disk fencing

Like any shared data cluster whose nodes and storage are interconnected by
separate networks, a CFS cluster must avoid data corruption due to partitioning
(sometimes informally called a spl/it brain condition). If a cluster’s private
network fails in such a way that two or more disjoint groups of nodes cannot
communicate with each other, one group of nodes can continue to act as the
cluster, but the remaining groups must shut down to avert data corruption.

Figure 1-2 illustrates partitioning in a four-node cluster.®

Figure 1-2 Cluster partitioning

Network partition

netwo

In Figure 1-2, the private network has become partitioned so that Nodes A and B
can communicate with each other, as can Nodes C and D. But the two halves of

6. Partitioning is usually described prominently in cluster-related literature, but is in fact
a fairly rare condition, particularly in VCS clusters, because VCS requires redundant
private networks, and in addition, supports private networks that are doubly redun-
dant, and therefore capable of sustaining two link failures without partitioning.

34 | What makes CFS unique
The top 10 in depth

the cluster cannot intercommunicate on the private network. Both halves of the
cluster can communicate with storage devices, however, creating the potential
for corrupting data and file system structures.

Partitioning of a VCS cluster’s private network is difficult to diagnose because
the nodes within each partition (Nodes A and B and Nodes C and D respectively
in Figure 1-2) cannot distinguish between:

m Node failure. Failure of the nodes in other partitions. In this case, the failed
nodes are shut down by definition; the surviving nodes should become the
cluster and continue to provide services to clients

m Private network failure. Failure of communication links between the
partitions. In this case, there is no automatic “right” answer to which
partition should continue to function as the cluster. Both partitions are
functioning properly, but since they cannot intercommunicate, they cannot
coordinate access to shared storage devices

Coordinator disks and coordination point servers

VCS resolves network partitions by using coordinator disks or coordination
point servers as extra communication channels that allow partitioned cluster
nodes to detect each other. For resiliency against disk failure, VCS fencing
requires three (or any larger odd number of) dedicated coordinators.
Coordinator disks must have the following properties:

m Persistent Group Reservation support. Coordinator disks must support
SCSI-3 Persistent Group Reservations (PGR)

m Cluster-wide accessibility. Coordinator disks must be accessible by all
cluster nodes, ideally each one via a separate I/O path

Coordinator disks do not store data, so small-(10 megabyte or greater) LUNs are
the most suitable candidates. The VCS fencing algorithm requires that a cluster
have three or some larger odd number of coordinators, and that coordinators
always be accessed in the same order.

When a cluster node determines (by the absence of heartbeat messages) that it
cannot communicate with one or more other nodes, it first blocks I/O to shared
file systems to protect against data corruption. It then requests exclusive access
to the first coordinator (using the PGR protocol if the coordinator is a disk). All
nodes in a partitioned cluster do this at approximately the same time.

The SCSI-3 Persistent Group Reservation protocol and the VCS protocol for
coordination point servers only permit one node to successfully reserve the first
coordinator; all other nodes’ requests fail because the coordinator is already
reserved. A node’s subsequent behavior depends upon its success in reserving
the first coordinator:

m Successful node. The successful node immediately requests reservations for
the other two coordinators

What makes CFS unique | 35
The top 10 in depth

m Other nodes. Nodes that failed to reserve the first coordinator voluntarily
wait for a short period before requesting reservations on the other
coordinators

Reconfiguring a partitioned cluster

Once a node succeeds in reserving more than half of the coordinators, it and the
nodes with which it can communicate on the private network perform a cluster
reconfiguration resulting in a cluster that does not include nodes with which
they cannot communicate. The nodes of the reconfigured cluster complete
failover by performing the following actions:

m Revoke partitioned nodes’ access to data disks. The new cluster’s CVM
master commands all PGR-capable data disks in CVM shared disk groups to
revoke the registrations of partitioned nodes so that commands from them
are no longer honored. This is called data disk fencing. Data disk fencing
greatly diminishes the potential for a cluster partition to result in data
corruption, and is therefore highly recommended

m Fail over virtual IP addresses. Any IP addresses configured as high
availability service groups fail over to nodes in the reconfigured cluster

m Fail over services from partitioned nodes. VCS restarts high-availability
services from nodes that were partitioned out of the cluster on their
designated failover nodes

m Resume service to clients. Restarted applications on the reconfigured cluster
resume perform crash recovery and resume service to clients

VCS forces partitioned nodes that fail to reserve a majority of the coordinators
to shut down abruptly (“panic”). They remain inoperative until the private
network has been repaired and an administrator has added them back into the
cluster.

While cluster fencing is internally complex, from an administrative standpoint
it is a simple “set-and-forget” facility. A VCS administrator designates three or
more coordinator disks or coordination point servers and activates fencing.
Thereafter, the only administrative requirements are non-routine maintenance
such as disabling fencing, checking coordinator status, and replacing failed
coordinator disks.

Data disk fencing

For PGR-capable shared data disks, the CVM Master sets their PGR keys to
reserve them for exclusive use by cluster members (“fences” them). When a
cluster reconfigures, CVM removes the keys for the departed members to avoid
the potential for data corruption in case removed nodes behave improperly (e.g.,
by attempting to flush data). Without the PGR capability, there is a remote but
real possibility that badly-behaved applications in nodes removed from the

36 | What makes CFS unique
The top 10 in depth

cluster could corrupt data by continuing to access disks after reconfiguration.

Feature 2: Database management system I/O accelerators

Database administrators (DBAs) often use files as “storage containers” for
database metadata and data because they simplify common administrative
tasks, such as moving, copying, and backing up selected subsets of database
records, indexes, and logs. Moreover, when database storage requirements
change, files are significantly easier to expand or shrink than disks or virtual
volumes.

But the data caching and I/O serialization that file systems use to isolate users
from each other can hamper database I/O performance. Since database
management systems are the sole users of their files, and since they coordinate
their own file accesses to avoid conflicting updates, these file system protection
mechanisms are by and large unnecessary. CFS includes three mechanisms that
enable database management systems to bypass most of the unneeded file
system protections against concurrent access and the overheads they incur:

m Oracle Disk Manager (ODM).
Oracle Corporation publishes a Administrative hint 1
specification for an Oracle Disk
Manager (ODM) API that its Systems that use CFS Quick I/O files for
database management system Oracle database storage should be
products use to optimize I/0 upgraded to the Oracle Disk Manager
operations. Perhaps the most library, to improve integration with
important function of ODM is Oracle current and future releases.

asynchronous file I/O between
Oracle’s own buffers and the disks on which the files resides. CFS includes an
ODM library that uses CFS and CVM capabilities to implement the
functionality expressed in the ODM APIs

® Quick I/O. The Quick I/O for databases feature is the functionally similar
precursor of CFS’ ODM library implementation. Still supported by CFS on
enterprise UNIX platforms, Quick I/O provides advantages similar to ODM’s
for any database management system (or other application) that
synchronizes its own I/O requests and coordinates buffer usage internally

m Concurrent I/O. For database management systems and other applications
that do not include their own APIs for storage access, CFS includes the
Concurrent 170 (CIO) feature that makes it possible for any application to
perform asynchronous file I/O directly between its own buffers and the disks
on which the files reside. Administrators can specify concurrent I/O as a
mount option, applying it to all files in a file system. Alternatively,
application developers can declare cio as a cache advisory for specific files

Using these CFS mechanisms, database administrators can enjoy the
convenience of file-based storage administration without paying a penalty in
diminished database I/O performance compared to that of “raw” block storage

What makes CFS unique | 37
The top 10 in depth

devices. The CFS database I/O acceleration mechanisms enhance database

management system I/O performance in three ways:

m Asynchronous I/O. CFS database I/0O accelerators make it possible for data-
base management system execution threads to issue I/O requests and con-
tinue executing without waiting for I/O to complete. When a thread requires
the result of its I/O request, or when it has exhausted its work queue, it waits
for the I/O to complete

m Direct I/0. CFS database I/O accelerators schedule data transfers directly
between database manager buffers and disk storage. They do not copy data
between database manager buffers and operating system page cache as CFS
would for normal application I/O requests

m Write lock avoidance. CFS database I/O accelerators bypass the operating
system’s normal file write locking mechanisms. This increases parallel execu-
tion by allowing concurrent requests to be issued to CVM and thence to the
hardware I/0 driver level

Chapter 11 discusses the ODM, Quick I/0, and CIO database I/O acceleration
mechanisms in detail.

Feature 3: The File Change Log (FCL)

An administrator can configure CFS to maintain a File Change Log (FCL) for each
mounted file system in which it records information about all changes made to
the file system’s files. FCL records identify:

m Files. Files or directories affected by the change

m Operations. Creation, expansion, truncation, deletion, renaming, and so
forth

m Actors. Process IDs and user and group IDs under which changes were
requested

m Times. Times at which operations were performed
In addition, FCLs can periodically record:
m Filestats. I/O activity (called filestats) against individual files

m Allaccesses. All file opens, including those for read-only access. These can be
useful for auditing purposes.

An FCL records file change events, but does not record changed data.

38 | What makes CFS unique
The top 10 in depth

FCLs are circular. If an FCL fills to
its maximum allowable size

without being cleared or saved by o
an administrator, CFS overwrites An administrator uses the fcladm

the oldest information in it. When | console command to manage the FCL,

Administrative hint 2

this occurs, CFS writes a record including starting and stopping

into the FCL indicating that recording, saving FCL contents, and
records have been deleted. adjusting parameters that control FCL
Administrators can enable and operation.

disable FCL recording at any time,
and can adjust an FCL’s size to increase or decrease the number of records that
can be retained. Additionally, administrators can set the minimum interval
between successive open and write records to limit the space that the FCL
consumes during periods when files are being updated frequently, while still
capturing the fact that files were updated. Administrators can also copy FCL
contents to regular files to preserve a permanent record of file system changes,
and can clear FCL contents at any time (for example, after copying) to “start
fresh” with file system change recording.

Each CFS instance maintains an FCL for each mounted file system in which it
records changes that it makes. Periodically, the primary CFS instance merges all
instances into a master FCL in which all records, even those from different
nodes that refer to the same object are recorded in proper sequence.

CFS includes APIs that any application can use to retrieve FCL records.
Applications that use these APIs retrieve a single cluster-wide stream of file
change history records in which all records are in proper sequence, even if they
were written by different instances.

Data management applications can use FCL information in several ways, for
example:

m Backup. Backup programs can read FCL records to determine which files in a
file system changed during a given period, thus eliminating the need to
examine every file to determine which to include in an incremental backup

m Replication. Episodic (periodic) replicators can read FCL records to quickly
identify files that have changed since the last replication episode, and must
therefore be communicated to the replication target during the next episode

m Search. Search engines that build persistent indexes of file contents can use
the FCL to identify files that have been created, modified, or deleted since
their last index update, and thus perform incremental index updates rather
than full file system scans

m Audit. If a file system’s FCL is configured to record every access to every file
in a file system, auditors can use it to determine the history of accesses and
modifications to a file and the users and applications that made them

What makes CFS unique
The top 10 in depth

Workflow. Workflow applications can read FCL records to identify
documents that have been created, modified, or deleted, and use the
information to schedule tasks accordingly

CFS itself uses the information in the FCL. The Dynamic Storage Tiering feature
(Chapter 10) uses FCL filestats to compute files’ /O temperatures, in order to
determine whether they should be relocated to alternate storage tiers based on
the I/0 activity against them relative to overall file system activity.

Feature 4: The file system history log

CFS maintains a log of all maintenance performed on a file system, including file
system resizings, volume additions and removals, volume and file system data
layout changes, and so forth. Entries in a CFS file system’s history log may be
made by the file system kernel or by file system utilities. Kernel-initiated history
log entries include:

Resizing. While initiated by administrative action, resizing is actually
performed by the file system kernel. CFS writes separate history log records
whenever a file system itself or its intent log is resized

Disk layout upgrade. When the CFS kernel upgrades a file system’s disk
layout (the pattern used to organize disk blocks into files and metadata) while
it is mounted, CFS writes a record in the file system’s history log

Volume set changes. Each time a storage volume is allocated to or removed
from a file system, CFS writes a history log record. The history log contains a
complete record of changes to a file system’s storage complement, no matter
how many times volumes have been added to or removed from it

Allocation policy change. A multi-volume file system may have a DST
(Chapter 10) policy assigned. When an administrator alters the policy in a
way that affects initial file allocations (not relocations), CFS writes a history
log record

Metadata I/O error. Any unrecoverable I/O error when reading or writing file
system metadata has the potential for corrupting a file system’s data or
structural information. CFS writes a history whenever file system metadata
cannot be retrieved

History log entries written by file system utilities include:

Cross-platform Data Sharing (CDS) conversion. The fscdsconv utility writes
a history log record when it converts a file system for mounting on a different
supported platform

Offline upgrade. When a file system'’s disk layout is upgraded offline (while
the file system is not mounted), CFS writes a history log record capturing the
upgrade

39

40 | What makes CFS unique
The top 10 in depth

m Creation. When the mkfs and mkfs_vxfs utilities create a new CFS file
system, they create a history log and record the creation date and time and
other parameters in it

m Full file system checking. In the rare instances when a full file system check
(fsck) is required (for example, when the file system’s superblock becomes
unreadable), CFS records the check event in the file system’s history log

The CFS file system history log is intended for the use of Symantec and partner
support engineers, so no user-accessible utilities for it are included in CFS
products. Having a file system history log leads to faster problem diagnosis and
resolution by giving support engineers instant access to reliable, up-to-date
information about the state of a file system and how it got that way.

Feature 5: Flexible snapshots and clones

Snapshots, images of data sets as they appeared at an instant in time, are one of
an administrator’s most useful data management tools. A snapshot is a “stable”
(unchanging) image of a data set that can processed by auxiliary applications
while production applications continue to process the data set itself. Snapshots
can be used for:

m Sourcing backup. A snapshot can be the source for making a backup copy of
data set contents that is consistent as of a single point in time

m Datarecovery. With periodic snapshots of a data set, files that are
inadvertently deleted or become corrupted can be recovered by copying their
images from a snapshot taken prior to the corrupting event

m Analysis. Snapshots can be used to analyze, or “mine,” stable images of a
data set while production applications continue to process the data set itself

m Test and development. Snapshots of production data sets are realistic data
against which to test new software developments and operating procedures

Snapshots can be classified as:

m Full-size. Complete copies of their parent data sets. Full backups of static
data sets and mirrors separated from mirrored volumes are both full-size
snapshots

m Space-optimized. Copies of parent data set data that is modified after
snapshot creation. For unmodified data, space-optimized snapshots point to
the parent data sets’ images

Full-size snapshots can be separated from their parent data sets, moved to other
systems, and processed completely independently. Space-optimized snapshots
can only be processed by systems that have access to their parent data sets,
because they rely on their parent data sets for unmodified data. Nevertheless,
users and administrators find space-optimized snapshots attractive for most
applications for two primary reasons:

What makes CFS unique | 41
The top 10 in depth

m Creation speed. Space-optimized snapshots can be created nearly instantly,
whereas full-size snapshots cannot be created any faster than their parent
data sets can be copied

m Space occupancy. Space-optimized snapshots occupy physical storage in
proportion to modifications made to their parent data sets; not in proportion
to their size. In most cases, space-optimized snapshots occupy a tiny fraction
of the space occupied by their parent data sets. For example, a space-
optimized snapshot of a 100 gigabyte data set, 1% of whose contents have
changed since the snapshot was taken, occupies only about one gigabyte of
storage. Because they are so compact, it is usually feasible to maintain dozens
of space-optimized snapshots, even of very large data sets

Some snapshot technologies produce writable images called “clones” that can be
modified by applications without altering the parent file systems from which
they were taken. Full-size snapshots inherently have this property, but some
space-optimized snapshots, including those available with CFS, are writable as
well. Clones are useful for training, destructive software testing, and performing
“what if” analyses.

Administrators can choose between full-size and space-optimized snapshots of
sets of CVM volumes, as well as CFS space-optimized file system snapshots
called Storage Checkpoints.

The CFS Storage Checkpoint

facility produces space-optimized Administrative hint 3
read-only file system snapshots

as well as writable file system An administrator uses the fsckptadm
clones. CFS Storage Checkpoints console command to create, delete, and
can be mounted and used as otherwise manage a file system’s storage
though they were file systems, checkpoints. The VxVM vxsnap

either cluster-wide or by a single command is used to manage volume-
node, and used for any of the level snapshots.

typical snapshot purposes—
backup to tape, data mining, individual file recovery, and (for writable Storage
Checkpoints) training and other destructive testing. A special form of Storage
Checkpoint, the Nodata Storage Checkpoint, can be used to keep track of the
numbers of changed file system blocks without preserving their prior contents.
Nodata Storage Checkpoints are useful for making block-level incremental
backups or replicas of a file system image.

CFS Storage Checkpoints occupy storage capacity in the parent file system’s
own volumes. Thus, in most cases, creating Storage Checkpoints does not
require the allocation of additional volumes or LUNSs, and so can be
accomplished by the administrator responsible for the file system, without
recourse to system or storage hardware administrators. As with file systems, an
administrator can assign quotas to Storage Checkpoints to limit the amount of
space they are permitted to consume.

42

What makes CFS unique
The top 10 in depth

Feature 6: Named data streams

Applications often have a need to associate auxiliary data or application-specific
metadata with files. Keywords to facilitate searching, information about a file’s
provenance, projects with which the file is associated, references to related
documents, and so forth can all be useful or necessary adjuncts to the datain a
file itself.

One way to manage application-specific metadata is to create a database or
spreadsheet table with a row for each file and a cell for each type of metadata.
This approach can be made to work, but has several drawbacks:

m Management overhead. A database or spreadsheet is an additional object to
manage. Moreover, there is no automatic, permanent association between a
file and its application-specific metadata. For example, when the file is
copied, renamed, or deleted, changes to the application-specific metadata
must be managed separately

m Metadata inefficiency. A rectangular table implicitly associates every type of
metadata with every file represented in it, even if most types of metadata are
not relevant for most files

m Restricted metadata types. Paradoxically, even though it is structurally
wasteful, a rectangular table restricts the types of metadata that can be
associated with files to what can practically be stored in a cell

CFS named data streams offer a simpler and more robust approach to
associating auxiliary data and application-specific metadata with files. A named
data stream may be thought of as a file that is permanently associated with a
data file. Named data stream-aware applications create, write, read, and delete
named data streams using CFS-specific APIs similar to the corresponding POSIX
APIs for manipulating data files. Thus, the management of application-specific
metadata can be embedded within applications; no external operating or
administrative procedures are needed. Named data streams are invisible to
applications that do not use the specialized APIs.

From a CFS structural standpoint,

named data streams are files that Administrative hint 4

are visible only within the context

of the data file to which they are Administrators can refer utility
attached. Data stream names are | Programmers to the Veritas™ File
entirely at application discretion. | System Programmer’s Reference Guide,
There is no artificial limit to the which describes the APIs used to create
number of named data streams and manipulate named data streams.

that can be attached to a file.
Thus, for example, dozens of supporting documents can be attached to a single
data file. Because CFS treats named data streams as files, they can range from
very small to very large. Thus, for example, an application can attach objects
such as audio or video clips to a data file.

What makes CFS unique
The top 10 in depth

43

Figure 1-3 Named data streams

Data stream 1 inode number| .

Data stream 2 inode number|™

Storage
volumes

Data stream N inode numbeli-*——-_,_,_b

As Figure 1-3 suggests, CFS organizes a data file’s named data streams as a
single-level directory that is linked to the data file. Each named data stream is a
file whose data location is described by an inode, but the stream is visible only
through the named data stream APIs. A data file’s named data stream directory
file contains the list of stream names and their inode locations.

Applications can use the named data stream APIs to associate a data stream
with multiple files. CFS stores the stream once, and maintains a link count in its
inode, which it increments each time an application associates the stream with
an additional file, and decrements when the stream is unlinked.

In most cases, operating system commands cannot manipulate named data
streams separately from the files with which they are associated. Sun
Microsystems’ Solaris versions 9 and later, however, implement special
command syntax that enables certain operations on named data streams.

Feature 7: Portable Data Containers (PDC)

For a variety of reasons, many data centers routinely move large amounts of
data between unlike UNIX or Linux platforms. For example, a data center may
process its business transactions on a Solaris platform, and periodically mine
snapshots of transactional databases on a Linux platform. In situations like this,
data centers usually copy data sets from one platform to the other over network
links using ftp or other file transfer tools. But transferring multiple terabytes of
files can be time consuming, and can saturate a network, interfering with, or in
extreme cases, even denying service to production applications and users. In
addition, they increase storage requirements, since storage for both source and
destination data sets must be available simultaneously, at least while the copy is
being made and used.

Storage networks that form physical links between storage devices and multiple

44 | What makes CFS unique
The top 10 in depth

systems suggest a potential alternative. In principle, it should be possible to:

m Disconnect. Logically disconnect disks from the cluster that produced the
data

m Reconnect. Logically connect the disks to a destination system that will
process it

m Use. Mount the file system on the disks on the destination system and
process the data without having used any incremental storage or consumed
network bandwidth, and without having taken time to transfer data

Figure 1-4 Portable Data Containers vs network file copying
e% ?ii [Douse storage MU
oo B _clientgccess) < " option a:

o N
0(\0“ Conventional:
A
ey fiptransfer

5

o _

° L\‘/J"\ /\W &
|

. __u & N N N _§N _§B _§ _§ _§B B _§B _§B _§B N _§ N _§N _§B _§B _§B N B _§B _§B _§N _§N _§N |
~ -
%

—— ,’%//79 Option B:
Ccrs
Portable
1. file systemt
2. Run fscdsconv Data
Containers

__ 3. Deport > 4 Importdisks
disks 5. Mount file system

This is sometimes called “serial sharing” of data. It works very effectively
between application platforms of the same type; indeed, it is one of the principal
value propositions of storage networks. Unfortunately, different UNIX and
Linux platforms do not format their disk storage devices and file systems in
exactly the same way. Moreover, applications that support multiple platforms
sometimes use different file data formats for each platform they support.

For many common data types, however, including text, html, pdf files, audio-
visual media streams, and others, applications on one platform wouldbe able to
use data created on a different platform if the underlying disk and file formats
were compatible. CFS and CVM portable data container (PDC) technology
enables cross-platform serial data sharing between unlike platforms. PDCs
make it possible to logically move CVM volumes that contain a CFS file system
between two unlike platforms, even in cases where the source and destination

platforms’ “endianness”’ differ from each other. Figure 1-4 illustrates the use of

7. A computer’s endiannessis the order in which bytes of data in its memory are aggre-
gated into larger structures such as words and longwords. In a big-endian computer, the
most significant byte of a word or longword occupies the lowest memory address. In a
little-endian computer, the least significant byte of a word or longword occupies the
lowest memory address.

What makes CFS unique
The top 10 in depth

PDCs as an alternative to bulk network data transfer between unlike computing
platforms and contrasts it with the conventional network data copying

technique.

The first requirement for moving
data between unlike platforms is
disk format compatibility. The
CVM disk format has evolved over
time to accommodate larger and
more complex storage
configurations. A system
administrator can designate SCSI
and Fibre Channel disks
formatted with CVM format
version 110 or any newer version
as CDS disks. Administrators can

Administrative hint 5

The Veritas™ Storage Foundation Cross-
Platform Data Sharing Administrator’s
Guide contains instructions for
upgrading CVM disk formats so that
volumes can serve as portable data
containers for cross-platform data
sharing.

logically move CDS disks between unlike computing platforms that are
connected to a common storage network. CVM implementations on all
supported UNIX and Linux platforms recognize and properly handle CDS disks,
regardless of platform type. If all the disks in a CVM disk group are CDS disks,

volumes constructed from them can act as Portable Data Containers, and the file

systems on them can be serially shared between any combination of Linux,
Solaris, AIX, and HP-UX platforms supported by Storage Foundation.

To share data serially between
unlike platforms, not only must
source and destination platforms
recognize the disk formats, they
must also recognize and
accommodate the file system
format. While CFS file system
metadata is structurally identical
across all platforms, numerical
values in it are endian-specific
(unlike CVM volume metadata),

Administrative hint 6

For cross-platform data migrations that
are performed on a regular basis, an
administrator can avoid the need to
enter migration parameters every time
by using the fscdsadm console
command to record them permanently.

primarily because the frequency with which numeric items in file system data
structures are manipulated makes real-time conversion between big and little
endian representations impractical. Therefore in order for a file system to be
moved between a big-endian platform and a little-endian, CFS must convert the
file system’s metadata between big and little endian representations.

Moreover, not all operating systems supported by CFS observe the same limits
on file size and group and user IDs. For example, a CFS file created on a Solaris
platform might be too large to be opened by a Linux application, or its owning
userID may be too large to be represented on a Linux system.

45

CFS’s fscdsconv utility program both verifies that the CFS implementation on a
specified destination platform can accommodate all files in a source file system,
and converts the source file system’s metadata structures to the form required

46 | What makes CFS unique
The top 10 in depth

by the destination platform. To move a CFS file system between two unlike
platforms, an administrator executes the following steps:

m Unmount. Unmount the file system to prevent applications from accessing it
during conversion

m Convert. Run the fscdsconv utility against the device that contains file
system to convert its metadata and to discover any minor incompatibilities
between the source and destination platforms

m Resolve. Make adjustments to resolve any minor incompatibilities such as
userID range and path name lengths

m Deport. Split the disks that make up the file system’s volumes into a separate
disk group, and deport the group from the source cluster

m Import. Import the disks to the destination system and create a VxVM disk
group and volumes

m Mount. Mount the converted file system contained on the imported volumes
for use by applications on the destination system

Portable Data Container conversion time is related to a file system’s size, the
number of files it contains, and the complexity of their layout (number of
extents), and whether the source and destination platforms actually are of
different endianness. It is typically several orders of magnitude less than
network copy time. Moreover, using CDS does not consume any “extra” storage
for a second copy of data, or enterprise network bandwidth. Even the storage
network bandwidth it consumes reading and writing metadata is a small
fraction of what would be required to read the entire file system contents for
network transfer.

Cross-platform conversion of CFS file systems is crash-recoverable—if a system
crash occurs during conversion, the administrator can invoke the fscdsconv
utility again after crash recovery to complete or reverse the conversion.

Administrators can use Portable Data Containers to simplify and streamline the
transfer of data between unlike platforms either on a one-time basis, as for
example, when systems are being refreshed by platforms of a different type, or
periodically, as for example, when different steps in a workflow are performed
by different types of platforms.

Portable Data Containers make it possible to transfer entire file systems
between unlike platforms without copying large amounts of data. CDS does not
manipulate the data within files however. For PDC-based serial data sharing
between unlike platforms to be usable, the format of data within files must be
understood by applications on both source and destination platforms. For
example, the Oracle database management system supports a feature called
Transportable Table Spaces that enables database data to be moved between
platforms. With Portable Data Containers, CFS file systems that contain
Transportable Table Spaces can be moved between unlike computing platforms
without bulk copying.

Feature 8: User and group quotas

What makes CFS unique
The top 10 in depth

CFS supports both user and group quotas. CFS quotas limit both the number of
files and the amount of space that individual users and groups of users are
permitted to consume. CFS file and space consumption quotas can be:

m Hard. CFS fails operations that would cause a hard quota to be exceeded

m Soft. CFS permits soft quotas to be exceeded for a limited time that the
administrator can specify. After the time limit expires, no further space
allocations or file creations are possible. A user or group soft quota must be
lower than the corresponding hard quota if one exists

CFS stores externally-visible user
and group quota limit and current
consumption information in
separate files in the root directory
of a file system’s primary fileset.
In addition, per-node structural
files maintain information about
current space and inode (file)
consumption that CFS updates as
changes occur. CFS periodically
reconciles all nodes’ consumption
information into a master quota
structural file, and reconciles
internal and external resource
consumption data whenever

quota control is enabled or disabled.

Administrative hint 7

CFS quota management commands have
unique names to avoid conflicts with
UNIX commands used to manipulate
quotas for other types of file systems.
The primary management commands
are vxquotaon, vxquotaoff, and
vxedquota (for editing quota files). The
vxrepquota, vxquot, and vxquota
commands can be used to report
information about quota usage.

An administrator can enable CFS user and group quota control together when

mounting a file system by using the -0 quota mount option. Either type of quota
control can be enabled or disabled independently by issuing the vxquotaon and

vxquotaoff administrative commands with the corresponding parameters.

When quota control is enabled, CFS automatically checks usage against quota

limits as applications attempt to create files or append data to existing ones. No

explicit quota checking is required. If file creation or appending is subject to
both user and group quota control, CFS applies the more restrictive of the two.

Although external quota files are
editable with a text editor,
administrators should use the
vxedquota command to edit them
in order to avoid inadvertent
formatting errors. CFS quota
management commands are
available to CNFS cluster
administrators, but not to NFS
client computers.

Administrative hint 8

An administrator can use the setext
console command to pre-allocate space
for an ordinary file. If Quick I/O (page
36) is enabled, the qiomkfile command
can also be used to create Quick I/0 files
with pre-allocated space.

47

48 | What makes CFS unique
The top 10 in depth

Feature 9: Sparse files

Unless space for them is pre-allocated, CFS files are inherently “sparse”—CFS
does not allocate storage space for file blocks until an application writes data to

the blocks. In this respect, CFS files may be thought of as being thinly
provisioned.

Any CFS file in which file blocks
are first written non-sequentially
is automatically sparse, The file’s

Administrative hint 9

metadata reflects a notional size An administrator can use the fsmap
that encompasses the largest file console command to locate the “holes”
block address written, but storage | in the file block address space of a
capacity is only allocated for file sparse file.

blocks that an application has
actually written. Sparse files consist of extents (ranges of file system block
addresses) in which applications have written data and Aoles—parts of the file
block address space for which no file system blocks have been allocated.
Figure 1-5 illustrates storage allocation for a sparse file.

Figure 1-5 A sparse file

« File block address space >

L) ~ =

g8 £

Highest numbered
Hole Hole Hole Hole biock written
L N N] [N N] e0s 000 [A R N N NN NNI]
§ § § "\ E § E § § (nostorage E E {no storage affocated) § E
o|(a| > _T{ | o o|lo allocated) | ol
ol ol o ol o| o ol o ol o o| @
T|Z| ol A= frall e | |
4 /
/ \ /
/! {nostorage g
/ allocated)
y /S
LR] aae . . . asa
N S/ J .- J
Y Y h'd
Volume 0 Volume 1 Volume N

File system block address space

CFS does not expose files’ sparseness when applications read and write data.
When an application writes data into a file byte range for the first time, CFS
allocates the necessary file system blocks, and fills any areas not written by the
application with zeros. For example, if a file system’s block size is 8,192 bytes,
and an application writes data to file byte addresses 1,024-2,047 for the first
time, CFS allocates a file system block, zero-fills bytes 0-1,023 and bytes 2,048-

What makes CFS unique | 49
The top 10 in depth

8191, and writes the application’s data into bytes 1024-2047 of the block.

By zero-filling newly allocated partially written file system blocks, CFS
guarantees that it never returns “uninitialized” data to an application’s read
request. If an application reads from file block addresses that have never been
written, CFS simply fills its read buffer with zeros. If it reads data from an as-yet
unwritten area of a file block to which it has written data, CFS returns the zeros
with which it filled the block when it was allocated. Continuing the foregoing
example, if the application were to follow the write immediately by reading file
bytes 0-4,095, CFS would return a buffer containing:

m Leading zero fill. The 1,024 bytes of zeros written when the file system block
was allocated to the file

m Application data. The 1,024 bytes of data written by the application

m Trailing zero fill. 2,048 of the 6,144 bytes of zeros written when the file
system block was allocated to the file

Figure 1-6 An example of sparse I/0

Written by application D\ /——Dl:| Read by application
A

4 v K

o m = ~ o0 ~ ™ uy L=l

o ~N = = ~ o~ (01 (2]

153 & o S o o o <] =]
o o o m o < od|

File block 0 (8,192 bytes)

o ¢ W o o L] L] L]

Eeeet Eoeet S eeet S osebessessscssssssscsse st

m m m m m m m m m

L J

T~ s fills with zeras //

Sparse files are particularly useful for applications that need simple indexing
schemes to manage large data structures. For example:

m Indexed records. Some applications manage indexed records with sparsely
populated index spaces. For example, a 7-digit index (for example, a
telephone number) is an index space of ten million potential entries. Locating
records by multiplying their index values by the record size avoids the
necessity for the application to manage complicated index trees. Because CFS
only allocates space when data is first written to a file block range, the file
occupies storage space in proportion to the number of actual records, not in
proportion to its potential size

m Sparse matrices. Many scientific and engineering applications involve
matrix calculations that are too large to be contained in memory. They
perform their calculations on sub-matrices and write intermediate results to
persistent storage. A common characteristic of these applications is that
many of the sub-matrices are known a priori to contain zeros. Sparse files

50 | What makes CFS unique
The top 10 in depth

simplify these applications by making it possible for them to treat a file as
though it were large enough to contain the entire matrix, and simply not
write to any of the file block addresses that represent zero sub-matrices. CFS
allocates storage only to parts of the matrix written by the application, so
actual storage consumed is related to size of the non-zero sub-matrices, not
to the size of the entire matrix

In both of these examples, CFS effectively provisions file storage for the
applications as they require it, which they signal by their initial data writes to
file block addresses. The applications are spared the complexity of having to
manage index trees or other storage space management structures, and at the
same time need not grossly over-provision storage.

CFS itself makes use of the sparse file concept to simplify the indexing of user
and group quota files in file system structural file sets. For example, there are
four billion possible unique user IDs and group IDs in a UNIX system. Obviously,
no file systems even approach that number of actual users or groups. CFS
computes a record number for each user or group for which a quota is assigned
by multiplying the user or group ID by the size of a quota file record to give an
offset into the respective quota file block address space. When it writes a user or
group quota file record for the first time, CFS allocates storage space and creates
an extent at whatever file block offset is indicated by the write request. Users
and groups to which no quotas have been assigned remain as holes in the file
block address space.

Feature 10: Storage tiers

For applications that must keep tens or hundreds of terabytes of data online, the
cost of storage matters. Many enterprises control cost by adopting the concept
of two or more storage tiers—sets of storage devices that differ significantly in
cost, and as a consequence, typically have different I/O performance and
availability characteristics. Enterprises store especially critical data, or data
that is frequently accessed, on the “top” (highest performing, most robust, and
hence, most expensive) tier, and less critical data on “lower,” more economical
tiers. As files progress through different phases of their life cycles,
administrators relocate them from tier to tier according to their importance to
the enterprise at the moment, perceived performance requirements, or other
factors.

The viability of storage tiering depends entirely on an ability to place files on a
storage tier commensurate with their value and I/O requirements, and to
relocate them as their importance or requirements change (for example, as they
age, as the I/0 activity against them increases or diminishes, and so forth). For
data centers that manage millions of files, this can be an expensive task,
requiring significant administrative effort and skill. Moreover, it is difficult to
“get it right”—to precisely match millions of constantly changing files with the
right type of storage, and to adjust operating procedures and applications so
that they can continue to find the data they need to process as it moves

What makes CFS unique
The top 10 in depth

throughout its life cycle. The combination of administrative cost and
susceptibility to error inhibit some data centers from taking advantage of the
cost reductions inherent in the storage tiering concept.

Two unique features of CFS completely automate file placement and relocation,
and thereby make it possible to fully exploit storage tiers of different
performance and resiliency with minimal service disruption and administrative
effort:

m Multi-volume file systems (MVFS). Conventional UNIX file systems are
inherently homogeneous (single-tier) because they occupy a single disk or
virtual volume. A CFS file system, on the other hand, can occupy as many as
8,192 CVM volumes. The volumes occupied by a CFS file system are called its
volume set, or VSET. An administrator organizes each file system’s VSET
into storage tiersby assigning tagsto them. Identically tagged volumes in a
file system’s VSET form a storage tier.

For example, volumes that mirror LUNs presented by two disk arrays might
be labeled tierl, and volumes constructed from high-capacity, low-RPM SATA
drives tier2.

Because a CFS file system’s name space encompasses all of its volumes, CFS
can allocate storage for a file on any volume in its VSET, based, for example
on its file type or owner

m Dynamic Storage Tiering (DST). An administrator of a CFS file system can
define a policy that causes files to be automatically allocated on specific
storage tiers based on their names, types, sizes, and other attributes. If a file
system’s volumes are tagged so that each tier consists of similar volumes,
and so that different tiers have distinctly different cost, performance, and
availability properties, the effect of the policy is to place files appropriately
as they are created.

In addition, DST periodically scans a file system’s directory tree and
automatically relocates files from one tier to another based on policy rules
that specify frequency of access, position in the name space hierarchy, size,
and other criteria that can change during a file’s lifetime. DST relocates files’
data between volumes, but does not change their logical positions in the
directory hierarchy that applications use to access them

Thus, not only does CFS automatically place files on the proper storage tiers
initially; it automates the process of relocating them to appropriate storage tiers
at different phases of their life cycles. Throughout the process, files’ logical
positions in the file system directory hierarchy remain constant, so from the
user and application point of view, relocation is completely transparent. From
the administrative point of view, however, storage utilization is optimized and
service level agreements are met, down to the level of individual files.

Chapter 10 on page 171 has a detailed survey of CFS multi-volume file systems
and dynamic storage tiering.

51

52‘

What makes CFS unique
Using CFS

Using CFS

The fundamental properties of CFS—concurrent access to highly available
shared file systems by applications running on as many as 32 nodes in a
cluster—make it a particularly suitable solution in several scenarios that occur
frequently with mission critical enterprise applications. These include:

m Fast failover, particularly for database management systems in three-tier
database application architectures

m Highly available concurrent data access for multiple applications, including
workflow applications in which processing steps operate on data sequentially

m Storage consolidation for efficiency and economies of scale
m Highly scalable NFS file serving

The chapters that follow describe these and explain why CFS is the ideal data
management solution in each case.

Using CFS: application
scenarios

This chapter includes the following topics:

m Basic application clustering

m CFS and highly-available database applications
m CFS and workflow applications

m CFS and scale-out applications

m CFS and storage consolidation

The fundamental advantages of CFS are high availability and scaling.
Applications that use CFS to access their data can restart on alternative servers
in a VCS cluster and continue to operate if the servers on which they are
running fail. Alternatively, as many as 32 instances of an application can serve
clients from the same CFS data files, scaling both compute power and client
connectivity to very high levels. These two properties can be combined in client-
server applications structured as VCS parallel service groups, that balance client
load across instances and use virtual IP address (VIP) service groups that
redirect clients to alternate application instances in the event of a server failure.
(The CNFS file server described in Chapter 3 uses this technique to balance load
and keep NFS services highly available.)

These properties of CFS clusters make them particularly suitable for certain
types of applications and data center scenarios:

m Fast failover. Compared to other highly available system architectures, CFS
clusters typically fail over more quickly because volumes and file systems are
already imported and mounted respectively on failover nodes. This
eliminates a major source of failover time

54 | Using CFS: application scenarios
Basic application clustering

m Workflow applications. Application suites in which modules execute
different stages of a work flow and pass data among themselves are
particularly well-suited to CFS cluster implementations. Passing a file in a
CFS file system from one workflow application stage to another is as simple
as sending a message to the receiving stage that the file is ready to be
operated upon

m “Scale out” applications. An increasing number of applications are achieving
scale by running in parallel instances on multiple servers. Some applications
of this type operate on data partitions, but more frequently, all instances
must operate on a common data set. Because CFS file systems can be
mounted on up to 32 cluster nodes simultaneously, it is an ideal solution for
application “scale out”

m Storage consolidation. The storage connected to a CFS cluster is completely
interchangeable among the cluster’s nodes and file systems. If applications
are consolidated into a CFS cluster, redeploying storage from one to another
to meet changing needs becomes a simple administrative operation. The need
for physical reconfiguration and the attendant inflexibility are eliminated

Basic application clustering

Figure 2-1 represents the simplest form of high-availability cluster—the active/
passive failover cluster. In this configuration a primary noderuns a live
application which processes data stored on disks connected to it by a storage
network. A second, failover node, also connected to the storage network, has the
application installed but not running.

Figure 2-1 Active/passive failover cluster

Users

N;uﬁork

Using CFS: application scenarios | 55
Basic application clustering

The goal of an active/passive cluster is to provide continued application
availability to clients if the primary node, the links connecting the primary node
to clients or storage, or the application executable image itself should fail.
Cluster managers such as VCS monitor the nodes, the links, and the live
application. If they detect a failure critical to application execution, they initiate
failover by transferring control of the network resources to the failover node,
performing any necessary data recovery, and starting the application on the
failover node. One of the network resources transferred to the failover node is
the IP addresses that clients use to communicate with the application. Except
for a time delay while failover is accomplished, and in some cases, the need to
reconnect and re-authenticate themselves, clients experience no effects from
the failover—they still communicate with the same application using the same
IP addresses.

The basics of highly available applications

While clusters exist in several forms, their common architectural principle is to
integrate redundant computing, connectivity, and storage resources into the
environment. Under the control of the cluster management software, these
redundant resources assume the function of the primary resources in the event
of a failure. Thus, in addition to a redundant failover node, a cluster would
typically also be equipped with redundant storage and client network paths.

In an active/passive cluster, cluster software automates:

m Failure detection. The primary node, a network link, or the application itself
may fail. Cluster management software detects and responds to all of these
failures

m Cluster reconfiguration. If the failure is a node failure, the failed node must
be ejected from the cluster, and the remaining nodes must agree on cluster
membership

m Transfer of resource control. The cluster manager withdraws control of data
storage devices and client connections from the failed node and enables them
on the failover node

m Datarecovery. In general, failures occur while I/0 operations or application
transactions are in progress. Some form of “cleanup,” such as file system
checking or log replay is required

m Application restart. The cluster manager starts the application instance on
the failover node

m Client reconnection. Clients must reestablish communication with the
restarted application

The sum of these processes is called failover. The new application instance is
often called the failover instance, and the node on which it runs, the failover

56

Using CFS: application scenarios
Basic application clustering

node. In some situations, resource utilization can be improved by running non-
critical applications such as data mining on failover nodes during periods of
normal operation. In others, failover time is critical, so the failover application
is pre-started and idling, ready for instant takeover if the primary instance fails.

Failure detection

Cluster managers like VCS typically detect node failures through regular
heartbeat messages from each node to others in the cluster. If several heartbeat
intervals pass with no message being received from a node, other nodes
conclude that it has failed, initiate cluster reconfiguration.

Failure of other critical resources, such as network links, the application itself,
or auxiliary applications like print services, is typically detected by a similar
heartbeating mechanism within the node. VCS, for example, monitors each of an
application’s resources by periodically executing a script or program that is
specific to the resource type. If a critical resource fails to respond properly, VCS
initiates failover of the application that depends on it to another node.

Cluster reconfiguration

If a cluster node fails, as opposed to an application or other resource, the
remaining nodes must eject the failed one and converge on a common view of
cluster membership. (A similar reconfiguration occurs when a node is added to a
live cluster.). In the case of VCS, a specialized Group Atomic Broadcast protocol
includes message types and conventions that enable the surviving nodes of a
cluster to reach consensus on membership within seconds.

Any cluster technology must be able to distinguish between a failed node and
partitioning, or partial failure of the network links that the nodes use to
intercommunicate. A primary node that has crashed will not interfere with a
restarted application running on a failover node, but a node that cannot
communicate with other nodes must have a foolproof means of determining
whether it is part of the surviving cluster or has been ejected. VCS uses three
coordinator disks (see “Coordinator disks and coordination point servers” on
page 34.) to make this distinction.

Transfer of resource control

A failover node must obtain control of the storage devices that contain the failed
application’s data. If an application or database management system fails, its
storage devices must be deported (removed from the primary node’s control).
Whether the primary node itself, or some critical application resource was the

Using CFS: application scenarios | 57
Basic application clustering

failure, the failover node must import (take control of) the application’s storage
devices. In systems with hundreds of file systems and virtual volumes,
deporting and reimporting volumes and remounting file systems can take hours.
Because CVM shared disk groups are imported on all cluster nodes, this
potentially time-consuming step is eliminated for clusters implemented with
the VCS-CVM-CFS stack.

Recovering data

Before data can be accessed by restarted applications on failover nodes, the
structural integrity of file systems and databases on the imported volumes must
be verified, and repaired if necessary. Full file system checking of very large file
systems can take days. In almost all cases, however, a CFS file system’s
structural integrity is restored after a node failure when the primary node
replays the failed node’s log of outstanding transactions. This is an important
timing consideration for relational databases that store data in CFS container
files, because database recovery cannot begin until the integrity of the
underlying file system has been restored.

Application restart

Once file system structural integrity has been assured or restored, applications
can restart. Some applications are stateless—each interaction with a client is
independent of all prior actions. For these, restart is the same as initial startup.
The NFSv3 server in CNFS (Chapter 3 on page 71) is of this type (as long as the
Network Log Manager is not in use). More often, applications conduct multi-step
transactions with their clients; if these are interrupted by a node failure, they
must be recovered in a manner similar to file system recovery. Relational
database management systems fall into this category. Before they can resume
service to clients after a failure, they must verify database integrity by replaying
their own work in progress logs.

Client reconnection

The final piece of recovery is reconnection of clients to the restarted application
on the failover node. Cluster managers typically transfer control of virtual IP
addresses used by clients to the failover node as part of the failover process.
When clients attempt reconnection, they are connected with the restarted
application on the failover node. From that point, interaction is client-specific.

Some client applications, such as NFS, retry failed operations until they succeed.
NFSv3 in particular is stateless—no client request depends on any previous
request, so no further reconnection protocol is required. For applications like

58

Using CFS: application scenarios
Basic application clustering

this, reconnection is transparent, although users may notice a time delay. Other
applications require that a user or administrator re-establish the connection
with the application, including authentication and other reestablishment of

context.

CFS and active-passive failover

Table 2-1

Table 2-1 lists typical timings for the main functional components of application
failover in a CFS cluster environment.

Why CNFS for NFS file sharing

Contributor

Conventional

to failover . CFS cluster Comments
X architecture

time

Fault detection | ~20 sec ~20 sec Detection is actually much faster. Typically, cluster
managers require multiple evidence of failure to avoid
“false failover”

Cluster recon- 5-10 sec 5-10 sec Time for nodes to negotiate new membership

figuration

Storage device Varies 0 Depends on number of devices and volumes Can be

transfer minutes or longer

File system Varies <1 sec Depends on file system verification technology.

verification

Infrastructure 25-30sec CFS eliminates the two largest and most variable com-

total ponents of failover time

Client recon- N x 30 sec N x 30 sec N = number of TCP connect request timeouts. May be

nection

partly concurrent with other failover steps

Depending upon the number of volumes and file systems used by an application,
transfer of storage device control and file system verification can take minutes
or longer. These are also the least controllable steps in terms of the time they
take, because they depend both on the number of volumes and file systems, and
on the number of file system transactions in progress at the time of the failure.
Using CFS to store application data or for database container files essentially
eliminates both of these contributions to failover time.

During normal operation, all cluster nodes import (make available to CFS) all
shared CVM disk groups, so all nodes have simultaneous access to shared
volumes. When a cluster node or application fails, the volumes that hold its data
and the disks that make them up are already known to and accessible by the

Using CFS: application scenarios | 59
CFS and highly-available database applications

failover node; deportation and re-importation of shared disks is completely
eliminated. At worst, if a failed node is CVM Master, I/O to shared volumes
pauses momentarily while the remaining cluster nodes select a new master.

Similarly, CFS shared file systems are mounted on all cluster nodes during
normal operation, so full verification and re-mounting are not required. CFS
recovery consists of electing a new primary instance if necessary, recovering
locks that were mastered by the failed node and replaying the failed node’s
intent log to complete any transactions in progress at the time of the failure.

Because CFS virtually eliminates the two most time-consuming steps, typical
application failover times are under a minute, compared with failover times in
minutes or tens of minutes that are characteristic of approaches requiring
storage device and file system failover.

CFS and highly-available database applications

One type of “application” that can benefit from active-passive clustering is
relational database management systems such as Oracle. These are often
deployed to manage the data in a three-tierarchitecture such as the one
illustrated in Figure 2-2. In this architecture, presentation and user interface,
business logic, and data management run in separate tiers of computers:

m User. The user tier employs “thin clients”—minimally equipped desktop
computers equipped with browsers of forms management software

m Application. Servers in the application tier implement business functions.
Different platforms may be employed, as may different levels of availability
and performance. Many unrelated applications may access a single database
or set of databases

m Data management. This tier runs the database management system (DBMS)
and provides database access to clients in the application tier

60 | Using CFS: application scenarios
CFS and highly-available database applications

User tier

B

Application 1

Application‘fl/'

Figure 2-2 Three-tier database application architecture

Applicationtier Databasetier

™~

Rl

The basic principle of this three-tier architecture is separation of function. A
separate data management reinforces a canonical representation of enterprise
data that is independent of individual applications. Similarly, separating
business logic from data insulates applications from each other, but at the same
time, integrates them through the common data they process. It becomes easier
to deploy new applications, particularly with virtual servers, without being
concerned about application cross-talk. A secondary benefit of the architecture
is independent scaling at each layer. Either data management or application
capacity can be added as required.

With one database serving multiple applications, availability becomes especially
critical. For this reason, database management systems are often deployed as
the “application” in active-passive clusters. The database management system
and its remote client access module are structured as service groups that run in
a primary cluster node, with a failover node at the ready.

In this scenario, failover time is critical, because when the database
management system is down, none of the applications that depend on it can
function. Using CFS files as containers for database data is particularly
beneficial in this scenario, because it eliminates the entire transfer of storage
device control component of failover listed in Table 2-1 on page 58. Within half a
minute after a failure, a failover database management system can be replaying
the failed instance’s activity logs to restore database to complete or reverse
transactions in progress at the time of failure so that service can be restored to
clients.

Using CFS: application scenarios | 61
CFS and highly-available database applications

CFS and clustered database management systems

Most database management software vendors offer versions of their products
that are themselves clustered. Oracle Corporation, for example, offers the Real
Application Cluster (RAC) edition of Oracle, IBM Corporation the Enterprise
Extended Edition of DB2, and Sybase the Sybase Cluster Edition. Different
products differ in detail, but in general, clustered database managers consist of
multiple instances that run concurrently in different cluster nodes and
coordinate with each other to access a common database. The physical
architecture is similar to that represented in Figure 2-2, but clusters of more
than two nodes are common, and all are active concurrently, running
cooperating database management instances.

Clustered database managers make fault recovery functionally transparent to
clients. Moreover, because mutually aware database manager instances are
already running on all cluster nodes at the time of failure, recovery is virtually
instantaneous.

The VCS-CVM-CFS stack supports clustered database managers as well,
providing seamless sharing in their underlying file and storage layers. In the
case of Oracle RAC, for example, the Storage Foundation RAC Edition (SFRAC)
includes VCS, CVM, and CFS, along with additional Oracle-specific utilities to
deliver an easy-to-configure highly available storage solution for parallel Oracle
databases.

Thus, the designer of a mission-critical database management system has two
Storage Foundation options for creating a highly available database tier:

m Active-passive. An active-passive cluster in which the database management
system fails over to the passive node within a few seconds of a failure (with
the option to use the failover node to run non-critical applications under
normal circumstances)

m Parallel. A parallel database cluster in which multiple database management
system instances cooperate in real time to provide clients with a common
view of the database as well as near-instantaneous service resumption if a
node in the database tier fails

Both options use the VCS-CVM-CFS stack for rapid failover of the storage and
file layers.

Given these two options, the choice would seem obvious—near instantaneous
failover should always be preferable to a service interruption, even of only a few
tens of seconds. But this analysis ignores two factors that are becoming
increasingly important in information processing:

m Cost. Database management system (and other) software vendors typically
place price premiums of as much as 300% on the capabilities embodied in
clustered versions of their products, Moreover, additional hardware and

62

Using CFS: application scenarios
CFS and workflow applications

network facilities may be required to run them, and they are generally more
complex to administer

m Performance. Clustered database management system instances (and other
clustered applications) communicate extensively with each other. Thus,
while failover is nearly instantaneous with a clustered database management
system, performance under normal operating conditions may actually be
lower than that of an equivalent non-clustered version of the same database
manager

Thus, the application designer must evaluate the value of instantaneous
failover, and decide whether the incremental costs, both direct and in the form
of reduced performance, of clustered database management and other
application software is justified by that value. For databases and applications
that “absolutely, positively must be available” all the time, the cost of a clustered
database management system may be justified. For many applications, however,
an “outage” of a few seconds while a database management system instance
starts up on a failover node is a cost-effective compromise.

CFS and workflow applications

Another important class of application for which the VCS-CVM-CFS stack is
ideal is the workflow application suite. Many core business processes are
essentially sequences of steps in which the completion of one step is a trigger
for the next step. For example, closing the books on sales for a month might
trigger quarterly roll-ups, commission compensation runs, sales analyses, and
so forth. Figure 2-3 illustrates a common type of workflow application that is
part of many enterprises’ core information technology processes.

Figure 2-3 Typical workflow business application

integrated
database

In Figure 2-3, sales and operations (shipping, inventory control, general ledger
accounting and similar) applications constantly update their respective

Using CFS: application scenarios
CFS and workflow applications

databases. Periodically, an ETL (extraction, transformation, and loading)
application extracts information from the online databases (or more likely,
snapshots of them), integrates their contents and stores them in a form suitable
for later business intelligence analysis, or mining, and ultimately, long-term
storage in a data warehouse. Ideally, the ETL and data warehousing applications
can read directly across the network from their respective source databases; in
the worst case, bulk data copying, and the additional storage it implies would be
required.

Reduced to their essence, workflow applications consist of processes that ingest
data from prior steps, analyze or transform it, and create output data for
analysis by subsequent steps. The data produced at each step must be made
available to the step that consumes it. It is not uncommon for data files output
by one process to be copied over an IP network to storage devices that are
accessible by the next step in the chain.

Copying data in bulk consumes time as well as storage and network resources,
and is therefore undesirable. A preferable solution is to use one of the forms of
shared file storage described in the introduction to this paper. Figure 2-4
represents the same workflow application deployed in a CFS cluster.

Figure 2-4 Using data sharing to streamline workflow applications

—
\ 8 Data warehouse
N
I Integrated database
a Operations database
6 Sales database

As Figure 2-4 suggests, with a CFS cluster, all stages of the workflow have direct
physical access to all data. (Security considerations may result in some barriers
to logical access, for example, to operational data by sales personnel and
applications.)

63

64 | Using CFS: application scenarios
CFS and scale-out applications

The obvious advantage of data sharing for workflow applications is the
elimination of data copying and extra storage to hold copies. Less obvious, but
equally important, is flexibility. If business processes change, resulting in
additional workflow steps or a need for some step to access additional data sets,
all that is necessary is access permission; no additional storage, bandwidth, or
administrative setup time is required.

CFS clusters make particularly attractive platforms for workflow applications
for several reasons:

m Performance. Data is accessible to all application steps at storage network
speeds and latencies, with no remote file access protocol overhead

m Flexibility. Storage capacity can be easily re-provisioned among application
steps. During high-volume selling seasons, file systems for the sales
databases can be expanded. When the load shifts toward accounting and data
warehousing, the sales databases can be shrunk, and the storage they
relinquish allocated to other applications’ file systems

m Security. Shared data access security is enforced uniformly across the cluster

m Versatility. Data that is only required by a single application step can be
stored in privately-mounted file systems to minimize lock traffic. Private file
systems can quickly be re-mounted in shared mode if multi-node access is
needed

m Application availability. Critical application steps can be structured as VCS
failover services to make them highly available, while non-critical ones can
execute on single nodes

CFS and scale-out applications

With supported configurations of up to 32 clustered servers, CFS is a natural
platform for “scale-out” parallel applications in which capacity is increased by
adding nodes running instances of the application to the cluster. In a typical
scale-out architecture, all application instances require access to core data files,
while some data, such as activity logs, is likely to be generated and managed on a
per-instance basis. To this end, CVM and CFS support both:

m Shared data. Cluster-wide volumes and file systems for data that is shared
among application instances

m Per-node data. Private volumes and file systems for data that is maintained
on a per-node basis

Scale-out applications may consist of multiple instances of the same executable
image, replicated in different cluster nodes to increase the aggregate service

capacity. This design, illustrated in Figure 2-5, is a common one for high-volume
business transaction processing applications such as point-of-sale data capture.

Using CFS: application scenarios | 65
CFS and scale-out applications

The scenario illustrated in Figure 2-5 works especially well for highly
partitionable applications that serve large numbers of clients because load
balancing is easy to accomplish. Network administrators register the name of
the cluster or application along with a “round-robin” list of the IP addresses that
are assigned to each node. As successive clients perform DNS lookups on the
cluster name, they receive a rotated list of IP addresses, from which they
normally connect to the first that responds. This tends to balance client
connections across nodes, and therefore across application instances.

Figure 2-5 Homogeneous scale-out application model

Round-robin
DNS registration

In this model, each node’s IP addresses are typically structured as VCS failover
service groups with designated alternate nodes. These are called virtual IP
addresses, or VIPs, because they can move from node to node during failover.
Each VIP has a dependency on the parallel service group that represents the
actual application instance. If the application instance fails, VCS fails the VIPs
that depend on it over to other nodes.

In this design, when a node fails, its VIPs fail over to other nodes, which start the
service groups that represent them. Like the primary node’s VIP service groups,
these groups have dependencies on the local application instance’s service
group, which is running. Once started, the VIPs on the failover nodes accept
messages from clients and pass them to their local application instances.
Application instances must be prepared to handle incoming messages from
clients. They may be stateful, and require that the client reestablish its
credentials by logging in, or like CNFS services (Chapter 3), they may be
stateless, and simply accept and process incoming messages.

Another type of scale-out application bears a resemblance to workflow. These
are asymmetric scale-out applications in which different modules on separate
servers perform different operations on a common or overlapping set of data
objects. Figure 2-6 is an example of this type of scale-out application in which a

Using CFS: application scenarios
CFS and storage consolidation

sales module generates orders which it passes to a fulfillment module. The
fulfillment module generate packing and shipping orders and communicates
them to warehouses. As the warehouses fulfill orders, they communicate to the
fulfillment module, which forwards shipping and tracking information to a
customer relationship management module that permits customers to track
their shipments directly.

Figure 2-6 Workflow-style scale-out application model
Tocustomers «—» 192 168.0.103 «—

To warehouses +«—» 192 168.0.102

To sales +—» 192.168.0.101 —
offices %
\ Individual
DNS registration

As Figure 2-6 indicates, in this example, each major function of the integrated
application executes on a different server. All operate on common data,
however. The primary distinction between asymmetric scale-out and workflow
applications is the granularity of shared data. Whereas workflow applications
tend to operate on large batches of data, scale-out applications share at the
transaction level. As a result, the modules of an asymmetric scale-out
application tend to communicate by placing messages on queues. CFS is an ideal
vehicle for making message queues persistent, so that they are readily shareable
by producers and consumers, and also so that failure of a cluster node or an
application module does not result in lost messages.

CFS and storage consolidation

Groups of unrelated applications that run on the same UNIX platform can
benefit in two ways if their servers are consolidated into a VCS cluster and their
file systems are managed by CFS:

m High availability. Applications that run on nodes of a VCS cluster can be
configured as high-availability service groups so that if a node fails, the
application it is running can restart on a failover node with full access to its
data, sharing the failover node’s computing and network resources with the
application that normally runs on it

Using CFS: application scenarios
CFS and storage consolidation

m Storage utilization. Consolidating applications’ file systems onto CVM
shared volumes creates opportunities for improving storage utilization,
because it makes the underlying storage shareable. If individual applications’
file systems reside on shared volumes, imbalances between applications
provisioned with excess storage and those provisioned with too little can be
redressed by administrative operations while the applications are running

Figure 2-7 illustrates how a CFS cluster can minimize storage consumption
across the data center by consolidating the storage resources for completely
unrelated applications.

Figure 2-7 Storage consolidation with CFS

-App 4 data
-App 3 data
-App 2 data
“FApp 1 data

Application designers and managers often provision for “worst case” data
storage requirements because once an application is deployed, provisioning
additional storage for it can be a time-consuming operation involving the
operations and network management organizations as well as the owner of the
application. This leads to the situation illustrated in the left panel of Figure 2-7,
in which storage, whether directly attached or on a network, is dedicated to
applications that use only a relatively small fraction of it.

This contrasts with the CFS cluster approach illustrated in the right panel of
Figure 2-7.In this scenario, the applications run on nodes of a CFS cluster, and
all storage is managed as shared CVM volumes. Each node mounts its own
application’s file systems; no application has access to any other application’s
data.

But because CFS file systems and CVM volumes are resizable, storage capacity
can be taken from applications that are over-provisioned and given to those that
require additional capacity using Storage Foundation administrative operations
performed by the cluster administrator, with no need to involve the storage or
network administration functions.

67

68 | Using CFS: application scenarios
CFS and storage consolidation

Online re-provisioning of storage

An administrator can increase or reduce the storage complement of a CFS file
system in one of two ways:

m Volume resizing. The administrator can increase the size of one or more of
the CVM volumes occupied by a file system, and the file system expanded to
utilize the additional capacity. The steps can be reversed to decrease the
space available to a file system. In most cases, both volume and file system
resizing can be accomplished in a single step

m Addition of volumes. The administrator can add volumes to a file system’s
volume set. Capacity added in this way automatically becomes part of one of
the file system’s storage tiers. To reduce file system size by removing
volumes, the administrator first evacuates the volumes, and then removes
them

Thus, if one application controls more storage than it requires, and another is
running short, the administrator can shrink the first application’s file system
removing or resizing volumes and provisioning the released capacity to the
second application.

Multi-tenant CFS file systems

If application performance considerations, data set sizes and data center
security policies permit, provisioning storage for multiple applications can be
made even more flexible by consolidating their file systems into a single CFS file
system (for example, as top-level subdirectories of the file system root). With a
single file system, all underlying storage is available to whichever application
requires it. As applications create, extend, and delete files, storage CFS allocates
or frees space dynamically. Thus, all available storage is effectively part of a
pool whose granularity is the file system block size. No unused space is
dedicated to any one application, and applications can consume the space they
require, up to the limit of the file system size.

CFS provides full POSIX isolation of applications data, using either user and
group access restrictions or inheritable access control lists that limit file and
directory access to specific users and groups. Thus, by running each application
under specific user and group identifiers, and applying the appropriate
protections to files and directories, administrators can isolate applications from
each other, even if their data resides in the same file system.

In this scenario, administrators can use CFS hard and soft quotas to regulate the
amount of storage available to individual applications. From a storage flexibility
standpoint, quotas have the advantage over separate file systems occupying
separate volumes, because while they regulate the amount of storage an
application can consume, they do not restrict specific applications to specific

Using CFS: application scenarios | 69
CFS and storage consolidation

blocks of storage.

Administrators can configure Dynamic Storage Tiering (“CFS Dynamic Storage
Tiering (DST)” on page 172) to bias the allocation of specific applications’ files to
specific storage tiers based on the user and group IDs of the applications. Thus,
administrators can give preference to certain applications without enforcing
hard restrictions on their storage allocation.

Consolidating the storage for multiple fenants (applications) into a single file
system has two advantages:

Granularity. Each data center has some minimal unit in which it manages
storage capacity. For some it is a disk or RAID group; for others a
standardized virtual volume. When a data center consolidates applications
into a cluster, this unit, which may be terabytes, becomes the granularity
with which storage can be moved between applications. When multiple
applications’ data is consolidated into a single CFS file system, however,
individual applications allocate and free storage space in units as small as a
single file system block

Administrative simplicity. While CFS file systems and the volumes on which
they reside can be expanded and contracted, expansion and contraction are
administrative operations. When multiple applications’ data resides in a
single file system residing on a single volume set, each application has
instant access to the file system’s entire pool of storage, subject only to
restrictions imposed by hard and soft quotas

But there are limitations associated with sharing a file system among unrelated
applications as well. Chief among them is the 256 terabyte size limitation on CFS
file systems. A second limitation is the performance demands made by multiple
applications running on different servers. While CFS inter-node resource
locking is minimal for files and directories that are not actually shared, file
system metadata is shared among all instances whose nodes mount it, and some
inter-node lock traffic is inevitable.

70 | Using CFS: application scenarios
CFS and storage consolidation

Using CFS: scalable NFS file

serving

This chapter includes the following topics:

CFS as a basis for scalable NAS file storage
CNFS: integrated scalable NFS file serving
Configuring CNFS for file system sharing
CNFS protocols

CNFS in a nutshell

Figure Intro-3 on page 13 illustrates the network-attached storage (NAS) model
for shared file system access, and the accompanying text describes the two
primary factors that limit its ability to scale:

Latency. Because they represent a higher-level abstraction, file-level data
access protocols necessarily entail more translation between requests
forwarded by clients and I/O operations on disks than their block-level
counterparts. Moreover, they are less amenable to zero-copy I/0, so data read
and written by clients must often be copied in memory. Primarily for these
reasons, NAS head processors tend to saturate, especially when client I/O
workloads are I/O request- or metadata operation-intensive

Bottlenecking. All I/O to a NAS system passes through and is processed by
the NAS head—essentially a server with certain processing, memory, and I/O
bandwidth resources. Depending on the nature of the I/O workload, at least
one of these resources tends to become the limiting factor in a NAS system’s
throughput

A third limitation of the NAS model has more to do with implementation than
with architecture—inflexibility. Typically, NAS systems offer limited
configuration options. The number and types of disks, processors, cache

72

Using CFS: scalable NFS file serving
CFS as a basis for scalable NAS file storage

memories, and network connections that can be configured with a given system
tends to be fairly narrow. It can be difficult to configure a NAS system with very
powerful processing capacity to handle metadata-intensive workloads, or with
very large (but cost-effective) storage capacity to handle lightly loaded archival
applications.

But even with these scaling and flexibility limitations, the administrative
simplicity and universal applicability of the NAS model make it attractive to
enterprise storage users. NAS technology is readily available in the form of
purpose-built systems, but since all major UNIX operating systems include NFS
server software components, many users choose to deploy conventional servers
with back-end disk arrays as dedicated NAS systems.

CFS as a basis for scalable NAS file storage

The properties of the CFS architecture make it an ideal foundation for relieving
the limitations that characterize NAS storage systems:

m Performance scaling. CFS can be configured in clusters of up to 32 nodes,
each with multi-core processors, large memories, multiple high-performance
gigabit Ethernet interfaces for client access, and multiple storage network
interfaces for access to back-end storage

m Storage flexibility. CFS supports almost any combination of Fibre Channel,
SAS, and iSCSI-connected storage devices. These can be configured as
storage tiers with different cost and performance characteristics

m File system scaling. CFS supports individual file systems of up to 256
terabytes capacity and up to a billion files per file system, with no practical
limit on the number of file systems hosted by a cluster

m Advanced features. CFS supports Storage Checkpoints (space-optimized
snapshots and writable clones of a file system) and automatic policy-based
relocation of files between storage tiers, advanced features that are
increasingly expected to be part of enterprise-class file storage systems

m Availability. CFS-based clusters are inherently highly-available, able to
sustain both network, processor node, and storage failures without
interrupting service to clients

m Universality. CFS runs on all major UNIX and Linux platforms, from the very
economical to enterprise-class servers with up to 64 multi-core processors.
Enterprises can select the most appropriate platform for file storage, based
on requirements for capacity, resiliency, and performance

Using CFS: scalable NFS file serving | 73
CNFS: integrated scalable NFS file serving

CNFS: integrated scalable NFS file serving

UNIX and Linux operating systems include both client and server-side Network
File System (NFS) software. Any UNIX system can act as a NAS server, or
alternatively, as a client, using NFS to access file systems hosted by another
server. File systems hosted by NFS servers integrate into clients’ directory
hierarchies; for most purposes, they are identical to local file systems.

To deliver the capabilities enumerated in the preceding section over NFS, CFS
integrates its host operating systems’ Network File System (NFS) server
components into the VCS-CVM-CFS framework to create scalable c/ustered NFS
(CNFS) file services. With CNFS, administrators can configure highly available,
high-performing, high-capacity NAS servers for NFS clients.

CNFS architectural overview

Figure 3-1 illustrates NAS file sharing based on CNFS file services. As Figure 3-1
suggests, each cluster node runs the VCS-CVM-CFS stack, and in addition, the
host operating system’s NFS server, which is encapsulated in a VCS parallel
service group. Each client connects to an NFS server instance in one of the
cluster nodes. The server instances execute NFS requests directed to them by
making file system requests to their local CFS instances. The CFS instances
cooperate to coordinate the NFS servers’ concurrent access to file systems.

Figure 3-1 Architecture for CNFS-based file services

VvCs
private network

Storage
7 \ network
e 2-32CNFS

NI_:S Enterprise @ Clusternodes
client

network .
/g [

Operating system NLm

®

NFS Server {Lock Manager) % o

0o

£ o

Clusher Fille Syshemmn =%t

©$ compeonent ‘_E: ®
c

CNFS Cluster Vollume Manager z =

Cluster Server

74 | Using CFS: scalable NFS file serving
CNFS: integrated scalable NFS file serving

CNFS scalability

All nodes in a CNFS cluster actively serve clients at all times. Clients that use a
DNS service to determine a CNFS cluster’s IP address receive all nodes’ NFS
server IP addresses in round-robin order, so that client connections and the load
they generate tend to balance evenly among cluster nodes. For situations in
which I/0 loads and client rosters are static, client administrators can direct
traffic to specific CNFS cluster nodes by specifying IP address-based
connections.

A single CNFS cluster can scale to as many as 32 nodes, each with multiple
gigabit Ethernet interfaces for connecting to clients through its data center
network. Nodes can be added to a CNFS cluster while it is actively serving files to
NFS clients. The network administrator adds their IP addresses to the cluster’s
DNS registration, so they immediately begin to participate in load balancing as
new clients connect to the cluster.

Figure 3-2 CNFS scaling and load balancing

Add links
formore

Round-robin

Storage

. network
Enterprise

network

The server nodes in a CNFS cluster can range from the very economical to the
very powerful, in terms of processing, memory, and storage network ports to
connect to the back-end storage network.

CNFS clusters also scale in terms of storage capacity, limited only by the
maximum capacities of their back-end disk arrays and the storage network
connectivity of their component servers. Moreover, CNFS storage
configurations are completely flexible—any Fibre Channel, iSCSI, or SAS (for
smaller clusters) storage systems can be configured, using any required
combination of solid state, high-performance, and high-capacity disk drives.
CFS Dynamic Storage Tiering (see Chapter 10 on page 171) automates the

Using CFS: scalable NFS file serving | 75
CNFS: integrated scalable NFS file serving

relocation of files between different types of storage as their states and the
requirements on them change over time.

CNFS availability

Based on a combination of Storage Foundation availability technology and
hardware configuration flexibility, CNFS clusters can be configured for end-to-
end high availability of data and file services:

m Disk arrays. Most CNFS clusters use enterprise-class disk arrays for back-
end storage. To protect against data loss due to disk failure, disk arrays are
typically configured to present LUNs based on mirrored or RAID disk sets.
Some even offer protection against double disk failures. Typically, arrays can
present LUNs on two or more storage network interfaces, to protect against
loss of access to storage if a storage network link fails

m CVM aggregation. To enhance data availability even further, CVM can mirror
two or more LUNSs, thus protecting against total failure of a disk array. CVM
dynamic multipathing complements disk arrays that support multi-path
access, providing simultaneous LUN access on multiple storage network
paths for arrays that support that feature, and “active-passive” failover
access for less capable arrays

m Automatic recovery. All CNFS components, including the NFS cluster
service, the Network Lock Manager (NLM), CFS, and CVM, are designed to
recover from cluster node failures, and provide continuous service to clients
by restarting the necessary services on alternate nodes.

CNFS high availability is essentially transparent to applications. If a cluster
node fails, pending requests time out. NFS client software retries timed out

requests continuously until IP address failover is complete. If NLM is in use,
client and server jointly recover outstanding locks.

Because CNFS mounts all NFS-shared file systems on all cluster nodes, any
NFS server instance can present any file system to clients. CNFS typically
recovers from node failures faster than alternative architectures, because nei-
ther volume importing, full file system checking, or file system remounting is
typically required, if the Network Lock Manager is in use, the client lock state
must be recovered

m Aggregated network links. CNFS clusters use their host operating system
network stacks to communicate with clients. The number of links, and the
ability to aggregatetwo or more into a single high-bandwidth data path are
therefore limited only by the ability of cluster nodes’ operating systems and
the network infrastructure to support network link aggregation

76 | Using CFS: scalable NFS file serving
Configuring CNFS for file system sharing

CNFS load balancing

All nodes in a CNFS cluster actively serve clients at all times. Typically, a data
center network administrator registers the CNFS cluster’s name with DNS,
along with all IP addresses that are bound to NFS server instances in round-
robinmode.

Clients query DNS to obtain an IP address for connecting to a CNFS cluster. DNS
responds to each request with the complete list of CNFS server IP addresses in
rotating order. Because clients typically connect to the first IP address in a DNS
list, connections, and therefore I/O load, tend to distribute uniformly among
cluster nodes. If administrator-controlled load balancing is desirable, client
administrators can specify IP addresses in NFS mount commands.

Configuring CNFS for file system sharing

CNFS automates most of NFS file service configuration. A single console
command configures CNFS by creating the VCS cluster service group frame
work, and specifying a shared file system for use by the Network Lock Manager
(NLM) and its CVM volume. Thereafter, administrators can either share existing
CFS file systems, or can create, mount, and share a new file system with a single
command.

Sharing CNFS file systems with clients

A CNFS cluster administrator

uses the cfsshare share console Administrative hint 10
command to make an already-

Configured file system accessible Administrators use the cfsshare

to NFS clients. The command command with different sub-commands
causes VCS to issue commands for configuring, sharing, and unsharing
the NFS server to initiate sharing CNFS file systems.

of the indicated file system. NFS
servers have several administrator-specifiable options that govern the behavior
of shared file system. Because the NFS servers in a CNFS cluster are operating
system components, the syntax for specifying these options is platform
dependent. The cfsshare share command accepts a character string in which
NFS mount options are specified in the form required by the platform. It passes
the string to the NFS server without verification or modification.

While the syntax and semantics of supported platforms’ NFS mount commands
vary slightly, the commands and options generally represent common
properties of NFS-mounted file systems. Administrators should ensure that the

Using CFS: scalable NFS file serving
Configuring CNFS for file system sharing

following options are specified appropriately for the platform’s NFS server:

Access mode. File systems can be NFS-mounted for either read-only or read-
write access by clients. Sharing a file system in read-only mode overrides
individual client computer and user write permissions

Synchronicity. NFS servers can be configured to report write completion to
clients while data is still in page cache (asynchronous) or to withhold
notification until data has been written persistently (synchronous)

Security restrictions. Clients can be permitted to connect to an NFS-shared
file system via any TCP port (by UNIX convention, TCP ports below 1024 are
assumed to be restricted to root users, and therefore secure, whereas
connections on higher-numbered ports can requested by any user

“Root squashing”. NFS-shared file systems can be configured to grant or
deny (“squash”) root users of authorized client computers root access to file
systems. If root squashing is specified, CNFS replaces root users’ file system
access permissions with the permissions of an account on the server (usually
called nobody or nfsnobody by default, but alterable to meet data center
standards)

Write delay. NFS-shared file systems can be configured to hold data written
by clients in cache for a time in the expectation that it will be able to coalesce
it with data from subsequent write requests. Delayed writing improves disk
I/0 efficiency, particularly for file systems whose I/0 loads are
predominantly sequential

Authorizations. NFS-shared file systems can be made accessible by any
client computer, or restricted to specific client computers or client netgroups
maintained by external NIS or LDAP directory servers. Typically, NFS servers
must be configured to use NIS or LDAP, and must be supplied with the IP
address of the NIS or LDAP server, or with a server name that it can use to
perform a DNS IP address lookup

Network transfer size. NFS servers can be configured to support maximum
network data transfer sizes (usually called rsize and wsize). Clients negotiate
network data transfer sizes when they NFS mount file systems. The largest
values supported by both client and server become the maximum size for all
network transfers

In addition to server mount options, client administrators may either soft
mountor hard mount NFS file systems. Typically, hard-mounting is the default.
Timed-out requests to soft mounted file systems cause NFS clients to report
errors to applications. With hard-mounted file systems, clients continually retry
timed-out requests until they succeed. Applications and users cannot interrupt
retries, and so may hang indefinitely, for example if the server has failed.
Specifying the intr NFS client mount option makes it possible for a user to
interrupt retries (for example, by typing CTRL-C), and thus release an
application hang

77

78 | Using CFS: scalable NFS file serving
CNFS protocols

CNFS protocols

CNFS supports Version 3 of the

NFS protocol® (commonly called
NFSv3). NFSv3 incorporates the
eXternal Data Representation

(XDR) standard® for platform-
independent data representation,
so NFS client and server
implementations are
interoperable regardless of
platform type. NFSv3 messages are contained in standard Remote Procedure
Call (RPC) protocol messages and transported by either UDP or TCP. In general,
TCP is preferable, particularly in WANSs and chronically congested networks,
because of its flow control and dropped packet handling.

Administrative hint 11

For most UNIX and Linux platforms,
UDP is the default mount option for
NFS-served file systems. Therefore,
client administrators must explicitly
specify TCP in NFS mount commands.

By itself, NFSv3 is stateless; servers do not retain information about clients
between successive NFS operations. All NFSv3 operations are independent of
any previous ones. Statelessness simplifies recovery from server failures
compared to other (“stateful”) protocols. An NFS server recovering from a fault
need not “remember” previous interactions with clients. Clients repeatedly
reissue requests that time out because of server failures.

CNFS includes two additional protocols used by many NFS-based applications:

m Mount. Clients use the mount protocol to determine which file systems are
being shared by an NFS server, and to obtain served file systems’ file IDs for
use in subsequent NFS calls

m Lock. The lock protocol, implemented in CNFS by a cluster-wide Network
Lock Manager (NLM), enables clients to place advisory locks on entire files
and ranges of bytes within files

The CNFS implementation of NLM is a cluster-wide highly available distributed
lock manager. Each NLM instance manages the advisory locks for NFS clients
connected to its node. If a node fails, the NLM instance on the node that assumes
control of its virtual IP addresses interacts with clients to recover their NLM
locks. Both failover and NLM lock recovery are functionally transparent to client
applications. Typically, when a cluster node fails, its clients retry timed-out NFS
requests until IP address failover and NLM lock recovery are complete, at which
time they succeed. Client applications that use NLM advisory locking run
unaltered when their file systems are served by a CNFS cluster.

8. Defined in RFC 1813. An NFSv4.1 has been published, but is not yet widely implemented or
deployed.
9. Defined in RFC 1014.

Using CFS: scalable NFS file serving | 79
CNFS in a nutshell

Network Lock Manager (NLM) advisory file locking

Some UNIX and Linux applications use NLM to synchronize shared access to
NFS-served files. NLM locking is advisory; that is, applications adhere to it
voluntarily. If all applications that access a given file system follow the NLM
protocol, simultaneous accesses by multiple clients do not return out-of-date
data or cause data corruption. NLM does not protect against applications that
access data for which they have been denied locks, or against applications that
simply ignore the protocol.

Client computers running applications that use NLM become statefu/—each
NLM server instance maintains a directory in a shared file system. The directory
contains a file for each client with outstanding locks. The server holds the actual
locks in memory, however.

When a client requests an NLM lock on a file, the NLM instance that handles the
request uses CFS’s Global Lock Manager (GLM, discussed in Chapter 8 on

page 147) to gain control over NLM lock grants to the file. It then queries other

instances to determine whether there are conflicting NLM locks, and if there are
none, grants the client’s request. This guarantees that different NLM instances

do not grant conflicting locks to different clients.

CNFS NLM instances are structured as parallel VCS service groups upon which
the NFS server virtual IP address (VIP) service groups depend. If a cluster node
fails, its VIP service groups fail over to pre-designated failover nodes. Prior to
coming online, the failed over VIP service group instructs all NLM instances to
enter grace mode, in which they only accept lock reclamation requests from
clients. While in grace mode, the failed over NLM instance re-masters (recreates)
the failed node’s in-memory lock database by dropping its own locks, merging
the failed node’s client list with its own, and instructing all clients in the merged
list to reclaim their locks. When re-mastering is complete, all NLM instances
revert to normal operation.

Since the failed node’s virtual IP address is now served by the failover node,
which has full access to CFS shared file systems, failover is functionally
transparent to clients. Clients access the same file systems via the same IP
addresses both before and after failover.

CNFS in a nutshell

The CNFS value proposition of scalability, availability, performance, and
flexibility make it an ideal NFS file serving solution in virtually any

80 | Using CFS: scalable NFS file serving
CNFS in a nutshell

environment. Table 3-1 summarizes the what and why of the “CNFS advantage.’

Table 3-1

Why CNFS for NFS file sharing

»

CFS cluster
feature

Comments

High availability

CNFS builds on the time-proven VCS-CVM-CFS stack to
deliver highly available NFS file access that scales to
thousands of clients

Load balancing

With CNFS round-robin connection management client
connections and the I/O load they generate are distrib-
uted throughout the cluster. Clients can also connect to
specific nodes if that is desirable

Multi-dimensional scaling

Users can grow CNFS clusters independently in the stor-

age capacity (add disk arrays), I/O performance (add stor-
age network or Ethernet interfaces), or processing power
(add cluster nodes) dimensions

Stretch clusters

With extended Fibre Channel or iSCSI, cluster nodes can
be separated by distances of up to 100 kilometers for
disaster protection

Advanced CFS features

Advanced CFS features, notable Dynamic Storage Tier-
ing, Dynamic Multi-Pathing for storage devices, and Rec-
lamation of thinly-provisioned storage are all available in
CNFS clusters

Platform flexibility

CNFS clusters can be configured using Solaris (SPARC
and x86), AIX, and Linux platforms. They fit nicely into
data center vendor management strategies, and are ideal
for repurposing replaced equipment

Price/performance

Because users can shop for the most cost-effective com-
puting, storage, and network components, CNFS clusters
provide the best user control over the cost of meeting
their NFS file serving needs

Inside CFS: framework and
architecture

m The VCS cluster framework

m CVM and CFS in the VCS framework

m Inside CFS: disk layout and space allocation

m Inside CFS: transactions

m Inside CFS: the Global Lock Manager (GLM)

m Inside CFS: I/O request flow

m CFS Differentiator: multi-volume file systems and dynamic storage tiering

m CFS Differentiator: database management system accelerators

82

The VCS cluster framework

This chapter includes the following topics:

m VCS components

m The VCS service group structure for applications
m VCS resources

m VCS service groups

CFS and CVM are both closely integrated with the Veritas Cluster Server (VCS)
cluster framework. In conjunction with CVM and VCS, CFS unifies as many as 32
interconnected nodes and their data storage resources into a single system that
is:

m Robust. VCS automatically detects both application and cluster node failures
and restarts (“fails over”) applications to pre-designated alternate nodes.
Applications configured to fail over are called failoveror high availability
applications

m Scalable. With VCS, it is possible to run multiple instances of applications
concurrently on different cluster nodes. Applications configured for
concurrent execution of multiple instances are called paralle/ applications

In the VCS context, CFS instances are a parallel application. As a layer in the
application I/O stack (Figure Intro-1 on page 8), CFS instances cooperate to make
it possible for business logic and database management system applications to
access data in shared file systems, no matter which cluster nodes they are
running on. This chapter describes the VCS framework and how CFS fits into it
as background for the more detailed descriptions of CFS architecture in
subsequent chapters.

84 | The VCS cluster framework
VCS components

VCS components

The main components of the VCS framework are:

m had. A high availability daemon that runs on each cluster node. had monitors
cluster node state, and implements pre-defined cluster policies when events
require it

m Communication protocols. VCS includes two specialized protocols, called
LLT and GAB that CFS instances use to intercommunicate on a cluster’s
private network

m Agents. Scripts or executable modules that control the operation and
monitor cluster resources (including applications)

m Configuration files. Files that define the computer systems, resources,
applications, and policies that make up a cluster

The high availability daemon

The VCS high availability daemon (had) is the cluster “engine.” An instance of
had runs on each cluster node and dynamically maintains a replicated state
machine that provides all nodes with the same view of cluster state at all times.

In addition, each had instance monitors the resources connected to its node, and
takes appropriate action (for example, initiates application failover) if it detects
a critical resource failure.

All had instances obtain cluster configuration and policy information from a
single cluster configuration filenormally called main.cf. The configuration file
specifies cluster resources and their organization into service groups.
Optionally, it may also define interdependencies among service groups.

VCS private network protocols

A VCS cluster requires a non-routed Ethernet private network on which its
nodes can intercommunicate using a two-layer protocol stack:

m Low-Level Transport (LLT). LLT is a high-performing, low-latency
replacement for the standard IP stack, used by VCS for all cluster
communications. LLT distributes traffic across the cluster nodes performs
heartbeating to ensure that all nodes are functioning properly and
responsive

m Group Atomic Broadcast (GAB). GAB uses LLT as its underlying protocol by
which it manages cluster membership and provides reliable communication
among nodes. CFS instances use GAB to communicate with each other

The VCS cluster framework | 85
The VCS service group structure for applications

Using GAB and LLT, had instances maintain a cluster-wide up-to-date view of
the state of all cluster nodes and the applications running on them. CFS
instances also use GAB (which in turn uses LLT) to exchange messages, for
example, to request delegation of allocation units (Chapter 6). Finally, the Global
Lock Manager through which CFS coordinates access to shared file system
resources uses GAB as its mechanism for communicating among instances.

The LLT module on each cluster node uses the private network to transmit
heartbeat messages that help to detect node failures. LLT makes heartbeat
information available to GAB, from which nodes’ responsiveness or non-
responsiveness becomes visible to had. had uses this information to make
various policy decisions, including whether it should reconfigurethe cluster by
adding or removing nodes. During reconfiguration, VCS momentarily freezes
any application I/O activity to shared CFS file systems to maintain data
consistency.

The VCS service group structure for applications

VCS encapsulates applications and the resources they require to run (disk
groups, CVM volumes, CFS file system mounts, network interfaces and IP
addresses, and so forth) within logical entities called service groups. The VCS
framework manages service groups by monitoring their resources while they
are operating, and by starting and stopping them in response to changes in
cluster state as well as to administrative commands. Figure 4-1 illustrates VCS
resource and service groups and dependencies among them.

86 | The VCS cluster framework

VCS resources

Figure 4-1 VCS service groups and dependencies

(o .
Service group

Application
resource

CVM volume
resource

Fille system mount

Depends
on

Depends
on

Resource

dependencies

Depends
Service group on
dependency

Service group

Disk group
resource

VCS resources

VCS treats everything required for an application to function—disk groups, CVM
volumes, CFS file system mounts, IP addresses, network interfaces, databases,
and application executable images themselves—as resources. Each resource is of
a typeknown to VCS through three components:

m A name. Designers use resource type names to declare the types of the
resource instances they create

m Attributes. Some resource attributes are used by VCS; others are supplied as
parameters to the resources’ own agents

m Anagent. Agents are executable modules that do what is necessary to
monitor and control the operation of resource instances. Each resource
type’s agent is unique

The agent for a resource type contains four methods, either as entry points in its
executable image or as scripts:

m Online. Executes the actions required to make the resource operational. For
example, the online method for the CFS file system mount resource type
invokes the operating system mount command using as parameters a CVM
volume name and a mount option string specified in the resource instance
definition

The VCS cluster framework | 87
VCS resources

m Offline. Executes the actions required to bring the resource to an orderly
shutdown. For example, the offline method for CFS file system mounts
invokes the operating system umount command

m Monitor. Executes actions that determine whether the resource is
functioning properly. For example, the monitor method for CFS file system
mounts calls an API that checks file system status

m Clean. Executes the actions required to bring a resource to a known state
prior to restarting it after a failure. The clean method for CFS file system
mounts performs a forced unmount operation if one is required

Storage Foundation products that contain CFS include VCS agents for file
system mounts and other types of resources required for CFS to function.

Resource type definitions

VCS resource types are defined in Zype definition filesthat contain templates for
the resources in text form. By default, a VCS cluster includes a general type
definition file called types.cf in the directory /etc/ VRTSvcs/conf/config. The
types.cf file contains templates for the standard VCS resource types. When a
product that contains CVM and CFS is installed, the Common Product Installer
adds CFSTypes.cf and CVMTypes.cfto the /etc/ VRTSvcs/conf/config directory.
If SFRAC is installed, the installer adds OracleTypes.cf, and so forth. Resource
type definition files are included by reference in a cluster’s main.cf
configuration file, much in the way that C programs often include header files
that contain data structure type definitions.

A resource type definition names the resource type and specifies its parameters,
including any argument list passed to its agent entry points. For example,
Fragment 4-1 illustrates the type definition for the CFSMount resource type.

Fragment 4-1 Type definition for the CFSMount resource type

type CFESMount ([01]
static int RestartLimit = 2 [02]
static str LogLevel [03]
static str ArglList[] = {MountPoint,BlockDevice,MountOpt} [04]
NameRule = resource.MountPoint [05]
str MountPoint [06]
str BlockDevice [07]
str MountOpt [08]
) [09]

Resource type definitions include specifications for the parameter values
supplied when resource instances are created. In the case of the CFSMount
resource type in Fragment 4-1, these include parameters related to clustering
(RestartLimit, LogLevel), parameters used by the mount agent, and a template
for the argument list that VCS passes to the resource type’s online method each

88 | The VCS cluster framework
VCS resources

time it starts an instance of the type (in this case, mounts a file system).

Resource instances

To configure an application as a

VCS service group, a designer Administrative hint 12
specifies its resources in the

main.cf file by referring to their Administrators do not usually code
type definitions. For example, CFSMount resource definitions directly.
Fragment 4-2 illustrates the They use the cfsmntadm console
specification of a CFSMount command to add and remove CFS file
resource named filesystem01. systems in a VCS cluster configuration.

Fragment 4-2 Specification of a CFSMount resource

CFSMount filesystem01l ([01]
Critical = 0 [02]
MountPoint = "/mnt01" [03]
BlockDevice = "/dev/vx/dsk/dg0l/disk01" [04]
MountOpt = "blkclear,mincache=closesync" [05]
) [06]

The resource specification attributes identify:

m Volume. the CVM volume on which the file system resides
(/dev/vx/dsk/dg01/disk01)

m Mount point. The file system mount point in the hosting node’s name space
(/mnt01)

m Mount options. The mount options (blkclear, mincache=closesync) used by
the CFSMount online method, which is an operating system mount command

The attributes are specified using names in the CFSMount resource type
definition.

Organizing and managing resources

VCS manages resources by organizing them into service groups. A VCS service
group can contain both critical and non-criticalresources. Critical resources
must be operational in order for the group to function; non-critical resources
need not. For example, CFS can manage many cluster file systems
simultaneously. No particular file system (CFSMount resource) such as the one
specified in Fragment 4-2 is required for the CFS service to operate. CFSMount
resources are therefore non-critical from the point of view of the CFS service
group.

The VCS cluster framework | 89
VCS service groups

While a service group is online, VCS invokes the monitor methods of each of its
resources periodically to verify that they are functioning properly. If a resource
designated as critical to a failover service group fails, VCS stops the service
group and restarts it on an alternate node in the cluster. Similarly, if a node
running one or more failover service groups fails to issue heartbeat messages on
schedule, VCS ejects it from the cluster, causing a reconfiguration. After the
reconfiguration, VCS restarts the failover service groups on alternate nodes.

Some of the resources in a service group may depend on other resources. For
example, a CFSMount resource depends on the CVM disk group in which the
volume that holds the file system is contained. Others are independent. For
example, the IP address that an NFS server uses to export a file system has no
dependency relationship with the file system. (An NFS share resource, however,
depends on both file system and IP address.)

VCS starts and stops a service group by invoking the online and offline methods
of its resources in a sequence that is determined by their dependency
relationships. Dependent resources are started after the resources on which
they depend.

VCS service groups

An application designer can structure a VCS application service group either as:

m High availability. (also called failover service groups). VCS automatically
restarts high availability service groups on pre-designated alternate nodes if
they or the nodes on which they are running fail

m Parallel. VCS starts and monitors multiple concurrent instances of parallel
service groups on different cluster nodes. VCS does not perform failover of
parallel service groups

Both types of service group consist of:

m Resources. A dependency tree of the resources that make up the service
group

m Nodelist. An ordered list of cluster nodes on which the service is eligible to
run

m Service group interdependencies. A dependency tree of other service groups
on which the service group depends

When starting a failover service, the had instance on whichever active cluster
node appears first in its node list starts it on that node. had starts an instance of
a parallel service group simultaneously on every node in the group’s eligibility
list.

90 | The VCS cluster framework
VCS service groups

Service group resources

Figure 4-2 represents a simple service group. In this example, an application
(app.exe) requires a file system mount (fappdata), which in turn requires the
CVM volume (appvol) that holds the file system’s data and metadata.

Figure 4-2

Sample VCS service group

(Service group app_group

Application
fappsfappfimages/app.exe

Depends
on

File system mount

fappdata ?

Depends
on

CVM volume

appvol -

Fragment 4-3 defines: is a definition for this service group as it might appear in

Depends

on

Service group cvm

Disk group

appdg

a cluster’s main.cf file.

Fragment 4-3

A simple VCS service group definition

group app_group (

SystemList = { node0O = 0, nodel = 1 }

AutoFailOver = 0

Parallel =1

AutoStartList =

)

AppType appresource (
Critical = 0
Sid @node0 =
Sid @nodel =
Owner =

{ nodeO, nodel }

vrtsl

vrts2

appowner
Home = "/apps/app"
Pfile @node0 =
Pfile @nodel =
)

CFSMount app mntresource (
Critical = 0
MountPoint = "/appdata"

BlockDevice = "/dev/vx/dsk/appdg/appvol"

)
CVMVolDg app_voldgresource (

CVMDiskGroup = appdg
CVMVolume = { appvol }
CVMActivation = sw

)
requires group cvm online local firm
appresource requires app mntresource
app mntresource requires app voldgresource

Fragment 4-3 defines:

"/apps/app/images/app.exe"
"/apps/app/images/app.exe"

The VCS cluster framework | 91
VCS service groups

FRP R ERPERPR PP OO0O0O0O0OOCO O
Lo WM R O WV®Jdo s WN

[y
[ee]

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

Name and type. The service group name (app_group) and type (parallel)

Run location. The nodes on which the service is eligible to run (node0 and
nodel), and on which VCS is to start it automatically (in the specified order)

Resources. The resources that make up the service group (all of which must

be accessible to both nodes), including:

- The application executable image (appresource, which specifies the image

app.exe)

- The CFS file system mount (app_mntresource, which specifies the /app-
data mount point and the /dev/vx/dsk/appdg/appvol CVM volume that

contains the file system)

- The CVM disk group containing the file system’s volume
(app_voldgresource, which specifies the volume appvol)
Resource dependencies. The dependencies among the service group’s

resources:

92

The VCS cluster framework

VCS service groups

- appresource (the executable image) requires app_mntresource (the file
system mount)
- app_mntresource requires app_voldgresource (the CVM disk group con-
taining the file system’s volume)
m Service group dependency. The other service group (cvm, the group
containing the CVM and CFS underlying support framework) on which this
group depends

To start this parallel service group, either automatically when the cluster starts
up, or upon administrator command, VCS had instances on node0 and nodel

call the online entry points of the CVMVolDg, CFSMount, and AppType agents.
Because resource dependencies are specified, the agents are called in sequence.

To stop the group, VCS executes the corresponding offline methods in reverse
order.

Service groups in operation

While a service group is online, VCS continually monitors each of its resources.
As long as all resources’ monitor methods report operational status, VCS takes
no action. If a critical resource fails, VCS makes a designated number of
attempts to restart it, and, failing to do so, stops the service group as described
in the preceding paragraph.

Thus, VCS monitors state on two levels:

m Cluster. The LLT module on each node monitors heartbeat messages from
other nodes. If a node’s heartbeats from a node cease to arrive, the remaining
nodes use GAB protocol services to eject it from the cluster and fail over its
high availability service groups according to the policy specified in main.cf

m Service group. Each node monitors the resources of the service groups it
manages. If a critical resource in a service group fails and cannot be
restarted, had stops the group. had restarts high availability service groups
on alternate nodes as indicated in the cluster’s main.cf file. It does not restart
parallel service groups, since they are presumed to be running on all eligible
nodes

Under most circumstances, service group starting, stopping, and failover are
completely automatic. Administrative intervention is only necessary in
exceptional cases, such as removal of a node for maintenance. In local and
“metropolitan” clusters, VCS completely automates the restoration of service

after application, critical resource, or node failure.1?

10.Through its Global Cluster Option (GCO), VCS supports pairs of widely separated clusters.
Global clusters can be configured to require administrative involvement in failover, but for
local and metropolitan clusters, automation is the rule.

The VCS cluster framework | 93
VCS service groups

Service group dependencies

Service groups may depend on each other. For example, the service group
specified in Fragment 4-3 depends upon the cvm service group (line 26 in the
fragment). The service group definitions and interdependencies specified in a
cluster’s main.cf file are effectively the cluster’s policy. had instances respond
to events such as node or application failure by enforcing the resource criticality
policy provisions specified in main.cf.

Virtual IP addresses for parallel service groups

VCS starts a parallel service group on all cluster nodes that are eligible to run it.
For scale-out applications in which each client connects to one of several
application instances on different nodes, designers typically balance the load
among nodes by designating a separate IP address for each application instance,
and registering all of them with DNS in “round-robin” mode, so that DNS rotates
the order of the list when responding to successive lookup requests

Designers frequently make parallel applications highly available as well by
encapsulating the IP addresses that clients use to connect to them in VCS high-
availability service groups for which they specify the application instance’s
service group as a critical dependency. This is called virtualizing IP addresses,
and the IP addresses are called virtual IP addresses (VIPs).

If an application instance or its server fails, VCS restarts the service group
containing the VIP on its failover node. When clients reconnect or retry
requests using the VIP, they communicate with the failover server, which is
running an instance of the parallel application. The client’s messages are
directed to that instance, which re-establishes connection and services requests
according to its own application-level protocols.

94 | The VCS cluster framework
VCS service groups

Chapter

CVM and CFS in the VCS
framework

This chapter includes the following topics:

m Virtual volumes and volume managers
m CVM-CFS synergies
m Putting it all together: CVM and CFS in the VCS environment

m The value of CVM as a CFS underpinning

96 | CVM and CFS in the VCS framework
Virtual volumes and volume managers

Today, almost all data center storage is virtualized.

Disk arrays, intelligent storage network switches, and Appl:;:ration
host-based volume managers that run in application database manager
and database servers all coordinate access to groups of -
. . . 11 . I File
rotating and solid-state disks"" and present clients
with disk-like virtual devices with some combination
File system

of capacity, resiliency, I/O performance, and flexibility
that is superior to that of the component devices.
Virtual devices may be partitions, concatenations,
mirrors, or stripe or RAID groups of underlying
devices. They may be “thinly provisioned,” in that
physical storage capacity is allocated to them only
when clients access the corresponding virtual storage

I Virtual device

Volume manager

I Virtual device

capacity.

. . . . "Smart"
Virtual devices may themselves be virtualized. For storage network
example, a host-based volume manager can mirror switch

data on two virtual devices that are actually RAID
groups presented by different disk arrays; the
resulting mirrored virtual device can survive even the
failure of an entire disk array. CFS file systems store
data in virtual devices called vo/umesthat are
instantiated by the host-based Cluster Volume
Manager(CVM). CVM volumes enable all nodes in a
cluster to access their underlying storage devices
concurrently.

I Virtual device

Disk array

I Virtual device

Disk drive

Virtual volumes and volume managers

Whether it is disk array, network, or host-based, a storage virtualizer has two
primary functions:

m Mapping. Volume managers maintain persistent maps that relate volumes’
block addresses to block addresses on underlying storage devices. For
example, volume managers keep track of sets of mirrored disks, and the
stripe order and parity locations of disks in a RAID group. Some volume
manager maps are algorithms that relate physical and virtual device block
locations. Others, such as maps for thinly provisioned volumes, are

11.In practice, most enterprise storage devices are actually logical units (LUNs) presented by
disk arrays, which virtualize the storage capacity of the disk drives they contain. Storage
Foundation documentation and this book both refer to disk array LUNs and directly
connected disk drives interchangeably as disks, except where the context requires more
specific reference.

CVM and CFS in the VCS framework | 97
Virtual volumes and volume managers

correspondence tables that relate device and volume block numbers to each
other

m I/Orequest translation. Volume managers use their disk block maps to
translate client I/O requests that refer to volume block addresses into
requests to underlying storage devices. For example, for each client write
request to a mirrored volume, a volume manager issues write commands
addressed to corresponding blocks on each of the volume’s mirrored devices

Virtualizers that run in application servers, usually called host-based volume
managers, have two properties that make them especially useful in mission-
critical cluster environments:

m Extreme resiliency. Volume managers can create volumes from physical or
virtual devices presented by different disk arrays. This enables them to keep
data available to applications even if, for example, a disk array suffers a total
meltdown

m Multi-path access. Volume managers can improve I/O performance and data
availability by transparently managing application access to storage devices
connected by two or more network paths

The conventional shared storage device paradigm does not guarantee the
execution order of concurrent I/O commands to overlapping disk blocks. For
example, if two clients write data to the same disk block at approximately the
same time, either request may be executed first. File systems and database
management systems enforce ordering requirements among disk reads and
writes by regulating access to their own critical data structures.

CVM transforms the read and write requests that CFS addresses to volume
blocks into I/O commands that it issues to the underlying disks. CFS preserves
file data and metadata integrity by using the Global Lock Manager (GLM,
Chapter 8 on page 147) to serialize accesses that might conflict with each other.

CVM volume sharing

CVM presents consistent volume state across a VCS cluster as nodes import and
access volumes concurrently. CVM volumes may be private (accessible by one
node) or cluster-wide (accessible by all nodes, also called shared). CFS file
systems must occupy CVM shared volumes; they cannot use CVM private
volumes or raw disks for storage. A CFS file system that occupies shared CVM
volumes may be mounted on a single node, a subset of the cluster’s nodes, or on
all nodes. Table 5-1 summarizes the CFS file system mounting rules.

98 | CVM and CFS in the VCS framework
Virtual volumes and volume managers

Table 5-1 CFS-CVM mounting rules
CVM volume | Single-host Single-node Multi-node Cluster-wide
type 4 (Vxfs) mount | CFS mount CFS mount CFS mount
Private Yes No No No
Cluster-wide Yes Yes Yes Yes

CVM in the VCS environment

Figure 5-1 illustrates how CVM fits into the VCS environment. As the figure
suggests, CVM instances are structured as VCS parallel service groups, with an
instance running on each cluster node. All instances access storage devices
directly through a storage network using Fibre Channel, iSCSI, or SAS
technology. Each CVM instance transforms CFS read and write requests to
volumes into I/O operations on the underlying devices, and executes the
corresponding commands.

S

CVM and CFS in the VCS framework
Virtual volumes and volume managers

N>

Cluster Volume Manager software topology

>

Figure 5-1

Software stack Software stack Software stack
VCS VCS vCs
CFSinstance CFSinstance oo @ CFS instance

Volumes Volumes Volumes

TS S TS S

Cluster Volume Cluster Volume m Cluster Volume
Manager Manager w Manager

¥

s
=

< &

One CVM instance in a cluster serves as the Master instance, others instances
are its s/aves. The CVM Master instance manages disk group and volume
configuration, which includes device membership, access paths, and node
accessibility. The Master coordinates volume configuration changes, both those
directed by administrative command and those resulting from disk or node
failure, so that all CVM instances’ views of volume state are identical at all
times.

Cluster-wide consistent view of virtual volumes

CVM organizes disks into disk groups whose membership administrators
specify. The disk group is the atomic unit in which CVM instances import (gain
access to), deport (relinquish access to), activate (present to CFS) and deactivate
(withdraw accessibility to) disks. CVM maintains a redundant, persistent record
of each disk group’s membership, volumes and other underlying structures in
dedicated private regions of storage on the disks in a disk group.

All CVM instances in a cluster must present the same view of disk group and
volume configuration at all times, even in the event of:

99

100

CVM and CFS in the VCS framework
Virtual volumes and volume managers

m Storage device failure. For example, if a disk is added to or removed from a
mirrored volume, all CVM instances must effect the change and adjust their
I/0 algorithms at the same logical instant

m Cluster node failure. If a cluster node fails while it is updating one or more
mirrored volumes, CVM instances on the surviving nodes must become aware
of the failure promptly, so that they can cooperate to restore volume
integrity

CVM guarantees that all of its instances in a cluster have the same view of

shared volumes at all times, including their names, capacities, access paths and
“geometries,” and most importantly, states (for example, whether the volume is
online, the number of operational mirrors, whether mirror resynchronization is
in progress, and so forth). A volume’s state may change for one of three reasons:

m Devicefailure. A disk that is part of a volume may fail or become unreachable
on the network. When this occurs, simple, striped and concatenated volumes
fail, and mirrored volumes are at risk

m Cluster node failure. If a cluster node fails, the remaining nodes cannot
readily determine the state of shared volumes to which the failed node may
have been doing I/O

m Administrative command. Administrators may disable volumes, add or
remove mirrors, increase or decrease capacity, add disks to or remove them
from a disk group, and so forth

Whatever the reason for a volume state change, all nodes in the cluster must
perceive the change at the same logical instant. When a CVM Master detects or
is informed by a slave that a volume’s state has changed, it initiates a cluster-
wide transaction to process the change. It stores the new volume state
persistently in the private regions of the disks that contain the disk group’s
CVM metadata, marked as a pending change. It then communicates the pending
change to slave instances, causing them to initiate a coordinated volume state
change transaction. All instances block further I/0 to the affected volumes and
allow outstanding I/O operations to complete. When all I/O is complete, the
Master completes the transaction, making the pending state change the current
volume state. Once the transaction is complete, all instances resume I/O to the
disk group, adjusting their I/O algorithms as required.

For example, during a cluster reconfiguration that follows a node failure, CVM
puts mirrored volumes into a read-writeback mode in which every client read is
satisfied by reading data from one mirror and writing it to corresponding blocks
of all other mirrors. This ensures that the same data is returned, no matter
which mirror is used to satisfy a client read request. CVM volumes can be
configured with dirty region logs (DRLs) that keep track of outstanding writes so
that during recovery, only block regions flagged as potentially at risk need to be
copied in read-writeback mode. For volumes configured without DRLs, a CVM
background thread traverses the entire block spaces in read-writeback mode.
CVM distributes responsibility for recovering mirrored volumes after a node

CVM and CFS in the VCS framework | 101
CVM-CFS synergies

failure among the remaining cluster nodes on a volume-by-volume basis.

If the cluster node on which a CVM Master instance is running fails, the cluster
reconfigures. As part of the reconfiguration, a new CVM Master instance is
selected and volume states are adjusted as described above. Any IO that requires
Master involvement is delayed until the new master has been selected.

CVM-CFS synergies

Several of CVM’s advanced features interact synergistically with CFS. The
sections that follow list the most important of these features alphabetically and
describe how CFS exploits them to enhance file system performance and
robustness.

Automatic sparing, disk synchronization, and intelligent copying

When a disk in a mirrored volume
fails, the risk of data loss from
subsequent disk failures
increases. Consequently, it is Administrators use the vxedit command
desirable to replace the failed disk | with the set spare=on option to

and restore its content as quickly designate a disk as a spare for its disk
as possible. CVM’s automatic group.

sparing feature allows
administrators to pre-designate
disks as sparesto be used as replacements for failed disks in the same disk
group. When CVM detects a disk failure, it automatically removes the failed disk
from its volume and replaces it with a designated spare from its disk group if a
suitable one is available, thus eliminating the human intervention time element
from the repair process.

Administrative hint 13

When new or replaced disks are added to a mirrored volume, the new disk must
be synchronized with (made identical to) the volume by copying volume
contents to corresponding blocks on the new device. In most cases, CVM
synchronizes volumes while they are “live”—being used by applications. Until a
new disk is fully synchronized, CVM cannot use it to satisfy read requests. Write
requests must update all disks, however, including the one being synchronized.
CVM Master instances guarantee that slave instances perceive the addition of
disks to volumes at the same instant, and adjust their read and write access
control accordingly. Similarly, when synchronization is complete, a CVM Master
coordinates a cluster-wide resumption of normal access control.

Finally, CFS-CVM SmartMove technology minimizes the time and resources
required to migrate data between disks. When using SmartMove to copy the

102

CVM and CFS in the VCS framework

CVM-CFS synergies

contents of one volume to another, CVM queries CFS to determine which volume
blocks are in use, and copies only those blocks. SmartMove obviously saves time
whenever data is copied between volumes, but is particularly advantageous
when the “disks” underlying the target volume are LUNSs in a disk array that
supports thin provisioning. Because CVM only writes actual data, the disk array
only allocates space for actual data; no physical storage is allocated for unusef
file system blocks.

Coordinated volume and file system resizing

Most UNIX file systems are expandable—if a file system requires more space, an
administrator can increase the size of the underlying volume, and “grow” the
file system to utilize the enlarged capacity. CFS file systems are both expandable
and shrinkable, for example, to reclaim storage that is no longer required so it
can be redeployed. CFS’s ability to reduce the size of a file system, is relatively
uncommon, as is its two-dimensional expansion capability:

m Volume expansion. An administrator can increase the size of one or more of
the CVM volumes a file system occupies, and then grow the file system to
utilize the increased space

m Volume addition. Alternatively, an administrator can add volumes to a file
system’s volume set, tagging the added volumes so that they become part of a
storage tier (Chapter 10)

When reducing the size of a file system, CFS first relocates files from volume
block locations that lie beyond the reduced size, freeing the storage space to be
removed, and then adjusts file system metadata to reflect the reduced capacity.
Once a file system’s size has been reduced, the administrator can reduce the size
of the underlying volume, and reuse the space freed thereby.

Database management system |/O accelerations

Compared to so-called “raw” block storage devices, CFS files used as storage
containers for relational databases offer several advantages, particularly in
cluster environments:

m Administrative simplicity. Database administrators can easily resize
database container files dynamically, while the database manager is using
them to satisfy client requests. In contrast to virtual volume resizing, file
resizing typically does not require coordination with a storage or system
administrator

m Error-proofing. When a database uses CFS files as storage containers, the
underlying disks are not visible to database administrators and can therefore
not be compromised by accident

CVM and CFS in the VCS framework
CVM-CFS synergies

m Storage cost-effectiveness. CFS’s Dynamic Storage Tiering feature
(Chapter 10 on page 171) can automatically place database container files on
the most cost, performance and resiliency-appropriate storage tiers (groups
of CVM volumes) for each type of data. For example, active tables can be
placed on high-performance storage, while archive logs can be relocated to
lower-performing, but reliable storage as they age

m Data protection flexibility. Using CFS files as database storage containers
allows administrators to employ techniques like space-optimized snapshots
of CVM volumes, and file-oriented backup software like Symantec’s
NetBackup to protect database data

Historically, the main disadvantage to using files as database storage containers
has been the impact on performance. In order to isolate clients from each other,
most UNIX file systems move data between operating system page cache and
application buffers and lock access to files while they are being written. These
functions impede database management system performance, and moreover are
not necessary, because database management systems carefully synchronize
their own I/0 requests to avoid potential conflicts.

CFS includes database I/O acceleration mechanisms that overcome these
obstacles, so that database management systems can use CFS files as storage
containers without incurring performance penalties relative to raw storage
devices.

For Oracle, CFS includes a library that implements the Oracle Disk Manager
(ODM) API specification. With ODM, the Oracle database management system
can perform asynchronous I/O to CFS files and transfer data directly to and
from its own buffers. To Oracle database administrators, the advantage of ODM
is consistent, predictable, portable database behavior that makes optimal use of
the underlying storage infrastructure’s capabilities.

For database management systems that do not offer similar APIs, CFS offers a
concurrent I/0 (CIO) facility. CIO can be activated as a file system mount option.
It behaves similarly to ODM in that it enables asynchronous I/O directly to and
from a database manager’s own buffers. Any application that synchronizes its
own I/0 requests and manages its own buffers to avoid premature reuse can
make use of CIO without modification. Alternatively, applications can activate
CIO for specific files by specifying advisories.

Using the CFS database acceleration mechanisms, relational database
management systems and other applications that coordinate their own I/O
internally can simultaneously achieve both raw device I/0 performance and file
system ease of administration. CFS database accelerators, enhance database
management system I/O performance in three ways:

m Asynchronous I/0. Database manager execution threads are able to issue I/O
requests and continue executing without waiting for them to complete

m Direct I/0. Database manager I/O requests cause data to be transferred
directly to and from its own buffers. When a database manager accelerator is

103

104

CVM and CFS in the VCS framework

CVM-CFS synergies

active, CFS does not copy data to or from operating system page cache on its
way between database manager and disk storage

m Write lock avoidance. Database management system write requests bypass
operating systems’ file write locking mechanisms, allowing the operating
system to pass multiple write requests to a single file through to the I/O stack
in parallel

The CFS data caching and file I/O serialization protections are unnecessary with
database managers, because they themselves guarantee that they do not issue
potentially conflicting I/O commands concurrently, or reuse buffers before I/0
is complete.

CFS database accelerators are cluster-aware. Their instances communicate with
each other to maintain the structural integrity of database container files and to
keep administration simple.

Because CFS is frequently the basis for Oracle database infrastructures, the CFS
ODM library includes features that implement other ODM APIs. Three such
features are:

m File descriptor virtualization. The CFS ODM library saves memory by
mapping Oracle’s file descriptors to file handles so that each database
requires one handle per file shared among all Oracle processes, rather than
one per file per Oracle process

m I/Orequest consolidation. ODM “bundles” Oracle’s I/O requests and delivers
them to the operating system kernel in groups. This minimizes context
switches between the Oracle database manager and the operating system
that hosts it

m File management. The ODM library supports the Oracle Managed File
capability, which among other features, automatically generates names for
the files that Oracle creates, ensuring that they are unique across a cluster

One final feature of the CFS ODM library that is especially significant is that it
enables Oracle to resi/ver'? a mirrored volume after system crash.

When a system with CVM-mirrored volumes fails, it is possible that writes to a
volume may have been in progress at the time of the failure. The contents of the
disks that make up mirrored volumes may be inconsistent for either of two
reasons:

m Incomplete writes. A multi-sector write may have been interrupted while in
progress. Disks (and disk array LUNs) generally finish writing the last sector
sent to them, but not all sectors of a multi-sector write may have been sent.
After the failure, a multi-sector Oracle database block may be “torn”—
containing partly old and partly new content

12.The resilvering metaphor is apt. After a failure that may leave a mirror tarnished, resilvering
restores its perfectly reflective quality.

CVM and CFS in the VCS framework | 105
CVM-CFS synergies

m Unprocessed writes. Writes to some of the disks of a mirrored volume may
not have been executed at all at the instant of failure. After the failure, all
mirrors will contain syntactically valid Oracle blocks, but some mirrors’
block contents may be out of date

Oracle maintains leading and trailing checksums on its data blocks to enable it
to detect incomplete writes after recovery from a failure. For unprocessed
writes, it uses an I/O sequence number called the system control number (SCN)
that is stored in multiple locations to detect out-of-date blocks. When Oracle
detects either of these conditions in a database block, it uses the ODM APIs to
request a re-read of the block from a different mirror of the volume. If the re-
read content is verifiable, Oracle uses the ODM API to overwrite the incomplete
or out-of-date content in the original mirror, making the block consistent across
the volume.

CVM volume snapshots

A CVM snapshot of a live volume captures a virtual image of the volume’s
contents at an instant of time. The image may be a physical block-for-block copy
(“full-size”), or it may contain only the pre-snapshot contents of blocks updated
since snapshot initiation and a table that relates their locations to their volume
block addresses. CVM documentation refers to the latter as “space-optimized”
snapshots. Figure 5-2 contrasts full-size and space-optimized snapshots.

106

CVM and CFS

in the VCS framework

CVM-CFS synergies

4 | jve volume blocks ————
o086 00 o600 006
z z
[[
= =
[]

Ap——

Figure 5-2 Full-size and space-optimized snapshots of CVM volumes

Updates since
snapshot taken

= |jve volume block}';“_——b
A W

9

1
1
m]
1
1
4
1
1
-

Prior contents
Prior contents

[A N N N N | Space-
optimized
snapshot [S S R
Full-size snapshot volume
volume blocks blocks @ ¢ Spacesaved ———>

Full-size snapshots have certain advantages:

m Flexibility. Because they are full images of volumes and the file systems on
them, full-size snapshots can be split from their disk groups and taken off-
host for processing

m Performance. Because a full-size snapshot occupies completely separate
storage devices from its parent data set, processing the snapshot has little
impact on I/O to the parent data set

m Failure tolerance. A full-size snapshot made for data analysis, for example,
does double duty in that it can be a recovery mechanism if the parent data set
fails

The advantages of full-size snapshots notwithstanding, space-optimized
snapshots are attractive because they minimize storage consumption, and
because snapshot initiation is nearly instantaneous. The storage space occupied
by a space-optimized snapshot is related to the amount of live volume data that
changes during the snapshot’s lifetime rather than to the size of the live volume.

The first change to any given volume block after a space-optimized snapshot is
initiated results in the block’s original contents being preserved (“snapped”).
Thus, the first write to a block after snapshot initiation consumes more time and
I/0 resources than subsequent writes.

Full-size snapshots consume more storage space, and take longer to initiate

SmartSync for full-size snapshots of CVM volumes

CVM and CFS in the VCS framework

CVM-CFS synergies

(because the complete contents of the snapped volume must be copied to the
snapshot), but they have the advantage of being complete volume images that
can be deported for use by other systems, either in or outside of a cluster.

In a conventional full-size snapshot implementation, a volume manager cannot
determine which volume blocks are used by the file system and which are free,
so it copies all volume blocks when creating a full-size volume snapshot. (This is
also true of adding or restoring a disk to a mirrored volume.) Thus, creating a
full-size snapshot of a volume that contains a lightly populated file system
results in a good deal of useless copying of the contents of unallocated volume

blocks.

The Storage Foundation SmartSyncfeature eliminates the copying of
meaningless blocks during full-size volume snapshot creation and mirrored
volume disk resynchronization. When creating a snapshot or adding a disk to a
mirrored volume, CVM makes a SmartSync query to CFS requesting a list of
volume block ranges that contain file system data and metadata, and copies only
those block ranges, bypassing blocks that CFS regards as unused space. Thus,
with SmartSync, the time to create a full-size snapshot or add a disk to a
mirrored volume is related to the amount of data that the volume contains, and

not to the volume’s size.

Figure 5-3 Full-size snapshot creation and mirrored volume
synchronization with SmartSync

-,

File data

File data

Live volume blocks

TTAaTTaAT Tt Tt AT« e B
1 1 n 1 1 1 1
1 1 n 1 1 1 1
1 1 n 1 1 1 1
Freespace Filedata | Freespace | Filedata
o Lo
1 1 n 1 1 1 1
o o |
Bypass Bypass
copying copying
s B B B B e Ry
1 1 [] 1 1 1 1
1 1 [] 1 1 1 1
1 1 [] 1 1 1 1
File data File data

o
8
H
=]

™
8
H
0

Full-size snapshot volume blocks

Block-by-block copy of
file data and metadata
only

107

108

CVM and CFS in the VCS framework

CVM-CFS synergies

SmartSync is also useful when migrating from conventional (“thick”) disk array
LUNSs to thinly provisioned ones. Because SmartSync only copies blocks that are
actually in use, only those blocks are written to a target LUN, and therefore only
those blocks are allocated physical storage capacity (“provisioned”) by the disk
array.

Volume geometry-based I/0 optimization

CVM reports the geometry of volumes used by CFS. The most relevant volume
geometry parameters are:

m Mirrored volumes. The number of disks across which data is mirrored
m Striped volumes. The number of columns (disks) and stripe unit size
For volumes that are both striped and mirrored, both parameters are relevant.

CFS uses CVM geometry information to optimize space allocation and I/O
algorithms. Two important examples of how CFS uses CVM geometry
information are:

m Allocation for small file performance optimization. If the volume blocks
allocated to a small file are split between two columns of a striped volume, an
I/0 request to the file may result in two I/O commands to two disks. This uses
more system resources and takes longer to execute than a single command.
To minimize this possibility, CFS uses the volume stripe unit size that CVM
reports as one of the inputs to space allocation for small files. If possible, it
allocates space for small files at volume block locations that fall into a single
column of a striped volume.

m Sequential read-ahead. When — —
CFS detects that a file is being Administrative hint 14
read sequentially, it
automatically enters read-

CFS is aware of CVM volume geometry,

ahead mode in which it pre- but not that of disk arrays. If a disk
reads a certain amount of data | array LUN is already striped, the

in anticipation of upcoming incremental benefit of extensive CVM-
application read requests. level read-ahead is likely to be minimal.
When determining how much Administrators can use the

data to read ahead, CFS takes read_pref_io and read_nstream file

volume geometry into account.
In particular, CFS uses the
number of disks in a volume
(and for striped volumes, the
stripe unit size) to determine the number of concurrent anticipatory reads to
schedule. Since each read request results in read commands directed to
different disks, the commands can transfer data concurrently, effectively
increasing aggregate read-ahead bandwidth.

system tunables to conserve buffers by
minimizing read-ahead for such

CVM and CFS in the VCS framework
Putting it all together: CVM and CFS in the VCS environment

109

Putting it all together: CVM and CFS in the VCS
environment

As parallel VCS service groups, CFS and CVM are configured similarly, but not
identically in the VCS environment. Both are based on “engines,” called vxfsckd
and vxconfigd respectively, that provide their core functionality. Instances of
the engines run in all cluster nodes structured as VCS resources.

Each CFS file system is — —
represented as a VCS CFSMount Administrative hint 15
resource on each node that

mounts the file system. The disk

CFS and CVM resource type definitions

groups that contain the CVM are contained in the CFSTypes.cf and
volume(s) on which a file system CVMTypes.cf files respectively. The
resides are represented as Storage Foundation common product
CVMVolDg resources. installer automatically installs them in
Each file system resource has a directories that allow them to be

VCS dependency on the disk included by reference in the main.cf file.

group resource that contains its
volumes. At least one disk group
must depend on the CVMCluster
executable resource to manage
CVM membership and cluster-
wide volume state reconfigurations. Figure 5-4 illustrates a typical CVM-CFS
resource configuration—an application that serves clients over a network by
accessing data in a database. Both application and database failover service
groups use CFS file systems based on CVM volumes.

The Common Product Installer also
creates the CVMcluster resource
representation in main.cfautomatically.

Putting it all together: CVM and CFS in the VCS environment

110 ‘ CVM and CFS in the VCS framework

Figure 5-4

Service group cvm

CFSMount
Jauxfs

o
o8

Disk group
auxdg

CVMcluster
resource

(M7

resource

CVMCcluster
resource

[}
resource

o

\

Client service
application

IP address

Network interface

Connection

toclients

N
_/

database

Depends
on

Gatabase manager\

Typical service group configuration (database application)

group

Main application
(database
management

Figure 5-4 represents two service groups: one consisting of the resources
required to run the database management system, and the other, the resources
that the application requires to interact with clients and make database
requests. The database management system service group has a group
dependency on the application group, because it requires the CVMCluster
resource in that group in order to make the volumes that contain the database
accessible throughout the cluster.

The database management system service group is structurally similar to the
group illustrated in Fragment 4-3 on page 91. The group’s application (the
database management system executable image) resource depends on the
CFSMount resource that represents the file system in which the database is
stored. The file system resource in turn depends on the CVMVolDg resource the
represents the disk group containing the volumes used by the file system for
storage.

CVM and CFS in the VCS framework | 111
The value of CVM as a CFS underpinning

The value of CVM as a CFS underpinning

CFS requires CVM volumes for its storage, even when physical storage is
provided by LUNSs presented by disk arrays that themselves stripe and mirror
data across disks. CVM guarantees CFS a consistent view of its underlying disks
and LUNSs at all times, including during volume state changes and cluster
reconfigurations. Moreover, as the preceding sections illustrate, CVM interacts
with CFS to enhance performance, robustness, and administrative simplicity.
Finally, with the ODM library included in all CFS product versions, CVM and CFS
integrate closely with Oracle database management systems to provide the I/O
performance of raw disks along with the robustness and administrative
convenience of files.

112 | CVM and CFS in the VCS framework
The value of CVM as a CFS underpinning

Inside CFS: disk layout and
space allocation

This chapter includes the following topics:

m UNIX file system disk layout

m The basic CFS disk layout

m Filesets

m CFS space allocation

m Cluster-specific aspects of the CFS data layout

Fundamentally, any UNIX file system'3 manages:

m A name space. The names of all data files in the file system and the data and
attributes associated with them

m A pool of storage space. A set of blocks of storage capacity located on one or
more disks. Blocks of storage are constantly being freed or allocated to hold
file data or metadata

Figure 6-1 represents the file system abstraction from a UNIX application and
user perspective. As the figure suggests, a file system provides applications with
the appearance of a dynamic hierarchical tree structure in which files and
directories are constantly being created, extended, truncated, and deleted. To do

this, the file system uses the much simpler “flat” block address spaces'* of disk-
like logical units (LUNSs) as persistent storage.

13.The term file systemis commonly used to refer to both (a) the body of software that
manages one of more block storage spaces and presents the file abstraction to clients,
and (b) a block storage space managed by such software and the files it contains. The
intended meaning is usually clear from the context.

114 | Inside CFS: disk layout and space allocation

Figure 6-1 The UNIX file system abstraction

Device 0 Block 000

Device 0 Block 001 .
[]
° I

[]
Device 0 Block NNN

File system

Device 1 Block 000

Device 1 Block 001 .
[]
° I

[]
Devicel Block NNN ®
[]
Vew presented to applications Physical implementation A::’t_“’""’
vices

At the enterprise data center level, a file system must be able to execute requests
from multiple client concurrently in order to provide acceptable performance.
Moreover, it must do this in such a way that each file appears to be:

m Isolated. Completely separate from other files so that clients perceive a file
independently of any other files in the file system

m Correct. Even when multiple clients are accessing, and even updating a file, it
appears to be a single ordered stream of bytes

Maintaining a correct mapping between a complex hierarchy of directories and
files and one or more flat disk block address spaces becomes even more
challenging in a cluster, where the clients manipulating files and directories
may be running on different cluster nodes.

A file system manages the pool of disk blocks assigned to it. At any time, some
blocks are allocated, holding file data or metadata, and the remainder are free,
available for allocation as needed. The file system must manage its storage
correctly and efficiently, even as competing applications request free space for
new and extended files and return space to the free pool by deleting files. Again,
in a cluster, delivering correct operation and adequate performance are even
more challenging, because cooperating file system instances running on
multiple nodes must be capable of executing concurrent application requests
against the file system. The reliability and high performance of CFS in complex
cluster environments stem primarily from two sources:

14. The address space of a logical unit is “flat” in the sense that each block in it is
addressed by a single unique number. The block numbers are sequential, starting
with 0.

http://www.symantec.com/yellowbooks
http://www.symantec.com/yellowbooks

Inside CFS: disk layout and space allocation | 115
UNIX file system disk layout

m Datalayout. CFS has an extremely flexible and robust on-disk layout for data
and metadata

m Transactions. CFS uses a distributed transaction architecture that allows all
cluster nodes on which a file system is mounted to perform transactional
metadata operations concurrently

Chapter 7 describes the CFS distributed transaction architecture. This chapter
provides the background for that material by describing how CFS lays out file
system metadata and data on the virtual disks it manages.

UNIX file system disk layout

All UNIX file system on-disk data layouts have a few common components:

m Starting point. A well-known address containing the superblock that serves
as a starting point for locating metadata structures

m Storage space descriptors. Persistent metadata that describes the state of
the storage space managed by the file system

m File and file system metadata. Persistent metadata, including both
structures that describe the file system itself, and structures that contain file
attributes and locations of the disk blocks that contain file data. In UNIX file
systems, the latter structures are usually referred to as inodes

m Directories. Correspondence tables that relate user-friendly file names to the
locations of the inodes that contain the files’ metadata and data locations

In addition, server-class file systems require persistent data structures, usually
in the form of Jogs or journals, that track the status of file system metadata
operations. If a server fails while file system metadata operations are in
progress, the on-disk representation of metadata may be inconsistent. These
structures make it possible to restore a file system’s structural integrity.

Each type of file system has rigidly defined rules for laying out data and
metadata on disk storage. Strict adherence to data layout rules is important
because it makes it possible to disconnect a disk containing a file system (data)
from one computer and connect it to another that is running the same type of
file system (code) supporting the same data layout, and read and write file data
correctly. Perhaps more importantly, if one upgrades or even changes an
operating system, as long as the new operating system runs a file system (code)
that supports the same on-disk data layout as the old one, data in old file
systems (data) can be read and written correctly.

Common features of UNIX file system on-disk data layout

Figure 6-2 is a simple representation of on-disk data layout that is typical of
UNIX file systems. A file system’s superblock, the starting point for locating

116

Inside CFS: disk layout and space allocation
UNIX file system disk layout

metadata structures, is found at a fixed location in the file system’s disk block
address space (for example, block 000 in Figure 6-2). In most file systems, the
superblock is replicated at one or more additional well-known locations so that
if the disk block containing the original superblock becomes unreadable, critical
file system data structures can still be located. A file system’s superblock
usually contains the disk block addresses of other key data structures, plus some
metadata items that pertain to the entire file system, such as mount status and
on-disk data layout version.

Figure 6-2 Typical UNIX file system disk layout!®
Disk blocks

1

Free blocks

000

Superblock

Disk spacemap

Inode list
Data area

Log

File A inode
Altributes
Data block pointer

Data block pointer

File system disk space management

One of a file system’s most important functions is to manage the constantly
changing states of the disk block address space of storage assigned to it. As
clients create, extend, truncate, and delete files, a file system is constantly
allocating blocks to files and freeing them for other use. A file system’s
superblock typically contains the location of a disk space map, in which the file
system records the current status of the disk blocks assigned to it.

Different file systems manage disk space in different ways. One common

mechanism is a bit map, in which the N' bit represents state of the Nt disk
block of the file system’s overall storage pool. For example, a bit value of ‘1’
might indicate that the corresponding block is available for allocation, while
value of ‘0’ would indicate that the block is allocated to a file. With this scheme,

15.Figure 6-2 is a simplified example to illustrate general principles. It is not intended to
represent any actual UNIX file system disk layout accurately.

Inside CFS: disk layout and space allocation | 117
UNIX file system disk layout

whenever the file system allocated disk blocks to a file, it would clear the
corresponding bits in the disk space map. Similarly, whenever it deallocated
blocks (for example, executing a client request to delete a file), it would set the
corresponding bits in the map.

In practice, file systems use more elaborate techniques to manage the disk space
assigned to them. However it is managed, a file system’s disk space map must be
persistent—its state must be preserved across file system shutdowns, power
failures, and system crashes, even if they occur while the map is being updated.
Moreover, access to the disk space map must be strictly serialized, so that, for
example, two concurrent file system execution threads do not allocate the same
block to different files.

Identifying and locating files

The superblock is also the starting point for locating the data structure that
identifies and locates files and directories in the file system. In UNIX file
systems, this structure is called the index node list, or i/ist, and individual files
are described by the index nodes, or inodes,) that make up the list. In most file
systems, all inodes are of a single fixed size, and are located via information in
the superblock.

At any point in time, each inode in the ilist is either allocated (in use describing a
file) or free (available to be used to describe a new file). As Figure 6-2 suggests,
each active inode contains:

m Metadata. Common information about the file, such as owner, creation time,
time of last update, access permissions for other users, and so forth

m File datalocation(s). One or more descriptors that identify the disk blocks
that hold the file’s data

The format of disk block descriptors differs from file system to file system. In
some, each descriptor represents a fixed number of contiguous disk blocks by
pointing to the first of them. Others, including CFS, use richer structures that
describe data extents, ranges of consecutively numbered file system blocks of
varying length. Variable-length extents make it possible to describe large files
very concisely, leading to more efficient space allocation and better application
I/0 performance.

Write caching and file system logs

UNIX file systems improve their performance by holding data and metadata
updated by clients in a volatile (non-persistent) main memory cache for some
time after signaling to clients that their updates have been completed. They
write updates to persistent disk storage either on application command (for
example, the POSIX fsync() API), or “lazily,” either as I/O resources become
available, at regular intervals, or a combination of the two. Write caching

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/index.jsp

118

Inside CFS: disk layout and space allocation
The basic CFS disk layout

improves application performance, because applications do not wait for disk
writes to complete before progressing. But there is an undesirable side effect: if
a system crashes before the file system persists a metadata update that the
application perceives as complete, and may therefore have acted upon, the
update is “lost”—not reflected anywhere in the file system when the system
restarts.

Some file systems, including CFS, adopt a compromise strategy to guard against
lost updates by persistently logging their intentto update data and metadata
before actually doing so. File system logs are typically small (proportional to the
number of operations likely to be in progress at a time rather than to the size of
the file system); and if stored on high-performance devices such as high-RPM or
solid-state disks, can be updated much faster than file data and metadata.
Typically, file system logs are stored in the file system’s own disk block address
space; their locations are found either directly or indirectly by referring to the
superblock.

File data storage

The majority of the storage capacity managed by a file system is used to hold file
data. UNIX file systems manage this storage in fixed-size blocks that are an
integer multiple of disk sector sizes. Blocks of storage in this part of the space
are constantly changing status from free space to being assigned to files and the
reverse. A file system’s single most important function is maintaining the
integrity and consistency of the data structures that describe the files it
contains.

The basic CFS disk layout

The CFS disk layout!® includes all of the major elements of file system metadata
described in the preceding section. It is unique, however, in one key respect:

All metadata structures in a CFS file system are stored in files.

The concept of organizing file system metadata as files is an extremely powerful
one, leading directly to much of CFS’s flexibility and extensibility. For example,
one way for an administrator to increase or decrease a CFS file system’s storage
space is to add CVM volumes to or remove them from its assigned storage
complement. This is possible because the volumes that a CFS file system
manages are described in a file, which is extended when a volume is added, and

16. The disk layout of CFS, and of the single-host VXFS file system on which it is based, has
undergone significant evolution since the file system was first shipped in 1992. This
section describes the current disk layout, some of whose features are not present in ear-
lier versions, particularly those that preceded disk layout version 4.

Inside CFS: disk layout and space allocation | 119
Filesets

contracted when one is removed.

Filesets

The metadata and data in a CFS file system are organized as filesets, that can be
regarded as “file systems within a file system.” The fileset concept allows
disjoint groups of files used by different entities to share the storage capacity of
a volume or VSET. At a minimum, each CFS file system contains two filesets:

m The structural fileset. Files that contain file system metadata. CFS does not
expose the structural fileset to administrators or users, although
administrators can examine and manipulate some of its contents indirectly

m The primary fileset. Files that contain user data and the metadata that
describes them. The primary fileset is the user’s view of a CFS file system

A CFS file system may contain additional filesets. Each Storage Checkpoint
(snapshot or clone) of a file system is represented by a fileset. Figure 6-3
illustrates the CFS fileset concept.

Figure 6-3 CFS filesets

File system block address space

Structural fileset
Superblock replicas ‘
Intent log ‘

Object Location Table Sy Superblock

Structural fileset inode list

Primary inode list
Extent allocation unit

'

Primary fileset

Allocation unit summal

User quotas

\4

| [. |
k h

I ! 1
h k
. 1% Additional filesets (storage checkpoints) %‘
)\ L

The CFS structural fileset

The starting point for navigation of a CFS file system is its superblock. The
superblock of a CFS file system consists of a single disk sector divided into read-
only and read-write areas. The read-only portion holds invariant information
defined when the file system is created. Because the superblock is so
fundamental to a file system’s structure, CFS replicates it multiple times during
the life of a file system so that if a main superblock becomes corrupted or

120

Inside CFS: disk layout and space allocation

Filesets

unreadable, the file system checking utility (fsck) can locate a replica and use it
during the course of restoring file system structural integrity.

One important item in the read-only area of superblock is a pointer to a
replicated structure called the Object Location Table (OLT). The OLT is the
master list of locations of structural files that contain CFS metadata. Some
structural files are instance-specific—each CFS instance has a private version of
the file. A per-node object location table (PNOLT) structural file has a record for
each node in the cluster that contains the locations of the node’s instance-
specific structural files. Per-node structural files and their advantages are
discussed on page 135.

CFS replicates the inodes of several especially critical structural file types. For
example:

m Inodelist!”. The primary fileset’s inode list

m Extent bitmaps. The storage space bit map files (one per device managed by
the file system)

m Intentlog. The file system instance’s intent log.

CFS stores replicated inodes in different disk sectors so that an unreadable disk
sector does not result in loss of critical file system structural data. During
updates, it keeps these files’ replicated inodes in synchronization with each
other.

Using files to hold metadata makes CFS flexible and space-efficient, and at the
same time enhances the performance of certain operations. For example, when a
conventional UNIX file system is created, it typically reserves an inode list
consisting of a sequential array of disk blocks whose size is proportional to the
file system’s size. Once reserved, the inode list’s size cannot be changed. This is
undesirable for two reasons:

m Inflexibility. It places a fixed limit on the number of files a file system may
contain

m Waste. If a file system contains only a few large files, most of the space
reserved for inodes is wasted

In contrast, the inode lists for both structural and primary filesets in a CFS file
system are themselves files. When an administrator creates a file system, CFS
initially allocates inode lists with default sizes. CFS automatically increases the
size of inode list files as necessary when adding files and extents to the file
system. Thus, the limit of one billion files in a CFS file system is based on the
maximum practical time for full file system checking (fsck), and not on the
amount of space assigned to it.

A CFS structural fileset contains about 20 types of files that hold various types

17.CFS structural file types are identified by acronymic names beginning with the letters
“IE.”

Inside CFS: disk layout and space allocation

Filesets

of metadata. Table 6-1 lists the subset of structural file types that relate to the
most user-visible aspects of a CFS file system, and the advantages of using
structural files for metadata as compared to more conventional file system

designs.

Table 6-1

CFS structural files (representative sample)

Structural
file type

Contents

Advantages over conventional file
system structures

Label file

Locations of OLT and
superblock replicas

OLT allows for flexible metadata
expansion

Replicated superblocks are resilient to
disk failure

Intent log
(replicated
inodes)

Circular log of file sys-
tem transactions in
progress

Enables administrator to control intent
log size as file system size or transaction
intensity increases

Device file
(replicated
inodes)

Identities and storage
tiers of file system vol-
umes

Makes it possible to add and remove stor-
age volumes

Enables Dynamic Storage Tiering
(Chapter 10 on page 171)

inode list
(replicated
inodes)

List of inodes that con-
tain metadata and on-
disk locations for user
files

Decouples the maximum number of files
in a file system from file system storage
capacity

Attributeinode
list (replicated
inodes)

List of inodes hold
hold extended file
attributes

Matches space occupied by extended attri-
bute inodes to actual number of extended
attributes in a file system

Conserves space occupied by extended
attributes

User quota

List of limits on users’
storage consumption

Minimizes storage space consumed by
quota structures
Enables cluster-wide quota enforcement

Structural files for space management

In addition to the structural files listed in Table 6-1, CFS uses three structural
files to manage allocation units, the structures it uses to manage the storage

space assigned to a file system. Table 6-2 lists the three structural files, all of
which have replicated metadata. Collectively, the three describe the state of a

121

122 | Inside CFS: disk layout and space allocation

CFS space allocation

file system’s allocation units and the file system blocks they contain.

Table 6-2

CFS structural files for managing free space

Structural
file type

Contents

Advantages over conventional file
system structures

Allocation unit
state
(IFEAU)

Overall allocation unit
state

Instantly determine whether an alloca-
tion unit is completely free, completely
allocated, or partially allocated

Allocation unit
summary
(IFAUS)

Number of extents of
various sizes available
in each allocation unit

Quickly determine whether an extent of a
given size can be allocated from a given
allocation unit

Extent map
(IFEMP)

Detailed map of avail-
able storage in each
allocation unit

Fast allocation of optimal size extents
(Usually referred to as “EMAP”)

Using structural files to hold space management metadata structures has two

main advantages:

m Compactness. CFS can describe very large contiguous block ranges allocated

to files very concisely (in principle, up to 2°° file system blocks with a single
extent descriptor)

m Locality. It localizes information about free space, thereby minimizing disk
seeking when CFS allocates space for new or extended files

CFS space allocation

Ideally, file system space allocation should be efficient in three dimensions:

m Computation. Allocating and freeing storage space should require the least
possible amount of computation and I/0

m Datastructures. The data structures used to track allocated and free space
should be robust and rapidly searchable

m Utilization. Available space should be allocated optimally, with minimal

fragmentation

CFS space allocation incorporates two concepts that make it particularly
efficient, both for file systems containing large numbers of files and file systems
that host a few very large files:

m Allocation units. The space occupied by a CFS file system is divided into a
number of allocation units, each containing 32,768 of file system blocks. The
Extent Map structural file represents the state of the file system blocks in
each allocation unit using a multi-level bitmap that makes searching fast and

Inside CFS: disk layout and space allocation | 123
CFS space allocation

efficient when CFS is allocating space for files. To further speed searching,
each allocation unit’s record in the Allocation Unit Summary structural file
lists the number of free extents of various sizes it contains. Finally, the
Extent Allocation Unit Summary file expresses the overall state of each
allocation unit (completely free, completely allocated, or partly allocated).

m Variable-size extents. The
addresses of file system blocks
allocated to files are contained
in extent descriptors stored in Smaller file system block sizes are
the files’ inodes. In principle, a | generally preferable for file systems

Administrative hint 16

single extent descriptor can that will contain smaller files. Larger
describe a range of as many as file system block sizes reduce the
256 consecutively located file number of extents required to map large

system blocks. Thus, as long as files.
contiguous free space is
available to a file system, even multi-gigabyte files can be represented very
compactly

File system blocks and extents

CFS treats the disk storage space Figure 6-4 CFS file system blocks and
on each volume assigned to it as a extents stack
consecutively numbered set of file
system blocks. Each file system
block consists of a fixed number of
consecutively numbered disk
sectors of 512 bytes. When
creating a file system, an
administrator specifies its file
system block size, which remains
fixed throughout the file system’s
life. CFS supports file system
block sizes of 1,024, 2,048, 4,096,
of 8,192 bytes (2, 4, 8, and 16 512
byte disk sectors respectively).

The file system block is the
smallest unit in which CFS
allocates disk space to files. Thus,
a one-byte file occupies one file system block of disk space. Smaller file system
block sizes are therefore generally more suitable for file systems that are
expected to contain smaller files because they “waste” less space (space
allocated to a file, but not containing file data). Conversely, larger file system
block sizes are more appropriate for file systems that are expected to contain
larger files because they describe large files more concisely.

Filesystem block O

File system block
Extent

5]
E
=
®
-~

Filesyst

File system block

[]
Disk sectors []
[]

v

CFS refers to a range of consecutively numbered file system blocks described by

124 | Inside CFS: disk layout and space allocation

CFS space allocation

a single descriptor as an extent. Space and file management data structures
describe the locations and sizes of extents of free and allocated storage space.

Allocation units

To manage free storage space efficiently, CFS organizes the space on each
volume assigned to a file system into a//ocation units. Each allocation unit

contains 32,768 consecutively numbered file system blocks.'® CFS tracks the
space on each device managed by a file system using three structural files listed
in Table 6-2 and represented in Figure 6-5. Because these structural files are
typically cached, allocating and freeing space is fast and efficient.

Figure 6-5 CFS free space management

File system block address space

Object LocationTable L el SuUperblock

II o900 |

1
1
[1 [1
1
Allocation unit 01 | Allocation unit 02 |

A 4

|

(2 bits/AuU)

—

Structu[al fileset

(8K bytes/AU) ‘ O
(32 bytes/au) Extent allocation unit v
Allocation unit summary I ;i ; ; 0 ;i
ALLD L 1 I) I !
) ‘1: Primary and other filesets El
AUNN L] | | | |

Extent Allocation Unit structural files

For each storage device that it manages, a CFS file system maintains an
Allocation Unit State structural file that indicates one of four states for each of
the device’s allocation units:

m Completely unallocated. All file system blocks in the allocation unit are free

m Completely allocated. The entire allocation unit is allocated to a single
extent

m Expanded. Blocks in the allocation unit have been allocated to multiple
extents (some blocks may be free)

18.1If the size of a volume assigned to a file system is not a multiple of 32,768 file system
blocks, its last (highest numbered) allocation unit contains fewer file system blocks.

Inside CFS: disk layout and space allocation | 125
CFS space allocation

m “Dirty”. The allocation unit has been subject to recent changes that may not
yet be reflected in the Allocation Unit Summary structural file (the Extent
Map file and its cached image are always accurate)

Thus for example, when attempting to allocate 32,768 file system blocks or more
in a single operation, CFS can determine immediately from Extent Allocation
Unit files which, if any, allocation units can be allocated in their entirety.

Allocation Unit Summary structural files

Allocation Unit Summary structural files give a more detailed picture of
allocation unit state. For each allocation unit on a device, this file includes a
record that indicates how many free extents of 1, 2, 4, 8,...16,384 file system
blocks the allocation unit contains. When allocating space, CFS attempts to use
an extent whose size is the smallest power of two larger than the required
amount (for example, 1,000 file system blocks can be allocated from a 1,024-
block free extent). Cached Allocation Unit Summary records allow CFS to
quickly determine whether an extent of a given size can be allocated from a
particular allocation unit.

When CFS allocates storage space, or frees space by deleting or truncating a file,
it marks the affected allocation unit’s state “dirty” in the Extent Allocation Unit
file. CFS disregards Allocation Unit Summary information for dirty allocation
units, and refers directly to extent maps. A background execution thread
updates Allocation Unit Summary files to reflect the actual number of free
extents of various sizes in each allocation unit.

Extent MAP structural files

Each Extent Map structural file contains a record corresponding to each
allocation unit on the device it represents. An allocation unit’s Extent Map
record contains a set of bit maps that enable CFS to quickly determine which
sequences of 1, 2, 4,...2,048 file system blocks within the allocation unit are free.
Extent maps allows CFS to quickly locate the largest available extent that can
contain the amount of space it is attempting to allocate.

Extent maps also make de-allocation of storage space fast and efficient. To free
an extent, CFS updates the Extent Map for its allocation unit. In addition, it
marks the allocation unit “dirty” in its Extent Allocation Unit file so that
subsequent allocations will ignore its Allocation Unit Summary records. A CFS
background thread eventually updates Allocation Unit Summary records for
“dirty” allocation units to reflect the correct number of free extents of each size.

Because CFS can extend the size of its space management metadata files as
necessary, it is easy to add storage to a CFS file system, either by increasing the
size of its volumes to add more allocation units or by assigning additional
volumes to it. Moreover, because a CFS file system’s volumes retain their
individual identities, it is possible to relocate files between storage tiers

126

Inside CFS: disk layout and space allocation

CFS space allocation

transparently, as described in Chapter 10 on page 171.

CFS storage allocation algorithms are “thin-friendly” in that they tend to favor
reuse of storage blocks over previously unused blocks when allocating storage
for new and appended files. With CFS, thin provisioning disk arrays that allocate
physical storage blocks to LUNs only when data is written to the blocks, need
not allocate additional storage capacity because previously allocated capacity
can be reused.

Inside CFS Extents

A set of consecutively numbered CFS file system blocks is called an extent.
Three pieces of information describe the range of file system blocks that make
up a CFS extent:

m Volume identifier. An index to the volume that contains the extent
m Starting location. The starting file system block number within the volume
m Size. The number of file system blocks in the extent

An extent may be free (not allocated to a file), or it may be allocated (part of a
file’s block address space). Free extents are identified by the structures listed in
Table 6-2 on page 122.

Using extents to describe file data locations

Extents allocated to files are described by extent descriptorsthat are either
located in or pointed to by the files’ inodes. CFS inodes for files in the primary
fileset are located in a structural file called an Inode List File. Figure 6-6
illustrates the structure of CFS inodes.

Figure 6-6 CFS primary fileset inode list

4

File system block address space

QObject LocationTable o Superblock

\‘1‘.‘ Allocation unit 01 | \‘w

A

Allocation unit 02 |

Pointto

inode

_

| Allocationunit N

L

Structural fileset

v

file system biocks <
in allocation units inode
) File type & size
) Owner, Group
¢| Pemmissions
efc.
Extent map
= Direct Extents
Indirect Indirect Extents
extent map
L || Extended
—{ Directextents |- atributes (ACL)

Primary inode list ‘
-

[1
L) 1

L' 1
Ir |

=

Eﬁ

[1

L 1
L} 1
L |

Primary and other filesets
| L I

[
[
L'}
I

Inside CFS: disk layout and space allocation
CFS space allocation

When it creates a file, CFS assigns
an inode to it. File system inodes

are 256 bytes in size by default.) o
An administrator can specify a CFS holds inodes for active files in a

512-byte inode size when creating | dedicated inode cache in main memory.

Administrative hint 17

a file system; this may be useful It computes the size of the cache based
for file systems in which a large on system memory size. The Veritas™
percentage of the files have non- File System Administrator’s Guide for
inherited access control lists. (If each supported platform describes how
two or more files inherit an ACL administrators can adjust a tunable to

from the directory in which they
reside, CFS links their inodes to a
single copy of the ACL contents,
which it stores in blocks allocated

force a larger or smaller inode cache
size. number of extents required to map
large files.

from an Attribute Inode List

structural file). Whichever inode size is selected at file system creation time,
inodes are numbered according to their positions in the inode list. A file in the
primary fileset is associated with the same inode number throughout its
lifetime. When a file is deleted, CFS marks its inode as available for reuse unless
it qualifies for aging (see page 221).

Each active inode contains a file’s attributes—file-related metadata items, some
defined by the POSIX standard, and others specific to CFS. These include the
file’s name, size, owner, access permissions, reserved space, and so forth. In
addition, an inode may contain extended attributes assigned by CFS. CFS stores
access control list (ACL) entries that specify individual users’ file access rights
as extended attributes. If a file’s ACL is too large to fit in its inode, CFS stores
additional entries in one or more inodes which it allocates from the Attribute
Inode List structural file (separate from the inode list), and links to the file’s
primary inode.

Finally, each file’s inode contains a block map (BMAP) that specifies the
locations of the file system blocks that contain the file’s data. Data locations are
specified by a series of extent descriptors, each of which describes a single range
of consecutively numbered file system blocks. CFS includes two types of extent
descriptors:

m Direct extent descriptor. Direct extent descriptors point directly to the
locations of file system blocks that contain file data

m Indirect extent map pointer. Indirect extent map pointers point to blocks of
storage that contain additional direct extent descriptors and, if required,
further indirect extent map pointers. CFS allocates space and creates an
indirect extent map when a file is extended and there is insufficient space for
more direct extent descriptors in its primary inode or in an already-existing
indirect extent map

Figure 6-7 illustrates the structure of CFS inodes containing both direct and
indirect extent descriptors.

127

128

Inside CFS: disk layout and space allocation
CFS space allocation

Figure 6-7 Structure of a CFS inode
Structural fileset | file 1 inode Descriptor type File system storage
= (direct)
File information Starting file block
— number |
o S i
Direct Extent file system block s
Lengt —_—
Py (file system blocks) :

Extended attribu
(ACL)

Descriptor type
_ (indirect) m
Ls file 2 inode o s J
File information descriptor !
Crmtotd [Mocstonunan |
Extent map ~
Indirect Extent *j LN
LA N]

Extended attribu
(ACL)

~_

When the number of extents allocated to a file exceeds the number of
descriptors that fit in an inode, CFS moves the file’s direct extent descriptors to
an indirect extent descriptor and uses the indirect descriptor structure for
further allocations.

File block addresses and file system block addresses

The space that CFS allocates to a file may consist of a single extent or of multiple
non-contiguous extents. Non-contiguous extents occur for two primary reasons:

m File system occupancy. When a file is pre-allocated or first written, the file
system may not have a single extent or contiguous group of extents large
enough to contain the entire file

m Appending. When data is appended to a file, or adjacent file blocks are added
to a sparse file, the space adjacent to the file’s original file system blocks may
no longer be available

Like all UNIX file systems, CFS represents each file to applications as a single
stream of consecutively numbered bytes. The bytes are stored in (possibly non-
contiguous) extents of file system blocks allocated to the file. Collectively, the
file system blocks allocated to a file constitute an ordered file block address
space.

In order to represent the file block address space, each extent allocated to a file
has one additional property: the starting file block number represented by the
starting file system block number of the extent’s location. CFS maintains the
correspondence, or mapping, between consecutively numbered file blocks and
extents of file system blocks. Figure 6-8 illustrates CFS file data mapping for a
file mapped entirely by direct extent descriptors.

Structural fileset

Inode list

Figure 6-8

inode

File information

Inside CFS: disk layout and space allocation

CFS file data mapping

First file block: 000

Volume: 01
Starting block: 1000

Length: 100

]

CFS space allocation

W

First file block: 200

Extent map
Direct Exten

Direct Exten
Direct Exten
Direct Exten

Extended attribuf
(ACL)

Volume: 01
Starting block: 4500 *]
Length: 100

i

Allocation unit 01

—

First file block:300
Volume: 02

Figure 6-8 represents a file whose data is stored in four non-contiguous extents

First file block: 350
Volume: 02

Starting block: 1500 e
Length: 50

Allocation unit 02

Allocation unit M

Starting block: 3600 '—‘
Length: 100

1

Allocation unit N

on two volumes of the file’s volume set, and in addition, which contains a Aole
(file block addresses 100-199) to which no storage is allocated. Table 6-3
summarizes the mapping of the 450 file blocks containing the file’s data to file

system blocks.

Table 6-3 Mapping file blocks to file system blocks
File blocks pomecentanige Starting file system block of extent

extent
0-99 Volume 01 File system block 1,000 of Volume 01
100-199 None No storage allocated (hole indicated by
first file block of second extent)

200-299 Volume 01 File system block 4,500
300-349 Volume 02 File system block 1,500
350-449 Volume 02 File system block 3,600

This simple example illustrates three key points about CFS file data mapping:

m Multi-volume storage. The extents that hold a file’s data can be located on
different CVM volumes. Collectively, the volumes assigned to a file system
are called its volume set (VSET)

129

130

Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

m Variable-size extents. File data extents can be of any size. (They are limited

only by the 2°° file system block maximum imposed by the size of the largest
extent descriptor length field)

m Unlimited number of extents. There is no limit to the number of extents in
which a file’s data is stored (although fewer extents results in better data
access performance). A CFS inode has space for up to ten extent descriptors
depending on its format. When these have been used, CFS allocates an 8
kilobyte block (or smaller, if no 8-kilobyte block is available) in which it
creates an indirect extent map, moves the file’s extent descriptors to it, and
links it to the file’s inode. Indirect extent map structures can be cascaded as
long as there is space in the file system

Cluster-specific aspects of the CFS data layout

CFS instances running on multiple cluster nodes execute multiple client
requests concurrently, some of which require modification of structural file
contents. Access to the data structures that CFS uses to manage a file system
must be strictly serialized, for example, so that file system blocks do not become
“lost” (neither free nor allocated to a file), or worse, allocated to two or more
files at the same time. If one CFS instance is updating a Free Extent Map record
because it is allocating or freeing file system blocks, other instances must not
access the map until it has been completely updated.

File system resource control

Computer systems typically use some sort of locking mechanism to serialize
access to resources. A program locks access to a resource by making a request to
a central authority called a lock manager that grants or withholds control
resource based on the state of other petitioners’ requests. For example, a file
system execution thread that is allocating space for a file must obtain exclusive
access to the data structures affected by the allocation so that other threads’
actions do not result in lost or multiply-allocated blocks. A lock manager denies
arequest for exclusive access if the data structures are already locked by other
threads, and grants it otherwise. Once a lock manager has granted exclusive
access to a resource, it denies all other requests until the grantee relinquishes
its exclusive access permission.

CFS resource management

Within a single computer, the ‘messages’ that flow between programs
requesting access to resources and a lock manager are API calls that typically
execute no more than a few hundred instructions. The CFS cluster environment
is more complicated, however, for two reasons:

Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

Distributed authority. There is no single locking authority, because such an
authority would be a ‘single point of failure,” whose failure would
incapacitate the cluster. Requests to access resources in a CFS file system can
originate with any CFS instance running on any node in the cluster and be
directed to any instance

Message latency. Within a single node, CFS lock manager overhead is
comparable to that of conventional lock managers. When messages must
flow between nodes, however, the time to request and grant a lock rises by
two or more orders of magnitude

CFS mitigates inter-node messaging frequency by implementing a few simple,
but effective rules for controlling file system resources that can be manipulated
by multiple instances at the same time:

Per-instance resources. Some file system resources, such as intent and file
change logs, are instance-specific; for these, CFS creates a separate instance
for each node in a cluster

Resource partitioning and
delegation. Some resources,
such as allocation unit maps,
are inherently partitionable.

Administrative hint 18

In clusters that host multiple CFS file

For these, the CFS primary systems, a best practice is to distribute
instance delegates control of file system mounting among nodes so

parts of the resource to that primary file system instances are

instances. For example, when distributed throughout the cluster.

an instance requires storage
space, CFS delegates control of an allocation unit to it. The delegation
remains with the instance until another instance requires control of it, for
example, to free previously allocated space

Local allocation. Each CFS instance attempts to allocate resources from
pools that it controls. An instance requests control of other instances’
resources only when it cannot satisfy its requirements from its own. For
example, CFS instances try to allocate storage from allocation units that have
been delegated to them. Only when an instance cannot satisfy a requirement
from allocation units it controls does it request delegation of additional
allocation units

Deferred updates. For some types of resources, such as quotas, CFS updates
master (cluster-wide) records when events in the file system require it or
when a file system is unmounted

For purposes of managing per-instance resources, the first CFS instance to
mount a file system becomes the file system’s primary instance. The primary
instance delegates control of partitionable resources to other instances.

131

132

Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

Instance-specific resources

Some CFS resources are inherently instance-specific. For example, CFS
transactions are designed so that each instance’s intent log is independent of
other instances’ intent logs for the same file system. If a cluster node running a
CFS instance fails, a cluster reconfiguration occurs, during which CFS freezes
file I/0. After reconfiguration, the primary CFS instance replays the failed
instance’s intent log to complete any file system transactions that were
unfinished at the time of the failure.

Similarly, each CFS instance maintains a separate file change log (FCL) for each
file system it mounts, in which it records information about file data and
metadata updates. CFS time-stamps all FCL records, and, for records from
different instances that refer to the same file system object, sequence numbers
them using a cluster-wide Lamport timestamp. Every few minutes, the primary
instance merges all instances’ private FCLs into a master FCL so that when
applications retrieve FCL records, records from different nodes that refer to the
same object are in the correct order.

Delegated resources

Access to other file system resources, for example allocation units and inodes, is
inherently required by all CFS instances because, for example, any instance can
create a file and allocate space to it. From a resource standpoint, this means:

m File creation. To create a file, a CFS instance must locate a free inode in the
ilist, mark it as allocated, and populate it with file metadata

m Space allocation. To allocate space to a file, a CFS instance must control one
or more allocation units, adjust the Free Extent Map(s) to indicate the
allocated space, and record the location(s) the allocated space in the file’s
inode

In both cases, the CFS instance performing the action must control access to the
affected metadata structures while it identifies free resources and allocates
them. If a required resource is controlled by another CFS instance, there is
necessarily at least one private network message exchange between the
requesting and controlling instances, for example a message requesting
allocation of space and a response indicating which space was allocated. Using
inter-node message exchanges to manage resources for which CFS instances
contend frequently limits performance in two ways:

m Bottlenecking. A node that manages resources that are frequently accessed
by instances on other nodes can become a performance bottleneck. Cluster
performance can become bounded by the speed with which one node can
respond to requests from several others

Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

m Latency. The /atency, or time required for a CFS instance to allocate a
resource controlled by another instance, necessarily includes the private
network “round trip time” for one or more message exchanges

CFS minimizes these limitations by delegating control of sub-pools of file
system resources that are both partitionable and likely to be manipulated by all
instances, among the instances.

The first CFS instance to mount a file system becomes its primary instance. A
file system’s primary instance controls the delegation of certain resources, chief
among them, allocation units for data and structural files (including the file
system’s inode list). The primary instance delegates control of these resources
to other CFS instances as they are required.

Thus, for example, when a CFS instance must allocate storage space to satisfy an
application request to append data to a file, it first searches the allocation units
that are delegated to it for a suitable extent. If it cannot allocate space from an
allocation unit it controls, it requests delegation of a suitable allocation unit
from the file system’s primary instance. The primary delegates an additional
allocation unit to the requester, retrieving it from another instance if necessary.
Once an allocation unit has been delegated to a CFS instance, it remains under
control of the instance until the primary instance withdraws its delegation.

Freeing storage space or inodes is slightly different, because specific file system
blocks or specific inodes must be freed. If the allocation unit containing the
space to be freed is delegated to the CFS instance freeing the space, the
operation is local to the instance. If, however, CFS instance A wishes to free
space in an allocation unit delegated to instance B, instance A requests that the
primary instance delegate the allocation unit containing the space to it. The
primary instance withdraws delegation of the allocation unit from instance B
and delegates it to instance A, which manipulates structural file records to free
the space. Delegation remains with instance A thereafter. The change in
delegation is necessary because freeing space requires both an inode update (to
indicate that the extent descriptors that map the space are no longer in use) and
an update to the structural files that describe the state of the allocation unit.
Both of these must be part of the same transaction, represented by the same
intent log entry; therefore both must be performed by the same CFS instance.

A CFS file system’s primary instance maintains an in-memory table of allocation
unit delegations. Other instances are aware only that they do or do not control
given allocation units. If the node hosting a file system’s primary CFS instance
fails, the new primary instance selected during cluster reconfiguration polls
other instances to ascertain their allocation unit delegations, and uses their
responses to build a new delegation table.

Because a CFS file system’s primary instance is a focal point for delegated
resources, a best practice in clusters that support multiple file systems is to
distribute file system primary instances among the cluster’s nodes using either
the fsclustadm setprimary command (to change the primary node while the file
system is mounted) or the cfsmntadm setprimary command (to change the

133

134

Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

primary node permanently). This enhances operations in two ways:

m Load balancing. Resource delegation-related traffic is distributed among the
cluster’s nodes

m Limited impact of failure. If a cluster node fails, only file systems for which
the failed node’s CFS instance was the primary instance require re-delegation

Asynchronously updated resources

The third type of per-instance resource that CFS controls is that whose per-
instance control structures can be updated asynchronously with the events that
change their states. Structural files that describe resources in this category
include:

m User quota files. During operation, the CFS instance that controls the master
quota file delegates the right to allocate quota-controlled space to other
instances on request. Each CFS instance uses its own quota file to record
changes in space consumption as it allocates and frees space. The primary
CFS instance reconciles per-instance quota file contents with the master each
time a file system is mounted or unmounted, each time quota enforcement is
enabled or disabled, and whenever the instance that owns the master quota
file cannot delegate quota-controlled space without exceeding the user or
group quota. Immediately after reconciliation, all per-instance quota file
records contain zeros

m Current usage tables. These files track the space occupied by filesets. As it
does with quota files, CFS reconciles them when a file system is mounted or
unmounted. When an instance increases or decreases the amount of storage
used by a fileset, it adjusts its own current usage table to reflect the increase
or decrease in space used by the fileset and triggers background
reconciliation of the current usage table files with the master

m Link count tables. CFS instances use these files to record changes in the
number of file inodes linked to an extended attribute inode. Each time an
instance creates or removes a link, it increments or decrements the extended
attribute inode’s link count in its link count table. A file system’s primary
instance reconciles per-instance link count table contents with the master
file whenever the file system is mounted or unmounted, when a snapshot is
created, and in addition, periodically (approximately every second). When
reconciliation results in an attribute inode having zero links, CFS marks it for
removal. Immediately after reconciliation, all per-instance link count tables
contain zeros

Administrators can query CFS for information about current space usage
against quotas, as well as usage of clone space. In the course of responding to
these queries, CFS reconciles the per-node structural files that contain the
requested information.

Reconciling per-node resource control structures removes the compute, I/0, and

Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

message passing time from client response latency, while at the same time

maintaining a cluster-wide view of file system resource consumption that is as
timely as it needs to be for correct operation.

Per-instance resource management data structure layout

CFS organizes per-instance file system metadata as collections of files in a file
system’s structural fileset. As nodes are added to a cluster and shared file
systems are mounted on them for the first time, CFS creates the required per-
instance structural files. Figure 6-9 is a slightly more detailed representation of
the file system structural overview presented in Figure 6-3 on page 119,
illustrating the Per-Node Object Location Table (PNOLT) structural file that
contains an object location table for each CFS instance’s per-node structural
files. Each of these object location tables contains pointers to per-node
structural files for the CFS instance it represents.

Figure 6-9 CFS per-instance structural files

File system block address space

Object Location Table sy Superblock

III o0 |

1
[1
1
Allocation unit 01 |

%

Allocation unit 02 | | Allocationunit N

Structural fileset

Node N structural files |‘

Node 1 structural files
'Y v
Y L]

[1
L} 1
L}

[
L)

1 L}

L} 1 L)

Per-node I : |
object Ioca;ion table 1 .

. ° E Primary and other filesets 3
L | |

135

136 | Inside CFS: disk layout and space allocation
Cluster-specific aspects of the CFS data layout

Inside CFS: transactions

This chapter includes the following topics:

m Transactions in information technology

m Protecting file system metadata integrity against system crashes
m CFS transactional principles

m CFS transaction flow

m CFS transactions and user data

m CFSintent logs

m “Crash-proofing” CFS intent logs

An important reason for CFS’s high level of file system integrity is its
transactional nature. CFS groups all operations that affect a file system’s
structural integrity, both those resulting from client requests and those
required for its own internal “housekeeping,” into transactionsthat are
guaranteed to leave file system metadata intact, and file system structure
recoverable if a failure occurs in the midst of execution. Before executing a
transaction, a CFS instance /ogsits intent to do so in its intent log structural file
by recording the metadata changes that make up the transaction in their
entirety.

A cluster node may crash with one or more CFS transactions partially complete,
causing a cluster reconfiguration. If the failed node had been host to a file
system’s primary CFS instance, another instance assumes the primary role. The
new primary instance recovers from the failure by replaying the failed
instance’s intent log, completing any outstanding transactions.

138 | Inside CFS: transactions

Transactions in information technology

Transactions in information technology

In digital information technology, the term “ transaction”describes any set of
operations that must be performed either in its entirety or not at all. Computer
system transactions are sometimes described as having ACID properties,
meaning that they are:

m Atomic. All operations in a transaction execute to completion, or the net
effect is that none of them execute at all

m Consistent. Data on which a transaction operates is consistent after the
transaction executes, whether execution is successful (committed) or
unsuccessful (aborted)

m Isolated. The only system states that are observable from outside the
transaction’s context are the before and after states; intermediate stages in
its execution are not visible

m Durable. Once completion of a transaction has been signaled to its initiator,
the results persist, even if, for example, the system executing it fails
immediately afterwards

The transaction metaphor is apt. In business, a seller delivers something of
value (goods or services) as does the buyer (money). Unless both deliveries
occur, the transaction is incomplete (and the consequences are undesirable).

The same is true for a file system. For example, removing file system blocks
from the free space pool and linking them to a file’s inode must be performed as
a transaction. If both operations complete, the transaction is satisfied and the
file system’s structure is intact. If blocks are removed from the free pool, but not
linked to a file, they are effectively “lost” (an undesirable consequence). If they
are not successfully removed from the free space pool, but arelinked to a file,
they may later be removed again, and doubly allocated to another file (a really
undesirable consequence).

Ideally, all transactions would complete—sellers would deliver products or
services, and buyers would pay for and be satisfied with them. But the
unanticipated happens. Goods are out of stock. Shipments are lost. Services are
unsatisfactory. In such cases, the outcome is not ideal, but can be satisfactory as
long as the transaction can be recovered (completed, as for example, goods
restocked and delivered, lost shipments found, or unsatisfactory services
performed again correctly) from the event that disturbed it.

Inside CFS: transactions

Protecting file system metadata integrity against system crashes

Again, the same is true of file
systems. If a transaction cannot
be completed, for example
because the computer crashes
while executing it, the only
acceptable outcome is to complete

Administrative hint 19

To improve performance, an
administrator can delay the logging of
metadata updates briefly by mounting a

139

it eventually. For example, if file
system blocks are removed from a
file system’s free space pool but
the computer crashes before they
have been linked to a file, the
blocks should not be lost. When
the computer restarts, the file
system should “remember” that
the blocks were removed from the
free space pool, and link them to the file.

file system in delaylog mode. The
delaylog mode is the default CFS
mounting mode. To force immediate
logging of every metadata update as
described in this section, an
administrator specifies the log option
when mounting a file system.

As the example suggests, the most frequent cause of file system transaction
failure to complete (and the greatest challenge to file system designers) is a
crash of the computer that hosts the file system at an instant when one or more
transactions are partially complete.

Protecting file system metadata integrity against
system crashes

File system transactions are essentially sequences of I/O operations that modify
structural metadata. File systems must protect against the possible
consequences of system crashes that occur during these sequences of
operations. They do this in a variety of ways. One of the most common, which is
used by CFS, is to maintain a persistent journalor log, that records the file
system’s intent to perform the operations that make up a transaction before it
executes them.

CFS logs are aptly called intent logs, since they record CFS instances’ intentions
to execute transactions. A CFS instance records a log entry that describes an
entire transaction before executing any of the metadata updates that make up
the transaction.

Each CFS instance maintains an independent intent log in a structural file for
each file system that it mounts. A file system’s primary CFS instance allocates
an intent log file when it mounts the file system for the first time. CFS
determines the size of this intent log based on file system size. As other nodes
mount the file system for the first time, CFS creates intent logs for them, with a
size equal to that of the current size of the primary instance’s log.

Administrators can adjust the sizes of individual intent logs in the range of 16-
256 megabytes. When an intent log fills with uncompleted transactions, file

140

Inside CFS: transactions

CFS transactional principles

system operations stall until some transactions complete and log space can be
freed. For this reason, larger intent logs are recommended for cluster nodes in
which metadata activity (file creations, appends, renames, moves, and deletions)
is frequent; nodes whose predominant file I/O activity is reading existing files
can usually make do with smaller logs.

CFS transactional principles

CFS performs all operations that alter a file system’s structural metadata as
transactions. The design of its data structures and algorithms follows three
principles that facilitate the structuring of file system updates as transactions,
and make CFS file systems particularly resilient to the complex failure scenarios
that can occur in clusters:

m Resource control. CFS instances only execute transactions that affect
resources that they control. They gain control of resources either by locking
them, as with file inodes, or by delegation from the primary instance, as with
allocation units. This principle makes CFS instances’ intent logs independent
of each other, which in turn makes it possible to recover from the failure of
an instance solely by replaying its intent log

For each type of transaction, a CFS instance either requests control of the
required resources from other instances, or requests that the instance that
controls the required resources execute the transaction on its behalf.

For example, the first time a CFS instance writes data to a newly-created file,
it locks the file’s inode and executes the transaction itself. Later, if another
instance appends data to the file, it may request that the instance controlling
the file’s inode perform the append on its behalf.

CFS instances gain control of some resources, such as inodes, by means of
GLM APIs (Global Lock Manager, discussed in Chapter 8 on page 147); others,
such as allocation units, they control by requesting delegation from the pri-
mary instance as described on page 133

m Idempotency. CFS metadata structures are designed so that every operation
that can be part of a file system transaction is idempotent, meaning that the
result is the same if it is executed twice (or more). This principle allows CFS to
recover after a node crash by re-executing in their entirety all transactions in
the failed cluster node’s intent log that are not marked as complete, even
though some of the operations within them may have been executed prior to
the crash

m Robust log format. Storage devices generally do not guarantee to complete
multi-sector write operations that are in progress when a power failure
occurs. CFS therefore identifies every intent log sector it writes with a
monotonically increasing sector sequence number. During recovery, it uses
the sequence number to identify the newest transaction in the intent log file.
In addition, every transaction record includes both a transaction sequence

Inside CFS: transactions
CFS transaction flow

number and information that describes the totality of the transaction. During
recovery, CFS uses this information to replay transactions in proper
sequence and to avoid replaying partially recorded transactions

CFS transaction flow

CFS transactions are logged and executed in an order that guarantees file
system metadata recoverability if a crash occurs during transaction execution.
Unless explicitly specified by the file system’s mount mode, or in an
application’s I/O request, completion of a CFS transaction does not imply that
application data has been written persistently. For example, when an
application requests that data be appended to a file, the typical sequence of CFS

operations is:

1

2)

3)

4)

5)

6)

.19

Resource reservation. The CFS instance identifies free space in an alloca-
tion unit delegated to it (or if necessary, requests delegation of an additional
allocation unit from the primary instance). In addition, it locks access to the
file’s inode to prevent other instances from executing transactions that
involve it

Block allocation. The CFS instance identifies the required number of free
file system blocks from allocation units delegated to it and updates in-mem-
ory allocation unit metadata to indicate that the blocks are no longer free,
preserving enough information to undo the operation if necessary

Block assignment. The CFS instance updates the cached image of the file’s
inode by linking the newly-allocated blocks to an extent descriptor, again
preserving enough information to restore the inode’s prior state if the trans-
action must be undone. (The file’s time of last modification are updated in
the cached inode image as well.) If no suitable extent descriptor is available,
the instance allocates an indirect extent map for this purpose and links it to
the inode

Intent log write. The CFS instance constructs an intent log record, assigns a
transaction number, and records the metadata update operations that make
up the transaction in its intent log. At this point, the transaction is said to be
committed, and can no longer be undone

CFS transaction completion. Once its record has been recorded in the intent
log, the CFS transaction is complete. At this point, neither the metadata
updates that make up the transaction nor the user data is guaranteed to
have been written persistently

Data movement. The CFS instance allocates pages from the operating sys-
tem page cache and copies the appended data from the application’s buffer

19. This simplified description represents CFS operation when the log mount option is in

effect and when the application I/0 request does not specify that data be written
directly from its buffer. Direct I/O, the delaylog (default) and tmplog mount options,
and the sync and dsync write options result in slightly different behavior.

141

142

Inside CFS: transactions

CFS transactions and user data

into them. Once this is done, the application may reuse its buffer for other
purposes

7) Completion signal and data flush. Once the CFS instance has transferred
the application’s data to page buffers, further behavior depends on whether
the application request specified that data was to be written synchronously.
If it did, the instance schedules the data to be written to disk and waits for
the write to complete before signaling request completion to the application.
If synchronous writing was not specified, the instance signals completion
immediately, and writes the application data “lazily” at a later time

8) Metadata update completion. When the metadata updates that make up
the transaction have been written to disk, the CFS instance writes a “trans-
action done” record containing the transaction’s sequence number in the
intent log. It uses this record during recovery to help determine which trans-
action log records need to be replayed

The cluster node hosting a CFS instance may crash at any point in this sequence
of operations. If a crash occurs prior to step 4 of this procedure, there is no
transaction, because nothing has been written in the intent log, nor have any
persistent metadata structures or user data been modified. If a crash occurs at
any time between steps 4 and 7, CFS recovers by reading the transaction record
from the intent log and repeating the operations it contains.

If the application specified a synchronous append, and had received notification
that its request was complete before the crash, the appended data is on disk.
Otherwise, CFS blocks applications from reading the contents of the newly
allocated blocks until they have been successfully written by an application.

If crash occurs after step 8, the entire transaction is reflected in the file system’s
on-disk metadata. If metadata updates from prior transactions had not been
written to disk at the time of the crash, the transaction must still be replayed
during recovery, because restoring a CFS file system to a consistent state after a
crash requires that transactions be replayed in the order of their original
occurrence.

CFS transactions and user data

CFS transactions are designed to preserve the structure of a file system; in
essence to maintain the correctness of file system metadata. Completion of a
CFS transaction does not necessarily guarantee that when CFS signals an
application that its write request is complete, metadata and file data updates
have been written to disk. Moreover, the default file system mount option for
logging permits CFS to delay logging for a few seconds in order to coalesce
multiple intent log writes.

Administrators and application programs can employ a combination of CFS
mount options and POSIX caching advisories to specify file data and metadata
persistence guarantees. Table 7-1 summarizes the effect of the CFS delaylog and

Inside CFS: transactions
CFS transactions and user data

log mount options and the POSIX O_SYNC and O_DSYNC caching advisories on
data and metadata persistence.

Table 7-1 CFS Intent log, metadata, and data persistence at the time of
request completion
If the mount
option is >
...and the file delaylog (qefault) or tmplog log mount option
. mount option
cache advisory
option is |
Asynchronous Log record: may still be in Log record: on disk
(default) cache Metadata: may still be in
Metadata: may still be in cache | cache
File data: may still be in cache | Filedata: may still be in cache
O_SYNC Log record: on disk Log record: on disk
Metadata: on disk Metadata: on disk
File data: on disk File data: on disk
O_DSYNC Log record: on disk Log record: on disk
Metadata: may still be in cache | Metadata: on disk
(non-critical metadata only) File data: on disk
File data: written to disk

By default, CFS caches both file data and metadata and intent log records to
optimize performance, and writes them to disk “lazily,” after it has signaled
write completion to applications. It flushes metadata updates to its intent log
every few seconds, but in general, if default mount and write options are in

effect, file data, metadata, and the intent log record that describes the write may
still be in cache when an application receives notification that its write request
is complete.

This behavior allows CFS to
schedule disk writes optimally,
and is suitable for many
applications. For some, however,
guaranteeing that intent log
records have been written and
that on-disk metadata and/or file
data are up to date have higher
priority than file I/O
performance. If for whatever
reason, application code cannot
be modified, for example, by adding fsync() calls at critical points, an
administrator can guarantee that log records are persistent before applications
progress specifying the log option when mounting a file system.

Administrative hint 20

An administrator can specify the mount
option convosync=delay to override
application programs O_SYNC and
O_DSYNC cache advisories. This may
improve performance, but at the risk of
data loss in the event of a system crash.

143

144

Inside CFS: transactions
CFS intent logs

Some applications make synchronous file I/O requests. For those that do not, if
source code is available for modification, the POSIX file control function can be
inserted to set the write mode for critical files to either:

m Synchronous (O_SYNC). With this option, both metadata and file data disk
writes are complete when CFS signals completion of the application request

m Data synchronous (O_DSYNC). With this option, file data disk writes are
complete, but metadata may still be in cache when CFS signals completion of
the application request

Applications can use either or both of these options selectively to ensure that
updates to critical files are written synchronously, and allow less critical
updates that can be recovered at application level to be written asynchronously
for improved application performance.

Alternatively, applications can use explicit POSIX fdatasync() or fsync() system
calls to cause CFS to flush file data only or both file data and metadata to disk at
key points during execution. When a CFS instance signals completion of
fdatasync() and fsync() system calls, all file and/or metadata has been written to
disk.

CFS intent logs

Each CFS file system contains an intent log structural file for each instance that
mounts it. Intent logs are contiguous, and are written circularly—a CFS instance
records transactions sequentially until the end of the log is reached, and then
continues recording from the beginning. When a file system’s I/0 load includes
frequent metadata updates, an intent log may fill. Continued recording would
overwrite transaction records for which some metadata updates were not yet
written to disk. When this occurs, CFS delays further recording (and
consequently, delays signaling completion to applications) until sufficient
intent log space has been ‘freed’ by writing older transaction records to disk.

Inside CFS: transactions
CFS intent logs

Figure 7-1 CFS intent log structure
wraparound
transaction record
N
Ve ~ fill direction —

o | (o] [=
(=) [=] (=] =
c|lo| o c
o | = U U o oo o o o o] o o o] o] | =
Ll2(Clese (22| Cleee|2|2(eee|(L2|2|2(2(efL|2|2/2|L(L|2
L&) (&) (& L&) (&) (& (& o [(& (] [(& (& (& L&) (& (& L&) (&)
W o [1] W o [1] [T} L1 L1} [T} L1 L1} [T} [T} [1] o [T} [1] W o
FA -2 IR - -4 21 3 - - - - - I - - - - - S 4
4 4 =4 4 4 =4 =4 B4 i = =4 =4 i = - =4 =4 4 =4 =4 4 4
) e) v v e v | WMl w v v w|w|wv|w W B vl w
o|lo|lo o|lolo sy = o|la|lo|lo|lo|la|a|la|a|la|la|ld

Sector Sequence no.

Transaction sequenceno.

sector xofy

for this transaction record

Operation

elc.

If the performance of an update-
intensive application becomes
sluggish, an administrator can
increase the size of the intent log
to enable more transaction
records to be buffered. Different
CFS instances’ intent logs may be
of different sizes. For example, if
an application on one node is
adding files to a file system
frequently (transaction-intensive)
and another is reading the files to
report on their contents (largely
non-transactional), an
administrator might increase the

Administrative hint 21

An administrator uses the logsize
option of the fsadm console command
to alter the size of a CFS instance’s
intent log. Larger intent logs take longer
to replay, and can therefore elongate
crash recovery times.

The logvol option of the fsadm
command can be used to place the
intent log on a specific volume in the
file system’s VSET.

intent log size for the former instance and leave the latter at its default value.

CFS intent logs are contiguous, that is, they occupy consecutively numbered file
system blocks, so with rare exceptions, each write to an intent log results in a
single disk write. This minimizes the impact of intent log writes on application
performance. In multi-volume file systems, administrators can place intent logs
on separate volumes from user data; by reducing seeking, this further minimizes
the impact of intent log writes on application I/O performance. Flash-based
solid state disks might seem a good choice for intent log volumes, but because
the number of writes they can sustain before wearing out is limited, the high
write frequency of intent logs may make them less than optimal for this

purpose.

145

146

Inside CFS: transactions

“Crash-proofing” CFS intent logs

“Crash-proofing” CFS intent logs

The basic purpose of CFS intent logs is to enable rapid recovery from crashes, so
intent logs themselves must be “crash-proof.” In particular, during recovery,
CFS must be able to identify unambiguously:

m Logboundaries. The logical beginning and end of a circular intent log

m Transaction status. For each logged transaction, whether the transaction is
“done” (that is, whether all metadata updates have been written to persistent
disk storage)

m Transaction content. The complete set of metadata operations that make up
each logged transaction

m Transaction order. The order in which logged transactions were originally
executed

These must all be unambiguously identifiable from an intent log, no matter what
was occurring at the instant of a crash. Four structural features of CFS intent
logs make this possible:

m Disk sector sequence. Each sector of a CFS intent log includes a
monotonically increasing sector sequence number. Sector sequence numbers
enable CFS recovery to determine the most recently written intent log sector,
even if a system crash results in a disk write failure

m Transaction sequence. Each logged transaction includes a monotonically
increasing transaction sequence number. These numbers enable CFS
recovery to replay transactions in order of their original execution

m Transaction content. Each intent log disk sector contains information about
only one transaction. Information in each sector of a transaction record
enables CFS recovery to determine whether the log contains the complete
transaction record, or was truncated, for example because it was being
written at the instant of the crash. CFS does not recover incompletely logged
transactions

m Transaction state. When a transaction’s metadata updates have been
completely written to disk, CFS writes a “transaction done” intent log entry
signifying that the transaction’s metadata updates are persistent. CFS
recovery uses these records to identify the oldest logged transaction whose
metadata updates may not be completely persistent. During recovery, it
replays that and all newer transaction records

Thus, as long as the volume containing an intent log structural file survives a
system crash intact, CFS recovery can interpret the log’s contents and
reconstruct transactions that may have been “in flight” at the time of the crash.
Replaying the idempotent operations that make up these transactions
guarantees the structural integrity of the recovered file system.

Inside CFS: the Global Lock
Manager (GLM)

This chapter includes the following topics:

m General requirements for a lock manager
m GLM architecture
m GLM operation

Any modern file system must coordinate multiple applications’ concurrent
attempts to access key resources, in order to prevent the applications, or indeed,
the file system itself, from corrupting data or delivering incorrect responses to
application requests. For example, if Application A writes data to multiple file
blocks with a single request and Application B reads the same file blocks with a
single request at around the same time, Application B may retrieve either the
pre-write or post-write contents of the blocks, but should not ever see part of the
data written by Application A and part of the blocks’ prior contents.

Correct behavior in the presence of multiple applications is particularly
important for CFS, which is highly likely to be employed in environments in
which multiple applications are active on multiple cluster nodes. All CFS
instances on all cluster nodes must respect file system resources that are locked
to prevent concurrent access.

Like most file systems, CFS uses “Jocks”—in-memory data structures—to
coordinate access to resources. A lock indicates that a resource is in use by a file
system execution thread, and places restrictions on whether or how other
threads may use it. CFS locks must be visible and respected throughout the
cluster. The CFS component that manages resource locking across a cluster is
called the Global Lock Manager (GLM).

148

Inside CFS: the Global Lock Manager (GLM)
General requirements for a lock manager

General requirements for a lock manager

Thread 1

Thread 2

Controlling access to file system resources is simple to describe, but complex to
implement. Within CFS, for example, execution threads must observe a protocol
when they contend for shared or exclusive access to a file system’s resources.
The protocol is a “gentlemen’s agreement” among trusted entities, in the sense
that it is not enforced by an external agency. If all CFS threads do not strictly
adhere to the protocol, orderly control over resources breaks down.

The basic requirements for any file system locking protocol are:

m Unambiguous resource identification. The resources to be controlled must
have unique names. To control access to a directory, a file’s inode, or a range
of byte addresses within a file, a file system must be able to identify the
resources uniquely

m Deadlock prevention. Deadlocks occur when two or more execution threads
wait indefinitely for events that will never happen. One simple form of
deadlock, illustrated in Figure 8-1, occurs when a thread (Thread 1) controls
one resource (Resource A) and attempts to gain control of a second resource
(Resource B), which another thread (Thread 2) already controls. Meanwhile,
Thread 2 is attempting to gain control of Resource A. The result is that both
threads wait indefinitely. Several solutions to the deadlock problem are
known; a lock management protocol must adopt one of them

Figure 8-1 Classic deadlock scenario
wait Lock cannot be granted, so
thread waits indefinitely
A
B, Lock cannot be granted, so
.wait ...

thread waits indefinitely

time —»

m Range locking. In some cases, for example updating file metadata, blocking
access to the entire file by locking its inode is appropriate. In others,
particularly those in which many application threads update small amounts
of data within large files, locking entire files would serialize application
execution to an intolerable degree. Lock managers should include
mechanisms for locking a range of bytes within a file rather than the entire
file

Inside CFS: the Global Lock Manager (GLM) | 149
GLM architecture

m Locking levels. In some cases, as for example when it is updating inode
metadata, a thread requires exclusive access to a resource. In others,
however, exclusive access is unnecessarily restrictive and the serialization it
causes can impact performance adversely. For example, a CFS execution
thread that is listing directory contents can share access to directories with
other threads as long as the directories’ contents do not change. Thus, lock
managers must generally include both exclusive and shared locking
capabilities or /evels

Cluster lock manager requirements

GLM must present the same view of lock state to all of a cluster’s CFS instances
at all times. Whenever a CFS execution thread gains or relinquishes control of a
resource, its action must be reflected in all CFS instances’ subsequent attempts
to gain or relinquish control of that and other related resources. This inherently
requires that GLM instances communicate some amount of state change
information with each other. Thus, in addition to the basic requirements for any
lock manager, CFS has three additional ones:

m Message overhead sensitivity. In single-host file systems, resource locking
imposes relatively little overhead because lock request “messages” amount to
at most a few hundred processor instructions. In a cluster, however, a
message exchange between nodes can take hundreds of microseconds.
Minimizing a lock management protocol’s inter-node message overhead is
therefore an important requirement

m Recoverability. A key part of the CFS value proposition is resiliency—
continued accessibility to file data when, for example, a cluster node fails.
From a resource locking point of view, if a node fails, CFS instances on other
nodes must dispose of the failed instance’s locks appropriately, and adjust
the cluster-wide view of resource lock state so that applications can continue
to access file systems with no loss of data or file system structural integrity

m Load balancing. Ideally, the messaging, processing, and memory burden of
managing locks should be distributed across a cluster, partly so that ability to
manage locks scales along with other file system properties, but also to
facilitate recovery from node failure by minimizing the complexity of lock
recovery

GLM architecture

The Global Lock Manager (GLM) cooperates with other CFS components to
present a consistent view of the lock state throughout a cluster, even when
member nodes are added or removed. Figure 8-2 illustrates the overall GLM
architecture. As the figure suggests, the GLM service is distributed—an instance
runs on each cluster node. Collectively, the instances provide a distributed

150

Inside CFS: the Global Lock Manager (GLM)

GLM architecture

Locks held by this
node

Locks d

masterlocking service—each cluster node is responsible for masteringlocks for
a unique part of the system’s Jock name space (the set of all possible lockable
resource names).

Figure 8-2 Global Lock Manager (GLM) architecture

Software stack

CFS instance

GLM instance

!
[Py 1= o
> [Master]
Coey

K i
[—pﬁ (A
Master > -

bythis node

» [Loron ey

Lock -
™ [Master]

e

As Figure 8-2 suggests, each GLM instance has two executable components:

m Master. An instance’s master component manages an in-memory database of
existing locks for which the instance is the master. A GLM master component
grantslocks to its own proxy component and to other nodes that request
control over resources for which it is responsible

m Proxy. When a CFS execution thread first requests control of a resource, GLM
forwards the request to the resource’s master. In return it receives a
delegation that allows it to act as the master’s proxy, and grant locks of equal
or less-restrictive level to other threads

The GLM name space and distributed lock mastering

When a CFS execution thread requests a lock on a resource, GLM computes the
resource’s 32-byte Jock name using an algorithm guaranteed to produce a
unique name for each possible file system resource. It hashes the resulting lock
name to produce an index into a table of node ID numbers. The node ID in the
indexed table cell designates the GLM master for the resource.

Inputs
Resource name

Requesting node
GAB generation
Cluster makeup
Lock type

Hash table
Node ID
Node ID
Node ID
—
Node ID

Inside CFS: the Global Lock Manager (GLM)
GLM architecture

Figure 8-3 Determining the master node for a GLM lock

When it begins to execute, GLM builds a lock name hash table based on cluster
membership. The table is typically between 100 and 1,000 times larger than the
number of nodes in a cluster, so each node ID appears multiple times in the
table.

The GLM locking hierarchy

Cluster-wide resource locking inherently requires that messages be passed
among nodes, increasing /atency, or time required to grant and release locks.
One objective of any distributed lock manager design must therefore be to
minimize the number of messages passed among nodes. In furtherance of this
objective, GLM uses a two-level locking hierarchy consisting of:

m Node grants. When a CFS execution thread requests a shared or exclusive
lock on a resource, its local GLM instance requests that the resource’s master
issue a node grant for the resource. If there no conflicts, the GLM master
issues the node grant, making the requesting node’s GLM instance a proxy
for the resource. The proxy is empowered to grant non-conflicting locks to
CFS execution threads on its node

m Thread grants. A GLM instance acting as proxy for a resource can issue non-
conflicting thread grantsfor locks of equal or less-restrictive level than its
node grant to CFS execution threads on its node without exchanging
messages with other nodes

151

152

Inside CFS: the Global Lock Manager (GLM)

GLM architecture

Figure 8-4 illustrates the steps in issuing node and thread lock grants.

Figure 8-4 Node and thread lock grants

1) A CFS execution thread requests a lock from its local GLM instance
2) Thelocal GLM instance computes the master node ID for the resource and
requests a node grant from its GLM instance

3) The master GLM instance for the resource issues a node grant to the
requesting instance

4) The requesting GLM instance issues a thread grant to the requesting CFS
execution thread

5) Another CFS thread on the same cluster node requests a non-conflicting
lock on the resource

6) Thelocal GLM instance grants the lock without referring to the resource’s
master GLM instance

A node grant on a resource effectively delegates proxy authority to grant locks
requested by CFS execution threads to the GLM instance on the node where the
requests are made. As long as a node holds a node grant, its GLM instance
manages local lock requests that are consistent with the node grant without
communicating with other nodes. When a different node requests a conflicting
lock from the resource’s master node, the resource master’s GLM sends revoke
messages to all proxies that hold conflicting node grants on the resource. The
proxies block further lock requests and wait for threads that hold thread grants
on the resource to release them. When all thread grants have been released, the
proxy sends a release message to the resource’s master, which can then grant
the requested new lock.

Inside CFS: the Global Lock Manager (GLM)
GLM architecture

GLM lock levels

CFS execution threads request control of resources at one of three levels:

m Shared. The requesting thread requires that the resource remain stable (not
change), but is content to share access to it with other threads that also do
not change it. GLM permits any number of concurrent shared locks on a
resource

m Upgradable. The requesting thread can share access to the resource, but
reserves the right to request exclusive access at a later time. GLM permits
any number of concurrent shared locks plus one upgradable lock on a
resource. The upgradable lock level permits a thread to prevent a resource
from being modified, while deferring prevention of other threads from
reading the resource until it actually requires exclusive access

m Exclusive. The requesting thread requires exclusive access to the resource,
usually to update it, for example, to modify file metadata in an inode or to
write a range of file blocks. As the name implies, an exclusive lock cannot co-
exist with any other locks

GLM-CFS execution thread collaboration

Like any lock management scheme, GLM must avoid “deadlocks”—situations
such as that illustrated in Figure 8-1 on page 148, in which two or more
execution threads vie for control of resources held by other threads. Several
techniques for avoiding deadlocks are known, including lock timeouts and
analysis of lock requests against existing locks. One of the most straightforward
techniques, which is used by CFS, is the cooperative client. CFS execution
threads are designed to order their lock requests so as to avoid most situations
that might result in deadlocks. For situations in which deadlocks would be
possible, GLM includes a frylock mechanism that allows an execution thread to
test whether a lock can be granted and request the grant in a single operation.

Most requests to GLM are synchronous; GLM blocks execution of the requesting
thread until it has satisfied the request. In the scenario depicted in Figure 8-1,
this would cause both CFS execution threads to wait indefinitely for the release
of resources locked by the other thread. CFS execution threads use the trylock
mechanism to avoid situations like this.

A GLM trylock is a conditional request for a thread grant on a resource. If no
existing locks conflict with the request, the proxy grants the lock. If the request
does conflict with an existing lock, the proxy responds to the calling thread that
the resource is “busy,” rather than forcing the caller to wait for the lock to
become grantable, as would be the case with a normal lock request.

Thus, referring to the example of Figure 8-1, Thread 1 might use a trylock to
request control of Resource B. On discovering that its request had failed
because Resource B is already locked by Thread 2, Thread 1 might release its

153

154

Inside CFS: the Global Lock Manager (GLM)

GLM architecture

lock on Resource A, which would free Thread 2 to obtain the lock and continue
executing to completion.

CFS execution threads request trylocks in one of three “strengths:”

m Weak. The proxy grants the lock if it can do so without exchanging messages
with the resource master, otherwise it responds to the requester that the
resource is busy. Weak trylocks are sometimes used by CFS internal
background threads operating asynchronously with threads that execute
application requests

m Semi-strong. The proxy exchanges messages with the resource master if
necessary. The master grants the lock if it can do so without revoking locks
held by other nodes; otherwise it responds that the resource is busy

m Strong. The proxy exchanges messages with the resource master if
necessary. The master revokes conflicting locks if possible, and grants the
lock as long as no conflicting locks remain in effect. CFS typically uses strong
trylocks when executing application requests

GLM trylocks are a simple and useful method for avoiding deadlocks, but they
depend on proper behavior by CFS execution threads. GLM is thus not a general-
purpose distributed lock manager that could be used by arbitrary applications
whose proper behavior cannot be guaranteed. Largely for this reason, the GLM
API is not exposed outside of CFS.

Minimizing GLM message traffic

GLM includes several mechanisms that minimize lock-related message traffic
among cluster nodes. Two of these—node grants and trylocks—have already
been discussed. Node grants effectively delegate locking authority within a
single node to the GLM instance on the node. Trylocks, particularly weak
trylocks, enhance the delegation mechanism by making it possible for execution
threads to avoid intra-node deadlocks without inter-node message exchanges.
GLM masterless locks are a third mechanism for minimizing lock-related inter-
node message traffic.

A CFS instance requesting a lock on a resource can specify that the lock be
masterless as long as it can guarantee that it will be the only instance to request
locks on the resource. When it holds a masterless lock on a resource, a GLM
proxy may grant on its own authority locks for which it would ordinarily have to
consult the resource master.

For example, a CFS instance must hold at least a shared A/ock (hold lock) on a
file’s inode before it is permitted to request an rwlock (read-write lock) on the
inode. A CFS instance that holds an exclusive hlock on an node can request
thread grants for masterless rwlocks. There is no need to communicate with the
resource’s GLM master because no other node can request an rwlock unless it
holds an hlock, which cannot be the case, because the local node’s hlock is
exclusive.

Block locks

Range locks

Inside CFS: the Global Lock Manager (GLM)
GLM architecture

Alock can remain masterless as long as no threads on other nodes request
access to the resource. When this is no longer the case (for example, if the CFS
instance holding an exclusive hlock downgrades it to shared), threads that hold
masterless locks affected by the downgrade must request that GLM normalize
them, allowing other nodes to access to the resources.

Masterless locks are another example of cooperative client behavior. CFS
execution threads only request masterless locks on resources that they “know”
other nodes will attempt to access. Moreover, threads that hold masterless locks
must normalize them when the conditions that make them masterless are no
longer in effect; otherwise, resources could remain inaccessible to other threads
indefinitely.

For certain types of resources, it is highly probable that a single CFS instance
will attempt to lock several of them. For example, when creating new files, an
instance often allocates (and locks) consecutively numbered inodes from a block
delegated to it by the file system’s primary instance.

The GLM block lockis a mechanism for making locks on similar resources such
as inodes masterless. When an instance expects to be the exclusive user of
multiple resources of similar type, such as consecutively numbered inodes, it
creates a block namethat uniquely identifies the resources, and includes it in
each of its requests for locks on them. Internally, GLM attempts to obtain an
exclusive lock on the block name when it first encounters it. If it succeeds, each
lock request that contains the block name can be masterless, eliminating the
need for GLM to communicate with other instances before granting it. For
example, as an instance allocates free inodes when creating files, it includes the
block name that identifies the block of consecutive inode numbers delegated to
it within its lock request. If the first block lock request succeeds, CFS can make
all inode locks from this block masterless.

The primary CFS resource to which GLM locks apply is the file inode. Before
performing any operation that affects a file’s inode, a CFS execution thread
secures a hold lock (h-lock) on the inode. Threads secure additional locks in
order to read or write file data.

For single-writer applications, such as those that write files sequentially,
locking an entire file while data is written to it is adequate. Some applications,
however, such as multi-threaded business transaction processors, manipulate
relatively small records within a few large CFS files concurrently. Locking an
entire file each time one of these applications updated a record would serialize
their execution to an unacceptable degree.

For the most part, multi-threaded applications’ threads do not interfere with

156

Inside CFS: the Global Lock Manager (GLM)

GLM operation

each other—two threads that update non-overlapping records in a file
simultaneously can execute concurrently without corrupting data. But it is
possible for two or more threads of such an application to attempt to update
records in the same file block at the same time. To prevent data corruption (for
example, wrong record written last, or part of one update and part of another in
the resulting record) when this happens, a thread must have exclusive access to
arecord for the duration of its update.

GLM range locks allow multiple execution threads to access a file concurrently,
but they limit access to specific file blocks while threads update or read them.
Range locks control access to specific ranges of file block addresses. As with all
locks, CFS instances compute range lock names using an algorithm that
guarantees uniqueness. Range locks are somewhat more complicated than
ordinary locks, however, in that ranges of file blocks can overlap; for example, it
is possible for one CFS execution thread to request a lock on file blocks 1-10, and
another to request a lock on blocks 6-15 of the same file. Depending on the lock
level requested, the two may be incompatible.

In most respects, range locks behave identically to ordinary locks—they can be
taken at node or thread level, they are subject to the same revocation rules, and
trylocks for ranges of file blocks are supported. When a thread requests a
“greedy” range lock, however, GLM enlarges the range to a maximum value if
possible. This gives the thread control of a large range of the file unless another
thread requests it.

GLM operation

When a cluster node boots, GLM starts executing before CFS. Upon starting, CFS
instances register with GLM. GLM instances use a shared port within the VCS
Group Atomic Broadcast (GAB) protocol to communicate with each other.

To lock a resource, a CFS execution thread first creates, or initializes, the lock.
Next, it typically requests a thread grant. GLM always grants thread locks and
upgrade requests for existing locks as long as they do not create conflicts.
Typically, GLM calls are thread-synchronous—a CFS execution thread
requesting a GLM service (upgrade, downgrade, and unlock) waits for GLM to
perform the service before continuing to execute. GLM does support
asynchronous grant requests, which CFS uses, for example, to request multiple
grants concurrently. GLM assumes, however, that its CFS clients are well-
behaved in the sense that they request lock services in the proper order—
initialize, grant, upgrade or downgrade, and release.

A GLM node grant for a resource remains in effect until both of the following
occur:

m Revocation. GLM requests revocation of the grant because a CFS execution
thread on another node has requested a conflicting thread grant on the
resource

Inside CFS: the Global Lock Manager (GLM) | 157
GLM operation

m Release. All CFS execution threads holding thread grants on the resource
release them

In this respect as well, GLM assumes that its clients are well-behaved—that they
do not hold thread grants indefinitely, but release them when they no longer
need to control the resources.

GLM locks occupy memory; once a CFS execution thread no longer requires a
resource, and has released all data memory associated with the lock, it usually
deletes, or deinitializes the lock. This minimizes the amount of memory
consumed by GLM instances’ lock databases, as well as the amount of lock
database searching required when a CFS execution thread requests a grant.

GLM and cluster membership changes

Because GLM distributes lock mastership among all cluster nodes, changes in
cluster membership may require that some locks be remastered. Cluster
membership may change because of:

m Node failure. Because each GLM instance keeps its database of lock
information in local memory, failure of a node causes its lock information to
be lost. In particular, node locks granted to other nodes by a failed node must
be recovered and a new master assigned

m Node addition. No lock information is lost in this case, but because lock
mastership is a function of lock name and cluster membership, changes in
cluster membership may result in changes in mastership for locks that exist
at the time of membership change

A GLM instance’s lock database contains two types of information related to
instances on other nodes:

m Mastership. Locks for which the instance is the master, and which have been
granted to instances on other nodes

m Proxy. Node grants that have been issued to the instance for resources
mastered by other instances

When a cluster node fails, GLM must properly reconstruct its GLM information.

Node grants for which the failed node itself is master only affect execution
threads on the failed node. GLM does not recover locks contained completely
within a failed node; they are lost, along with the execution threads that created
them.

A node failure causes a cluster reconfiguration, during which VCS suspends
interactions between nodes briefly while the remaining nodes construct a new
cluster. When reconfiguration is complete, each node’s GAB instance sends a
message to its local CFS instance containing the new cluster membership and an
instruction to restart. During its restart processing, CFS invokes GLM’s restart
APL

158

Inside CFS: the Global Lock Manager (GLM)

GLM operation

Ghost locks

GLM must recover relevant lock information lost from the failed node’s
memory. Each instance enters a recoveryphase during which it blocks incoming
lock requests. All instances send their hash tables to a designated recovery
managerinstance. The recovery manager computes a new hash table for the
cluster and returns it to other instances.

Each GLM instance compares its original (pre-failure) hash table with the new
(post-failure) table sent by the recovery manager to determine which of its locks
must be remastered. Locks must be remastered if the new hash table maps their
names to different masters. For each such lock, GLM requests a grant from the
new master. Each GLM instance informs the recovery manager when it
completes remastering. When all instances have reported, the recovery
manager directs them to resume normal operation.

GLM recovery after a cluster reconfiguration is functionally transparent to CFS
execution threads, but lock requests made during recovery do not complete until
recovery is finished.

Clusters also reconfigure when nodes are added. Adding a node causes a cluster
reconfiguration during which locking is inhibited while all nodes converge on a
common view of the enlarged cluster. When the reconfiguration completes, the
CFS instance on the new node starts and mounts file systems, and GLM
instances on all nodes reinitialize themselves, using the new node population to
create new hash tables for remastering and subsequent use. From that point on,
GLM operates as it did prior to the reconfiguration, including the new node in its
lock mastership calculations.

CFS instances sometimes request that other instances perform tasks on their
behalf. For example, an instance (the updaterinstance) may have to update the
access time of a file that is owned by another instance (the file ownerinstance).
Rather than taking ownership of the inode, the updater instance requests that
the file owner instance update the file’s metadata on its behalf.

The updater instance locks the file’s inode before making its request. If the
updater instance’s node fails before the file owner instance has completed the
metadata update, the file owner instance requests a ghost lock on the inode, so
that during recovery GLM will transfer the lock held by the failed updater
instance to the file owner instance.

A ghost lock request made by a CFS instance informs GLM that the instance is
using a resource on which a failed instance had held the regular lock. The
request causes GLM recovery to transfer ownership of the regular lock so that
the node using the resource can complete its task.

In the example of the preceding paragraph, if the updater instance’s node fails
before the file owner instance has finished updating file metadata, the cluster
reconfigures, and the file owner instance makes a ghost lock request for the

Inside CFS: the Global Lock Manager (GLM) | 159
GLM operation

file’s inode. During recovery, the GLM instance firesthe ghost lock (converts it
to regular lock held by the file owner instance). No new lock is created.

160 | Inside CFS: the Global Lock Manager (GLM)
GLM operation

Inside CFS: /0O request flow

This chapter includes the following topics:

Creating a CFS file

Appending data to a CFS file

Deleting a CFS file

CFS Storage Checkpoint structure

Creating a CFS Storage Checkpoint

Writing data while a Storage Checkpoint is active

Deleting a CFS Storage Checkpoint

While outwardly presenting a relatively simple POSIX interface to applications,
CFS is internally complex, because it must maintain POSIX semantics with an
arbitrarily large number of clients on multiple cluster nodes. This section
presents examples of how CFS performs some basic I/O operations to illustrate
CFS’s internal complexity. The examples are simplified, particularly in that they
do not show GLM lock requests and grants, only the operations enabled by
successful GLM lock grants.

162

Inside CFS: I/0 request flow
Creating a CFS file

Creating a CFS file

Figure 9-1 shows a simplified timeline for the CFS create file operation. The
horizontal lines in the figure represent activities that can occur asynchronously.
The arrows connecting the boxes represent dependencies on preceding events.

Figure 9-1 Creating a CFS file
Application
makescreate .wait ... Application continues Application continues
file request (metadata in cache) {metadata on disk)
\ App
L N _ N N N N _ B _ BN _ B B _§ § §B &8 § §B § B B | L n N N N § N N N |
CFs
N Verify that file Create Signal
Processing name does not| Alhc:: _a(r;g directory entry cmngleﬁon
thread already exist populaleinode for new file (if delaylog)
Asynchronous Wirite inode
activity todisk
Wirite updated
Asynclfrfmous o sdenhy
activity to disk
Intent log i,ﬁ:,i’tg KC};zmmilinIgnl Wiite intentlog
activity ‘:::f:;:or; in memory to disk
L4 time —>

The first step in creating a new file is to verify that its name is unique in the file
system name space. CFS traverses the directory hierarchy until it locates the
directory that would contain the file’s name if it existed. If the name is indeed
unique (does not already exist), CFS creates a transaction record in memory.
Next, it allocates an unused inode and populates it with information about the
file, such as its owner and group, and timestamps, then CFS creates an in-
memory directory entry for the new file.

CFS then commits the transaction. (If the node crashes and its intent log is
replayed during recovery, only transactions marked as ‘committed’ are re-
executed).

If the file system is mounted with the log mount option, CFS delays signaling
completion to the application until it has written the transaction record to disk.
If either of the delaylog or tmplog mount options are in effect, however, the
intent log disk write may be deferred. CFS then signals the application that its
request is complete. Once the intent log record has been written to disk, CFS
performs two additional actions asynchronously to complete the file creation:

m Directory write. CFS writes the directory file containing the name and inode
number of the newly created file

m inode update. CFS writes the newly created file’s inode to disk storage

Inside CFS: I/0 request flow
Appending data to a CFS file

Appending data to a CFS file

Figure 9-2 represents the simplest sequence of actions in executing an
application’s request to append data to the end of a file. A CFS instance begins
an append operation by acquiring ownership of an allocation unit with
sufficient space if it does not already own one, and creating a transaction to
allocate storage for the appended data. Once storage is allocated, the instance
commits the transaction.

Figure 9-2 Appending data to a CFS file

Appﬁmﬁt_m Application B Application
makes write ..wait ... continues Application continues
append (dataandmetada continues (dataand metadot
in cache) (metadatain cache) on disk)
“‘T‘"‘t App
LB B N B B N N N N §N N N _§B §B §B N N & N N B B N N N &R N _§_]} - N NN BN S N B . .-

Processing it e jcat updmmde Sunal W Signal Signal
thread noadvlsonsJ {iTO_DSYNC) (ifO_SYNC)
Asynchronous - Wiite ney updated
activity ? sk d
Asynchronous
activity

Intentlog
activity

Once the storage allocation transaction has been committed, data can be
transferred. If no advisories are in effect, the instance allocates pages from the
operating system page cache, moves the data to them, and schedules a write to
the CVM volume. If a VX_DIRECT or VX_UNBUFFERED advisory is in effect, or
if the amount of data being appended is larger than discovered_direct_iosz
(page 219), the instance schedules the write directly from the application’s
buffers. (When writing directly from application buffers, the CFS instance must
also invalidate any cached pages left over from earlier buffered writes that
overlap with the file blocks being written.)

The instance then creates a second transaction to update the file’s inode with
the larger file size and the modification time. Once that transaction has been
committed (and written, if the log mount option is in effect), the instance signals
the application that its request is complete, provided that no advisories are in
effect. Otherwise, it must wait for:

m Data write. If either of the O_DSYNC or VX_UNBUFFERED advisories is in
effect for the request, CFS does signal completion until the data has been
written

m inode write. If the O_SYNC or VX_DIRECT advisories is in effect for the
request, the CFS instance does not signal completion until both data and
updated inode have been written

Figure 9-2 illustrates the simplest case of an appending write. If the size of the

163

164 | Inside CFS: 1/0 request flow
Deleting a CFS file

appended data is larger than max_direct_iosz, or if CFS has detected sequential
writing, the operation is more complex.

Deleting a CFS file

Figure 9-3 illustrates the CFS sequence of actions for a simple file deletion. It
assumes that no other applications have locks on the file, and that no hard links
point to it. (If the “file” being deleted is actually a hard link, CFS deletes the
directory entry and decrements the link count, but leaves the file inode and data
in place.)

CFS starts by verifying that the file exists. It then creates a transaction for the
deletion, and locks the file’s directory entry. It next reads the file’s inode if it is
not cached (for example, if the file has not been opened recently), locks it, and
uses information in it to obtain any necessary delegations for allocation unit(s)
in which the file’s data resides. Once it has ownership of the necessary
allocation units, it updates their metadata to reflect the space freed by deleting
the file.

Figure 9-3 Deleting a CFS file

Application wait ... AﬂpllL_‘(I[lDIl
makes delete continues

file request App
LM B N N &N N _§B &8 B §B § § § &N N § §B B B B N B B B B N _§ | I . .
CFS
Getany
i Lookup file update Update
Processing in directory necessary AU metada
thread directory {remove i Ie) in memory
Write
Asynchronous updated
- direciory
activity entry o disk
Mark inode
Asyncl.nrfmous > “unused”
activity ondisk
Write
Asynchronous updated AU |—
activity metadata
Create L
Intent log im:;?lng Commit Wiite intent A
activity transaction transaction Iﬁ:n:;gcﬁon
in memory
L time —»>

CFS then commits and writes the intent log transaction. Committing the delete
transaction enables the three actions illustrated in Figure 9-3 to be performed
asynchronously:

m Directory update. CFS overwrites the directory block with the file’s entry
marked “deleted”

m inode status update. CFS updates the inode’s disk image to indicate that it is
not in use, and flags the inode as unused in the inode table

Inside CFS: I/0 request flow | 165
CFS Storage Checkpoint structure

m Allocation unit metadata update. CFS updates the metadata for allocation
units in which file system blocks were freed by the deletion

These operations occur asynchronously with each other, but they must all
complete before CFS signals completion to the application, no matter which
logging mount option is in effect for the file system.

CFS Storage Checkpoint structure

An important feature of CFS is its ability to create Storage Checkpoints—point-
in-time space-optimized snapshots of file system contents that can be mounted
and accessed as if they were file systems, including being updated by
applications. Storage Checkpoints are useful as source data for backups and data
analysis, for development and testing, and so forth.

With any copy-on-write snapshot technology, snapshot metadata and data are
necessarily bound to that of the primary fileset, and they therefore have an
impact on primary fileset I/0. The three examples that follow illustrate three
important Storage Checkpoint operations—creation, deletion, and writing to the
primary fileset when one or more Storage Checkpoints are active. As a preamble
to the discussions of I/O operation flow in the presence of Storage Checkpoints,
Figure 9-4 illustrates the main principle of Storage Checkpoint metadata
organization.

Figure 9-4 Storage Checkpoint metadata linkage

File system block address space Storage Checkpoint N

Storage Checkpoint N-1 i Etad ata Storage Checkpoint N+1 Primary fileset metadata
m {older) Overlay descriptors metadata {newer)
{unmodified data)

— ——1 e ——

—

=~ {modified data prior contents})

N~e=d 7

— | 200
Allocation unit 01 Allocation unit 02

—

|
|
I

| Allecation unit M Allocation unit P

As Figure 9-4 suggests, the metadata structures that describe Storage
Checkpoints form a time-ordered chain with the file system’s primary fileset at
the head. Each time a new checkpoint is created, it is inserted into the chain
between the primary fileset and the prior newest link.

Storage Checkpoints are described by two types of metadata:

166

Inside CFS: I/0 request flow
Creating a CFS Storage Checkpoint

m Overlay descriptors. These describe data and metadata that have not
changed since the checkpoint was created. They point to corresponding
metadata (for example, extent descriptors) in the next (newer) element in the
chain

m Live descriptors. These describe data and metadata that have altered since
the creation of the checkpoint. These point to file system blocks in which the
prior state of the altered data and metadata are stored. A file system’s
primary fileset only contains live metadata descriptors

With this structure, the actual storage consumed by any given checkpoint
amounts to primary fileset data and metadata that changed while the
checkpoint was the newest active one. As soon as a newer checkpoint is taken,
the contents of the older one are effectively frozen; prior contents of any
primary fileset blocks that change thereafter are linked to the newer Storage
Checkpoint’s metadata. Thus, ignoring the per-Storage Checkpoint metadata
itself, the total amount of storage consumed by all of a file system’s active
checkpoints is equal to the amount of change in the primary fileset during the
lifetime of the oldest active checkpoint. (The situation is slightly different for

writable c/ones, which are based on the Storage Checkpoint technology, but
which can be updated independently of their primary filesets. The Symantec
Yellow Book Using Local Copy Services, available at no cost on the Symantec

web site,20 gives an exhaustive description of the data structures that support

Storage Checkpoints and file system clones.)

Creating a CFS Storage Checkpoint

Storage Checkpoints are copy-on-write snapshots. They consume storage only
in proportion to the amount of primary fileset data that is modified while they
are active. For unmodified data, they point to primary fileset extent contents.
Storage Checkpoints occupy storage in a file system’s space pool. Figure 9-5
illustrates a (necessarily compressed) Storage Checkpoint creation timeline.

20. http://eval.symantec.com/mktginfo/enterprise/yellowbooks/
using_local_copy_services_03_2006.en-us.pdf

http://eval.symantec.com/mktginfo/enterprise/yellowbooks/using_local_copy_services_03_2006.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/yellowbooks/using_local_copy_services_03_2006.en-us.pdf

Inside CFS: I/0 request flow
Creating a CFS Storage Checkpoint

Figure 9-5 Creating a Storage Checkpoint
Create Storage
Checkpoint . Applications Console thread
command -wait ... continue continues
App
L 8 K N R _ B _ B B N N B _§ §8 § § N B N § § § B § N | _— - - -
CFS
. Create “Freeze” Block Wait for Populate § - hd
Processing Storage i i ing /O i C i q Signal
node Checkpoint nodes to anddrain O to files and add completion
files drain /O) queue to chain
Other SEEN
incoming
cluster anddrain
nodes queue
Commit
Intent log andwrite
activity intentlog
transaction
L4 time —

A CFS instance begins Storage Checkpoint creation creating the metadata files
for the checkpoint and temporarily marking them for removal. It then “freezes”
the file system, blocking incoming I/O requests and requesting that other
instances do the same. It waits until all I/O operations in progress on all
instances have completed.

When the file system is frozen, CFS populates the new checkpoint’s fileset with
metadata and inserts the fileset into an age-ordered chain headed by the
primary fileset and having a link for each active Storage Checkpoint. When a
new Storage Checkpoint is created, old data resulting from subsequent
modifications to the primary fileset are recorded in it. all older checkpoints refer
forward to it if necessary when applications access data in them. Thus, the
amount of storage consumed by all Storage Checkpoints is approximately the
number of file system blocks occupied by all primary fileset data modified since
creation of the oldest Storage Checkpoint.

Storage Checkpoints contain two types of metadata—pointers to file system
blocks and so-called “overlay” metadata that points to the next newer
checkpoint in the chain (or, for the newest Storage Checkpoint, the primary
fileset). When CFS uses Storage Checkpoint metadata to locate data, items
flagged as overlays cause it to refer to the next newer checkpoint in the chain. If
the corresponding metadata in that checkpoint is also an overlay, CFS refers to
the next newer one, until it reaches the primary fileset (indicating that the data
item was unmodified since the creation of the oldest checkpoint). CFS accesses
such data items from the file system’s primary fileset (live data) when they are
read in the context of a Storage Checkpoint.

When one or more Storage Checkpoints are active, application writes to a file
system’s primary fileset are performed as outlined in the following section.

167

168 | Inside CFS: 1/0 request flow

Writing data while a Storage Checkpoint is active

Writing data while a Storage Checkpoint is active

CFS Storage Checkpoints are space-optimized—the only storage space they
consume is that used to save the prior contents of primary fileset blocks that
applications modify while they are active. The technique is called “copy-on-
write”—upon an application request that modifies file system data or metadata,
CFS allocates file system blocks from the file system’s space pool, copies the
data or metadata to be overwritten into them, and links them to the Storage
Checkpoint’s metadata structures. Figure 9-6 presents a condensed timeline for
an application write to a file system with an active Storage Checkpoint.

Figure 9-6 Writing data while a Storage Checkpoint is active
Create Storage
Checkpoint Applications Console thread
command - Wait ... continue continues
App
L 8§ N R _ B N B N B N _§B § §B § § N § § § B B B § | _— - - .
. . CFs
Create “Fi 3 Block Wait for late a
Processing St:::ge irectoth incoming 'O andir rPoPu F Sﬁ?:g};zd: i,.ﬂ.l.’i?;kllo Signal
Checkpoint nodes o anddrain O to files and add completion
node files drain /0) queue o chain £ (s
Other . Bbok
incomint
cluster anddlgin
nodes queue
Commit
Intent log and write
activity intentlog
transaction
L4 time —>

In order to focus on the main points of writing to a CFS file system in the
presence of one or more Storage Checkpoint, Figure 9-6 omits the detail related
to allocation unit delegation, mount options, and cache advisories that is shown
in Figure 9-2. Essentially the same operations occur when Storage Checkpoints
are active, however.

The first write to a given range of file system blocks after a given Storage
Checkpoint is taken results in copy-on-write. Subsequent updates to the same
file system block range are executed identically, whether Storage Checkpoints
are active or not.

CFS first executes a transaction to allocate storage for the prior contents of the
blocks to be updated. It then reads the data to be overwritten and copies it to the
allocated blocks. Its third step is to copy the new data from application buffers
to pages that it allocates from operating system page cache. (It bypasses this
step and writes directly from application buffers if the VX_DIRECT or
VX_UNBUFFERED cache advisory or the corresponding convosync or
mincache mount option (Table 13-2 on page 216) is in effect.) When the prior
contents have been safely preserved on disk, it overwrites the vacated file
system blocks with the new application data.

Inside CFS: I/0 request flow
Deleting a CFS Storage Checkpoint

CFS then updates Storage Checkpoint metadata to point to the newly allocated
file system blocks that contain the prior contents of the overwritten ones in the
primary fileset. Because copy-on-write occurs upon the first modification of the
affected file system blocks, CFS must convert the Storage Checkpoint’s overlay
extent descriptors (and possibly other metadata) that refer forward to primary
fileset data into live extent descriptors that point to the newly-allocated file
system blocks that now contain the prior contents of the updated blocks.

Finally, CFS completes the operation by executing an intent log transaction that
captures the primary fileset inode update (change in modification and access
times) and the update to the Storage Checkpoint inode (extent descriptor
change, but no access time changes).

Similar scenarios occur when CFS truncates files and so forth.

Deleting a CFS Storage Checkpoint

When CFS deletes a Storage Checkpoint, the file system blocks it occupies must
either be freed or linked to more recent Storage Checkpoints that remain active,
and its inodes must be disposed of properly. Figure 9-7 illustrates the sequence
of events in the deletion of a Storage Checkpoint.

Figure 9-7 Deleting a CFS Storage Checkpoint
Delete Storage
Checkpoint ~ Responseto Applications . Applications
command command pause - wait ... continue

Freeor Unlink

relink CE'SP"SI = checkpoint
checkpoinf's fil Ie system and delete

extents its fileset

Processing
(primary)
node

Other Message o
cluster primary CFS
nodes instance
Transaction Commit
Intent log to mark Marked for
activity checkpoint delelio_n d
deleted transaction transaction

time —>

A CFS instance that receives a command to delete a Storage Checkpoint sends a
message to the file system’s primary instance, which performs all deletions. The
primary instance creates and commits an intent log transaction in which it
marks the checkpoint deleted. Once this transaction is committed, the primary
instance starts a background thread to dispose of the checkpoint’s file data
extents and inodes.

Extents containing data from files that were modified, truncated, or deleted are
transferred to the next newer checkpoint in the chain. Extents that contain data
written to this checkpoint are released to the free space pool. As the background

169

170 | Inside CFS: 1/0 request flow
Deleting a CFS Storage Checkpoint

thread processes inodes, it marks them as “pass-through” so that other threads
ignore them when locating data to satisfy user requests made against Storage
Checkpoints.

When the background thread has processed all of the Storage Checkpoint’s
inodes, it freezes the file system momentarily, and creates an intent log
transaction that removes the checkpoint from the file system’s checkpoint
chain and frees the space occupied by its structural files. When this transaction
is committed, the thread unfreezes the file system, and application activity
against it resumes.

CFS Differentiator: multi-volume
file systems and dynamic
storage tiering

This chapter includes the following topics:

m Lower blended storage cost through multi-tiering
m CFS Dynamic Storage Tiering (DST)

Most enterprise data has a natural lifecycle with periods of high and low activity
and criticality. Recognizing that there can be a substantial differential in cost
per terabyte (4:1 or more) between enterprise-class high-performance disk array
storage and high-capacity storage of lesser performance, some data centers
adopt multi-tier strategies to lower the average cost of keeping data online by
moving data sets between storage tiers at different points in their life cycles.

Lower blended storage cost through multi-tiering

Typically, a relatively small percentage of a mature application’s data is active.
Current business transactions, designs, documents, media clips and so forth are
all likely to be accessed frequently. As a business or project activity diminishes,
its data is accessed less frequently, but remains valuable to keep online. As
applications age, it is fair to say that the majority of their data is seldom
accessed. An enterprise can reduce its average storage cost by relocating its
inactive data to less expensive bulk storage devices without losing the
advantages of having it online and readily accessible. Since the relocated data is
accessed infrequently, the lesser performance of the bulk storage devices has
little or no impact on overall application performance.

As an example, Table 10-1 presents a pro forma cost savings calculation for an
application with 100 terabytes of data, 20% of which is active, and 80% of which

CFS Differentiator: multi-volume file systems and dynamic storage tiering
CFS Dynamic Storage Tiering (DST)

is idle and could be moved to low-cost bulk storage without significantly
impacting overall application performance.

Table 10-1 Pro forma example of cost savings with a two-tier storage strategy (100 terabytes
Storage cost per | Cost of Storage cost per .
Savings

terabyte storage terabyte

Single-tier strategy Tier 1: $7,500 Tier 1: $750,000 Tier 1: $7,500

Two-tier strategy Tierl: $7,500 Tierl: $150,000 Tierl: $7,500 $440,000
Tier 2: $2,000 Tier 2: $160,000 Tier 2: $2,000

Total: $310,000

It is clear from this admittedly simplistic example that the cost savings from a
two-tier storage strategy can be substantial. For small active data sets with very
high performance requirements, a solid state primary tier would show even
greater savings and better quality of service.

Barriers to storage cost savings

But there is a significant barrier to actually realizing the potential cost savings
from multi-tier storage. For a multi-tier storage strategy to be practical, it must
not impact application performance negatively; data must reside on the high-
performance primary tier while it is actually active, and migrate to lower-cost
tiers when it becomes idle.

Keeping a few files on the most appropriate storage tier based on I/O activity is
easy enough. An administrator can monitor I/O activity, and move files and
adjust application procedures as necessary to optimize storage and I/0
resources. The complication arises in data centers with millions of files that
fluctuate between high and low I/O activity and greater and lesser criticality. It
is impossible for humans to track I/O activity on this scale, let alone relocate
files and adjust applications and scripts accordingly. When solid state storage is
present, the need to use it appropriately is even more pronounced. Not only
must important, active files be placed on it, but as files become activity, they
must be relocated away from it to free the high-cost space for other, more active
files. The difficulty and expense of matching large numbers of files with
changing activity levels leads some data centers to adopt inflexible placement
policies (for example, “if it’s 90 days old, relocate it to tier 2, period”), and others
to forego multi-tier storage entirely.

CFS Dynamic Storage Tiering (DST)

The Dynamic Storage Tiering (DST) feature of CFS solves the problem of
matching large numbers of files to appropriate storage tiers without

CFS Differentiator: multi-volume file systems and dynamic storage tiering | 173
CFS Dynamic Storage Tiering (DST)

administrative intervention. DST completely automates the relocation of any or
all of the files in a file system between storage tiers according to a flexible range
of administrator-defined policies. DST is a “set and forget” facility. Once an
administrator has defined a file system’s placement parameters and a relocation
schedule, file movement is both automatic and transparent to applications.

When creating a CFS file system, an administrator specifies:

m Storage. The CVM volumes that make up each of the file system’s storage
tiers

m Tiering policy. Optional specification of placement and relocation rules for
classes of files

From that point on, DST automatically manages file locations based on I/0
activity levels or other criteria specified in the placement rules, making proper
file placement completely transparent to applications and administrators.

A DST Example

Figure 10-1 illustrates the action of a simple DST placement and relocation
policy.

Figure 10-1 Typical DST relocation policy actions

oS DST relocation policy ‘r &
e « Create files in fis1/cur on tier1 .

‘\4 R = Create files in ffs1/paston tier2
2 \0‘1‘ = Move to tier2 if inactive for 30 days
e = Move to tier1 if accessed more
than twice in last 2 days

HstipastifileA —F [===~ ~=====
[
Hs1ipastifileB

A --
ifs1/pastifileG
mm————— = ifs1/pastifileH

J

Single file system name space [fs1/...

According to the file placement policy illustrated in Figure 10-1, files in the /cur
directory are created on tierl volumes, while those created in the /past
directory are created on tier2 volumes. Regardless of where they were created,
DST relocates files from tier1 volumes to tier2 volumes if they are not accessed

174

CFS Differentiator: multi-volume file systems and dynamic storage tiering
CFS Dynamic Storage Tiering (DST)

for 30 days (according to the atime POSIX metadata). Similarly, if files on tier2
volumes are accessed more than twice over a two-day period, DST relocates
them to tier1 volumes, regardless of where they were created.

Thus, with no action on the administrator’s part, “busy” files automatically
move to high-performance storage, and inactive files gradually migrate to
inexpensive storage. As migration occurs, files’ extent descriptors change to
reflect their new locations, but the files’ positions in the directory hierarchy
does not change, so relocations are completely transparent to applications that
access files by path name.

DST advantages

While other technologies for automating data movement between storage tiers
exist, DST is unique in four respects:

m Configuration flexibility. DST storage tier definitions are completely at the
discretion of the administrator. There is no artificial limit to the number of
tiers that may be defined, nor to the number or type of CVM volumes that
may be assigned to a tier

m Managed objects. DST operates at the file level. DST policies act on files
rather than volumes, placing the entities that correspond most closely to
business objects on whichever type of storage is deemed most appropriate by
the administrator

m Policy flexibility. DST includes a wide range of file placement and relocation
options. While the most frequent application of DST is I/O activity-based
relocation, file placement policies can be based on other criteria, such as
location in the name space, size, or ownership

m Application transparency. DST file relocation is transparent to users and
applications. DST moves files between storage tiers as indicated by the policy
in effect, but leaves them at their original logical positions in the file system’s
name space. No adjustment of applications or scripts is necessary

Enabling DST: CFS multi-volume file systems

A CFS file system’s VSET may consist of as many as 8,192 CVM volumes. The
volumes can be of any type that CVM supports (simple, concatenated, striped, or
mirrored) and of any practical capacity.2! An administrator organizes a file
system’s volumes into tiersby affixing tags to them. The composition of a tier is
completely at administrator discretion, but an obvious best practice is for each

21. The theoretical maximum volume size possible with CVM data structures is

18,446,744,073,709,551,104 bytes (2%4-512, or 18.5 exabytes). Practical considerations
impose significantly smaller limits. CFS limits maximum file system size to 256 tera-
bytes.

CFS Differentiator: multi-volume file systems and dynamic storage tiering | 175
CFS Dynamic Storage Tiering (DST)

tier to consist of identical, or at least similar, volumes. For example, an
administrator might assign volumes that consist of LUNs based on Fibre
Channel disks mirrored by a disk array to a tier called tier1, and volumes
consisting of high-capacity SATA disks mirrored by CVM to a tier called tier2.
Tier names are completely at the discretion of the administrator. For this
example, tiers called gold and silver would serve equally well.

DST policies specify file

placement and relocation at the Administrative hint 22

tier rather than the volume level.

This gives the administrator the An administrator can use the £smap
flexibility of expanding or console command to determine the
reducing the amount of storage in volume(s) on which a particular file
each file system tier resides.

independently.

File-level placement and relocation

DST acts on the files in a CFS file system at two points in their life cycles:

m Creation. When a file is created, DST places its data on a volume chosen by
DST that is part of a storage tier specified in an administrator-defined
placement policy statement

m State changes. When the state of a file changes (for example, the file grows
beyond a size threshold, is renamed, is not accessed for some period of time),
DST automatically relocates it to a volume (chosen by DST) in another tier as
specified in an administrator-defined relocation policy statement

Each CFS file system may have a single DST policy associated with it at any
point in time. A policy consists of an unlimited number of policy rules. Each rule
specifies:

m Applicability. The files to which it applies

m Initial placement. The storage tier in which space for files to which the rule
applies is to be allocated when the files are first written

m Relocation criteria. Criteria for relocating the files to which the rule applies
to other tiers

Continuing with the two-tier example of the preceding section, an administrator
might define a DST policy with two rules, one pertaining to jpg and png files and
the other to all other files in the file system’s name space. The rules might
specify placement for new files as:

m Rule 1. Space for new jpg and png graphic images is to be allocated on tier2
volumes

m Rule 2. Space for new doc files is to be allocated on tierl volumes

m Rule 3. Space for all other new files is to be allocated on a tier2 volume

176

CFS Differentiator: multi-volume file systems and dynamic storage tiering
CFS Dynamic Storage Tiering (DST)

In addition to initial file placement, DST policy rules specify criteria for
automatic file relocation. For example, the two-tier file system might specify the
following relocations:

m Rule 1. Never relocate jpg and png graphic files to tierl volumes (implicitly
specified by the absence of relocation statements in Rule 1)

m Rule 2a. Relocate doc files on tier1 volumes that are not accessed for 10 days
to tier2 volumes

m Rule 2b. Relocate doc files on tier2 volumes that are accessed more than five
times in one day to tierl volumes

m Rule 3a. Relocate all other files on tierl volumes that are not accessed for 30
days tier2 volumes

m Rule 3b. Relocate all files other than doc, jpg, and png on tier2 volumes that
are accessed more than 10 times in one day to tier1 volumes

An administrator can schedule the DST sweeperto scan an entire file system
name space periodically (for example, on a daily basis), or execute it on demand.
The sweeper relocates files that meet the file system’s relocation policy criteria
to volumes in the specified tiers. Because solid state device-based volumes are
typically much smaller than disk-based ones, DST can scan them selectively on a
more frequent basis (e.g., hourly) to identify and relocate inactive files on them,
which it then replaces by more active ones.

An administrator can specify a DST policy in either of two ways:

m Graphically. The Veritas Enterprise Administrator(VEA) includes a graphical
interface for specifying the parameters of certain pre-defined DST policy
types. VEA automatically assigns policies to file systems as they are created
or edited

m Directediting. Administrators
can extract policy source files
written in XML and edit them o
to reflect required policy Administrators use the fsppadm
changes. This technique makes command to assign, unassign, dump,
the full generality of the DST and otherwise manage DST file
policy structure available, but placement and relocation policies.
requires a basic knowledge of
XML and the DST grammar,
described in the book Using Dynamic Storage Tiering, which can be
downloaded at no cost from www.symantec.com/yellowbooks

Administrative hint 23

Administrators can change a file system’s DST policy by dumping its policy file,
editing it, and reassigning the edited file to the file system.

www.symantec.com/yellowbooks

CFS Differentiator: multi-volume file systems and dynamic storage tiering | 177
CFS Dynamic Storage Tiering (DST)

DST policy rule ordering

What sets DST apart from other data placement automation schemes is
flexibility. DST policies can range from the extremely simple (“create files on
tierl volumes; move any that aren’t accessed for 30 days to tier2”) to highly
sophisticated, including relocation up and down a multi-tier storage hierarchy,
with policy rule granularity down to the directory, and even file level.

DST policy rules are specified in an XML file created by the administrator. As
described in a preceding section, a DST policy rule has three elements:

m Applicability. The files to which it applies

m Initial placement. The storage tier in which space for files to which the rule
applies is to be allocated when the files are first written

m Relocation criteria. Criteria for relocating the files to which the rule applies
to other tiers

The order in which rules are specified in a DST policy file is significant. When
allocating space for a new file or relocating an existing one, DST scans its policy
rules in the order in which they occur in the policy source file, and acts in
accordance with the first rule in the sequence that applies to the file upon which
it is operating. Thus, if a policy contains more than one rule that applies to a
given file, only the rule that appears first in the policy source file is effective. For
example, a DST policy might contain three rules that apply to:

m Location in the name space. Files in directory /home/user1
m File type. Files of type jpg or png
m User and/or group. Files owned by userID [100,100]

With this scenario, jpg and png files in directory /home/user1 would never be
subjected to the second rule, because DST would always act on them in
accordance with the first rule. Similarly, jpg and png files owned by userID
[100,100] would never be subjected to the third rule, because DST would act on
them in accordance with the second rule.

If a file’s properties change, for example, if it is extended, renamed, moved to an
alternate directory, or changes ownership, it may become subject to a different
DST rule. Changes in the policy rules to which a file is subject take effect only
during file system relocation scans.

DST policy rule selection criteria

As suggested in the preceding section, DST policy rules can be applied to files
selectively based on:

m Location in the name space. The directory subtrees in which files reside

178 | CFS Differentiator: multi-volume file systems and dynamic storage tiering
CFS Dynamic Storage Tiering (DST)

m File name pattern. The pattern of the files’ names (for example, *. jpg or
* dat)

m File ownership. The file owners userIDs and/or groupIDs

m File tags. Administrators and users can “tag” files with arbitrary character
strings that are visible to DST

DST uses these criteria to select files to which to apply rules. Within each rule
there are further selection criteria based on files’ states—for example, size, time
of last access or update, and so forth—that apply specifically to relocation. A
DST policy rule may contain a relocation clause specifying that files to which
the rule applies be relocated if they meet certain criteria:

m Currentlocation. They are located on a storage tier that requires pruning.
For example, in a three-tier system, files residing in tierl may be subject to
relocation, while those in tier2 are not

m Most recent access. They have not been accessed or modified for a specified
period (based on their POSIX atime or mtime parameters)

m Size. They have grown or been truncated beyond a threshold

m Activity level. Their /O temperature, or rate at which they have been read,
written, or both during a defined interval, has exceeded or dropped below a
threshold

Any or all of these selection criteria may be specified in a single policy rule. If a
file that meets the selection criteria for the rule as a whole also meets one of the
relocation criteria, DST relocates it to one of the tiers specified in the rule.

File placement and relocation flexibility

A potential shortcoming of any multi-tier storage solution is that one tier may
fill to capacity, causing allocations to fail, while unused space remains in other
tiers. In some situations, this may be the desired behavior, whereas in others,
“spilling over” to an adjacent tier would be more appropriate.

DST places the decision about whether to confine file placement and relocation
to a single tier or whether to allow placement in other tiers if the preferred one
is full in the hands of the administrator. An policy rule may specify either a
single tier or a list of tiers as a file placement or relocation destination. If a
single tier is specified, DST only attempts initial placement on or relocation to
volumes in that tier. If multiple tiers are specified, DST attempts to allocate or
relocate qualifying files in the tiers in the listed order.

When placing and relocating files, DST works entirely with tiers. It is not
possible to designate specific volumes directly as sources or destinations for file
placement and relocation. This allows the administrator to expand the capacity
of individual storage tiers independently of each other, by adding volumes to
them. If placement on and relocation to specific volumes is desirable, it can be

CFS Differentiator: multi-volume file systems and dynamic storage tiering | 179
CFS Dynamic Storage Tiering (DST)

achieved by making each volume a separate tier.

For storage tiers that contain multiple volumes, the DST balance size option
distributes the extents of each qualifying file across the volumes in a tier. When
a policy rule specifies a balance size for a tier, DST places and relocates files into
the tier in extents of the balance size, which it distributes randomly among the
tier’s volumes. Specifying a balance size has an effect similar to striping, except
that the “stripes” are randomly distributed among the tier’s volumes rather
than in a regular geometric pattern. Balancing is particularly beneficial for
transactional workloads that are characterized by a high frequency of relatively
small reads and writes.

Application transparency

Applications express file read and write requests in terms of data addresses in a
file address space of logically contiguous file blocks. CFS extent descriptors map
ranges of file blocks to file system block addresses that consist of volume
indexes and file system block number within the volume. When DST relocates a
file, it copies the data in each extent to a volume in the destination tier, and
updates the extent descriptor in the inode with the new volume index and file
system block number. This design makes it possible for DST to relocate files in a
way that is transparent to applications that open files by specifying their
pathnames. No matter which volume(s) a file’s data resides on, its logical
position in the file system directory hierarchy remains the same.

Additional capabilities enabled by multi-volume file systems

In addition to automatic transparent file placement, multi-volume file systems
and DST provide two other noteworthy capabilities:

m Metadataisolation. When
adding a volume to a CFS file

system’s VSET an .
administrator can specify that | Because CFS forces certain types of

it be a data-only volume, on critical metadata to the first volume in a
which CFS is not to store any VSET, It is a best practice to specify a
metadata. The first volume in a highly reliable, high-performance

Administrative hint 24

VSET must be eligible to volume as the first volume, and not
contain metadata, but any name it in any DST placement or
additional volumes can be relocation rules. This effectively isolates

specified as solely for file data
storage.

A multi-volume CFS file
system can remain mounted as
long as all of its metadata-
eligible volumes are present; any data-only volumes may be missing (for
example, failed). I/O to files whose data is on missing data-only volumes will
fail, but the file system as a whole can function

metadata from file data and permits
business-based storage choices of file
data storage technology.

180 | CFS Differentiator: multi-volume file systems and dynamic storage tiering

CFS Dynamic Storage Tiering (DST)

m Intentlogisolation. Because
CFS file system performance is
strongly influenced by intent
log performance, it can be
useful to isolate intent logs on
small, high-performance
volumes. As with metadata
isolation, an administrator can
add volumes to a file system’s
VSET and not specify it as a
placement or relocation
destination in any DST policy

Administrative hint 25

The first time a file system is mounted
on a cluster node, CFS creates its intent
log structural file. Administrators can
add dedicated volumes to a file system’s
VSET, and use the fsadm command with
the logvol option to move instances’
intent log files to the volumes.

rule. File system instances’ intent logs can be placed on these volumes,
keeping them isolated from file data I/O activity

CFS Differentiator: database
management system
accelerators

This chapter includes the following topics:

m The Oracle Disk Manager (ODM)
m Quick I/O for Databases
m The CFS Concurrent I/O feature

CFS is used frequently as a storage substrate for relational databases. Database
management systems manage their own storage at the block-level, and most can
make direct use of virtual volumes or even disks. When they do use files as data
storage, they typically treat each file as a disk-like container, and manage its
contents internally.

Using files as storage containers has several important advantages for database
management software and for database administrators:

m Allocation flexibility. Files can be created, expanded, truncated, and deleted
at will, without recourse to a system or storage administrator. Moreover,
because CFS files can be extended automatically, database administrators
can allocate small database container files to start with, and let CFS extend
them as actually required, rather than having to predict storage
requirements

m Administrative flexibility. Files can be copied from one device to another
much more simply than virtual volumes or disks. Again, database
administrators can usually manage storage without involving system or
storage administration

m Data protection flexibility. Database management systems generally include
tools for backing up database objects. Many users find it more convenient to

182

CFS Differentiator: database management system accelerators

back up the underlying storage, to reduce backup times, or to integrate more
fully with overall data center practice. Using files as database storage opens
the possibility of using file-based data protection methods, such as CFS
Storage Checkpoints coupled with Symantec’s NetBackup, to protect
database data

About the only factor that has inhibited database administrators from
specifying file-level storage for their databases in the past is I/O performance.
Because file systems are designed for concurrent use by multiple applications
and users, they necessarily include extensive mechanisms to make it appear to
each client that it is the file system’s only user. The principal mechanisms are:

m Data copying. Most file systems by default execute application read requests
by reading data into operating system page cache and copying it to
application buffers. Similarly, they execute write requests by copying data
from application buffers to operating system page cache and writing it from
there. This minimizes the constraints placed on application buffers, but
consumes “extra” memory and processing power compared to transferring
data directly between application buffers and storage devices

m Write serialization. Most UNIX file systems serialize application write
requests by default. If a write request arrives while a previous one is being
executed, the second request waits until execution of the first is complete.
This simple constraint satisfies the POSIX rule of presenting only the results
of complete writes to subsequent readers, but means that (a) only a single
write to a file is in progress at any instant, and (b) all reads to the file are
serialized behind any outstanding write

Because database management systems tend to be I/O intensive, data copying
and write serialization can seriously impact the performance they deliver to
their clients.

When they use file systems to store data, however, database management
systems are the only user, so file system mechanisms that make multiple users
transparent to each other are unnecessary. In recognition of this, CFS includes
two mechanisms that permit database management systems (and other
applications that manage their own concurrent I/O operations) to bypass
unnecessary file system protection mechanisms and take control of their own
I/0 scheduling and buffering, as if they were operating directly on “raw” disks:

m Oracle Disk Manager. For Oracle databases, all CFS versions include a run-
time library that implements Oracle’s Oracle Disk Manager (ODM) APIs. For
legacy applications and databases, CFS also continues to include the native
Quick I/0 for Databases feature from which the ODM library evolved

m Concurrent I/0. For database management systems, whose vendors do not
implement private API specifications like ODM, CFS includes a concurrent
I/0(CIO) facility that eliminates in-memory data movement and increases
parallel I/O capability

In essence, these capabilities allow database management systems to treat CFS

The Oracle

CFS Differentiator: database management system accelerators
The Oracle Disk Manager (ODM)

files as disk-like containers to which they make asynchronous I/O requests. CFS
bypasses file write locking and transfers data directly to and from database
management system buffers. Thus, CFS provides database management systems
with raw disk I/O performance and file system administrative convenience.

Disk Manager (ODM)

Oracle Corporation publishes an API specification called the Oracle Disk
Manager (ODM) for its Oracle and Real Application Cluster (RAC) cluster
database management software. Newer Oracle database management software
versions invoke ODM APIs to perform storage-related functions. The underlying
storage infrastructure implements the functionality expressed in the APIs. For
Oracle developers and database administrators, ODM provides consistent,
predictable, database behavior that is portable among different storage
infrastructures.

CFS includes an ODM library that uses CVM and CFS capabilities to implement
the ODM API functions. CFS’s ODM library is an evolution of an earlier, and still
supported, Storage Foundation capability called Quick I/O for databases (QIO),
discussed in “Quick I/O for Databases” on page 186.

Using the CFS ODM library enhances Oracle I/O performance in three ways:

m Asynchronous I/O. Oracle threads are able to issue I/O requests and continue
executing without waiting for them to complete

m Direct I/0. Data is transferred directly to and from Oracle’s own buffers.
When ODM is in use, CFS does not copy data to operating system page cache
before writing it to disk, nor does it execute Oracle’s read requests by reading
data from disk storage into page cache and copy it to Oracle’s own cache

m Write lock avoidance. Oracle’s writes bypass operating system file write
locking mechanisms. This increases parallel execution by allowing multiple
requests to pass through to CVM and thence to the hardware I/O driver level

These optimizations are possible with Oracle, because Oracle itself ensures that
it does not issue potentially conflicting I/O commands concurrently, or reuse
buffers before I/0 is complete. CFS’s GLM locking (Chapter 8) comes into play
only when file metadata changes, for example when an administrator resizes
database container files or creates new ones.

The CFS ODM library is cluster-aware. Instances of it run in all nodes of a VCS
cluster and communicate with each other to maintain the structural integrity of
database container files and to keep database storage administration simple. For
example, before creating a new data file in response to a request from Oracle, an
ODM instance queries other instances to verify that the file name is unique
throughout the cluster.

184

CFS Differentiator: database management system accelerators
The Oracle Disk Manager (ODM)

Volume resilvering with ODM

One important feature of the CFS ODM library that is especially significant is
that it enables Oracle to resilver*? a mirrored volume after system crash.

It is possible that writes to a volume mirrored by CVM may have been in
progress at the time of a failure. The contents of the disks that make up
mirrored volumes may be inconsistent for either of two reasons:

m Incomplete writes. A multi-sector write may have been interrupted while in
progress. Disks (and disk array LUNSs) generally finish writing the sector in
progress when power fails, but do not guarantee to complete a multi-sector
write. After the failure, a multi-sector Oracle block may be “torn”—containing
partly old and partly new content

m Unprocessed writes. Writes to some of the disks of a mirrored volume may
not have been executed at all at the instant of failure. After the failure, all
mirrors will contain syntactically valid Oracle blocks, but some mirrors’
block contents may be out of date

Normally, CVM would alter its read algorithms during recovery to insure that all
mirrors of a mirrored volume contain identical contents. ODM overrides this
mode of operation, since it has more precise knowledge of which file blocks
might be at risk.

Oracle uses leading and trailing checksums on its data blocks to detect torn
blocks after recovery from a failure. To detect unprocessed writes to mirrored
volumes, it uses an I/O sequence number called the system control number
(SCN) that is stored in multiple locations in a database. When Oracle detects
either of these conditions in a database block, it uses ODM APIs to request a re-
read of the block from a different mirror of the volume. If the re-read content is
verifiable, Oracle uses the ODM API to overwrite the incomplete or out-of-date
content in the original mirror, making the database block consistent across the
volume.

ODM advantages

ODM library instances communicate with each other to coordinate file
management. This enables Oracle itself to manage the creation and naming of
data, control, and log files by specifying parameters in a database’s Oracle
initialization file, a feature referred to as Oracle-Managed Files (OMF). OMF also
supports automatic deletion of data files when a database administrator
removes the tablespaces that occupy them.

CFS adds high availability, scalability, and centralized management to the VxFS
file system on which it is based. A CFS storage infrastructure enhances Oracle

22.The resilvering metaphor is apt. After a failure that may leave a mirror tarnished, resil-
vering restores its perfectly reflective quality.

Cached ODM

CFS Differentiator: database management system accelerators
The Oracle Disk Manager (ODM)

storage in the following ways:

m Superior manageability. Without a file system, Oracle uses disk partitions as
data storage containers. Compared to CFS container files, disk partitions are
inflexible to configure and resize, typically requiring coordination between
the database administrator and a storage or system administrator. With CFS,
files, and indeed entire file systems can be resized dynamically as
requirements dictate

m Less susceptibility to administrator error. System administrators cannot
readily determine that partitions are being used by Oracle, and may therefore
mistakenly format file systems over database data. Using CFS for database
container file storage eliminates this possibility

m Flexible data protection options. Databases that use disk partitions for
storage are limited to using the database management system vendor’s
backup mechanism. Using CFS makes it possible to take snapshots of and
back up database container files using tools and techniques that are used for
non-database data elsewhere in the data center

When ODM is in use, CFS normally bypasses the file system cache and writes
and reads directly to and from disk. The newest releases of CFS include a Cached
ODMfeature, which can improve ODM I/O performance. With Cached ODM, CFS
caches data read by Oracle conditionally, based on hints given in I/O requests
that indicate what use Oracle expects to make of the data. The CFS ODM library
uses these hints to determine whether to enable caching and read ahead or to
read directly into Oracle’s buffers, as would the non-cached ODM mount option.

Administrators configure Cached ODM at two levels of granularity:

m File system. Using the vxtunefs command, an administrator can enable or
disable Cached ODM for an entire file system

m Per-file. Using the odmadm command, an administrator can enable or
disable Cached ODM for individual files within a file system, or alternatively,
specify that I/O to the file should follow the current Cached ODM setting for
the file system

By default, Cached ODM is disabled when CFS file systems are mounted. Unless
Cached ODM is enabled, CFS ignores cache hints that Oracle passes to it in I/O
commands. Administrators enable or disable Cached ODM for an entire file
system by using the vxtunefs command to set the odm_cache_enable advisory
after the file system is mounted.

Administrators set cached ODM options for individual files in a cachemap that
CFS creates when Cached ODM is enabled for the file system in any form. The
cachemap specifies caching advisories for file type and I/O type combinations.
Administrators use the odmadm setcachefile command to specify Cached ODM

185

186

CFS Differentiator: database management system accelerators

Quick I/0 for Databases

behavior for individual files:

m ON. When Cached ODM is set to ON for a file, CFS caches all I/O to the file
regardless of Oracle’s hints. Disabling Cached ODM for the entire file system

overrides this option

m OFF. When Cached ODM is set to OFF for a file, CFS does not cache any I/O to

the file, even if Oracle I/O requests hint that it should do so

m DEF. The DEF (default) setting for a file causes CFS to follow the caching
hints in Oracle’s I/O requests. Disabling Cached ODM for the entire file

system overrides this option

CFS cachemaps are not persistent
across file system mounts. To
make per-file Cached ODM
behavior persistent, an
administrator creates a file called
odmadm in the /etc/vx directory
created by the Common Product
Installer containing the Cached

Administrative hint 26

Administrators should consult the man
pages for the setcachemap and
setcachefile commands for the syntax
of specifications in the odmadm file.

ODM per-file settings. CFS searches for an /etc/vx/odmadm file when it mounts
a file system, and if one is found, uses the advisories in it to populate the file

system’s cachemap.

Quick 1/0 for Databases

The CFS Quick I/O for databases
(QIO) feature provides advantages
similar to those of ODM for any
database management system
that coordinates its I/O request
synchronization and buffer usage
internally. QIO pre-dates Oracle’s
publication of the ODM
specification, and while it
continues to be supported, is
gradually being supplanted by
ODM in Oracle environments. It

Administrative hint 27

Applications in which CFS is used as the
storage substrate for Oracle databases
should by upgraded from using Quick
I/0 to using the Oracle Disk Manager
library, for improved integration with
the Oracle database management
system.

remains a viable option for other database management systems, however, the
more modern Concurrent I/0 (CIO) (page 189) option is generally preferable.

With QIO, database management systems access preallocated CFS files as raw
character devices, while operating system utilities and other applications move,
copy, and back them up as files. The result is the administrative benefits of

using files as database data containers without the performance degradation
associated file systems designed for concurrent use by multiple applications.

CFS Differentiator: database management system accelerators
Quick 1/0 for Databases

Quick I/O uses a special naming convention to identify files so that database
managers can access them as raw character devices.

Quick I/O provides higher database performance in the following ways:

m Bypassing UNIX kernel serialization. Database managers schedule their I/0
requests to avoid simultaneous I/O to overlapping data areas. This renders
the file access locking done by UNIX and Linux kernels unnecessary. Quick
1/0 uses UNIX kernel asynchronous 1/0 (KAIO) to bypass kernel file locking
and issue I/0 requests directly to the raw Quick I/O device

m Bypassing data movement. Quick I/O uses the CFS direct I/O capability when
it issues I/0 requests to volumes. With direct I/O, CFS writes data directly
from or reads it directly into application buffers, bypassing the usual copying
from application buffers to kernel buffers. This works well for database
managers, which typically coordinate access to large areas of memory
dedicated as cache for the data they manage

Kernel asynchronous /0

Some operating systems support asynchronous I/O to block-level devices, but
not to files. On these platforms, the operating system kernel locks access to file
while writes are outstanding to them. Database managers that use container
files as storage cannot optimize performance by issuing asynchronous I/0
requests to files on these platforms. Quick I/O bypasses these kernel locks and
allows database managers to make asynchronous I/O requests to files accessed
via the Quick I/O raw device interface.

Kernel write lock avoidance

Direct 1/0

Each POSIX write () system call to a file locks access to the file until the I/O is
complete, thus blocking other writes, even if they are non-overlapping. Write
serialization is unnecessary for database management systems, which
coordinate I/O so that concurrent overlapping writes do not occur. The Quick
I/0 raw device interface bypasses file system locking so that database managers
can issue concurrent writes to the same file.

By default, file data read by means of POSIX read () system calls is read from
disk into operating system page cache and copied to the caller’s buffer.
Similarly, file data written using the write () system call is first copied from
the caller’s buffer to operating system page cache and written to disk from
there. Copying data between caller and kernel buffers consumes both CPU and
memory resources. In contrast, raw device I/0 is done directly to or from the
caller’s buffers. By presenting a raw device interface, Quick I/O eliminates in-
memory copying overhead.

187

188

CFS Differentiator: database management system accelerators

Quick I/0 for Databases

Using Quick 1/0

Quick I/O files behave differently from ordinary files in a few key respects:

m Simultaneous block and file I/O. A Quick I/O file can be accessed
simultaneously as a raw device and a file. For example, a database manager
can use a file through its Quick I/O interface, while a backup or other
application accesses it via the normal POSIX interface simultaneously.

m Contiguity requirement. Quick I/O must consist of contiguously located disk
blocks. Quick I/O cannot be used with sparse files. I/0 to a file’s Quick I/O
interface fails if the request addresses blocks represented by a hole in the file
block space.

m Appending. A Quick I/O file cannot be extended by an application I/O request
that appends data to it. The qiomkfile administrative command must be used
to change the size of a Quick I/0O file

If the Quick I/O feature is installed, it is enabled by default when a file system is
mounted. Files may be accessed by the following ways:

m POSIX file I/O. Utility programs can move, extend, copy, and back up a Quick
I/0 file just as they would any other file

m Character (raw) device I/O. Database managers and other applications can
perceive a file as a raw character device, to which asynchronous, non-locking,
direct I/0 is possible

The CFS qiomkfile utility creates
a a file with preallocated,
contiguous disk space, a raw
character device whose name is

Administrative hint 28

Administrators of Oracle databases that

the file name with the character continue to utilize Quick I/O should use
string ::cdev::vxfs appended, and the -h option with the giomkfile utility
a symbolic link between the two to create Oracle container files with the

so that the file can be accessed via | correct header size and alignment.
the File Device Driver (FDD) built
into CFS. The database
management system or application does I/O to the character device; operating
system and other utilities use the regular file.

m Legacy database management systems. Most 32-bit database management
systems can run on 64-bit computers, but are limited to 4 gigabytes of
memory addressability. Cached Quick I/O uses the larger memory capacity of
a typical 64-bit computer as an extended cache

m Multi-database hosts. For computers that host multiple databases, Cached
Quick I/O forms a pooled cache resource

On 32-bit computers, for example, a database is limited to a maximum cache size
of 4 gigabytes of physical memory (minus operating system, database manager,

CFS Differentiator: database management system accelerators | 189
The CFS Concurrent I/0 feature

and application code and buffer requirements) because that’s all that 32 bits can
address. For read operations, Cached Quick I/O stores blocks of database data in
file system cache. This reduces the number of physical I/O operations required.

On 64-bit systems, where memory addressability is less of a limitation, using the
file system caching still increases performance by taking advantage of the read-
ahead functionality. To maintain the correct data in the buffer for write
operations, Cached Quick I/O keeps the page cache in sync with data written to
disk.

The CFS Concurrent I/0 feature

For database management systems that do not provide API specifications, as
well as for other applications that manage their own multi-threaded I/0O, CFS
includes a Concurrent I/O (CIO) feature. An administrator can specify CIO as a
mount option to cause all files in a file system, except for those for which the
option is specifically overridden, to be accessed directly and concurrently,
bypassing file system data copying and write locking. Alternatively, software
developers can use ioctl system calls specifying the VX_CONCURRENT cache
advisory to enable and disable CIO for individual files.

When CIO is enabled for a file, write requests cause CFS to acquire shared locks,
rather than exclusive ones. This allows multiple application read and write
requests to the file to execute concurrently. The presumption is that
applications coordinate their accesses to data internally so that data is not
corrupted by overlapping writes, and so that reads to not return the results of
partial updates. As with other forms of direct I/O, CFS requires that application

buffer memory addresses be aligned on disk sector-size boundaries.?3 If
application buffers are not sector size-aligned, CFS buffers the I/0. CIO applies
only to application read and write requests; other requests obey the customary
POSIX semantics.

23.For example, if disk sector size is 512 bytes, application I/O buffers’ starting memory
byte addresses must be multiples of 512.

190 | CFS Differentiator: database management system accelerators
The CFS Concurrent I/0 feature

Installing and configuring CFS

m Installing and configuring CFS

m Tuning CFS file systems

192

Installing and configuring CFS

This chapter includes the following topics:

m The Storage Foundation Common Product Installer

m Best practices for installing Storage Foundation products
m General installation considerations

m Installation overview

m Volume configuration

m Cluster fencing configuration

m File system creation

m Mount configuration

m Application preparation

CFS operates in conjunction with several other Storage Foundation software
components:

m Cluster Volume Manager (CVM). CVM instantiates the shared volumes used
for file storage

m Veritas Cluster Server (VCS). VCS provides monitoring and failover services
for CFS. In the SFCFS-HA, SFSYBCE, SFRAC and SFCFSRAC bundles, VCS also
provides failover services for database management systems and for
applications that use shared file systems

All three of these components must be installed and configured in order for
applications and database managers to access shared file systems. Additional
installations may be required, for example, if CFS is part of an SFRAC (Storage
Foundation for Real Application Cluster) Oracle installation. Finally, installation
of SFCFS, SFCFS-HA, SFSCE, or SFRAC may require coordination with other
Symantec products, such as Symantec Security Services and Storage
Foundation Manager, if those are in use in the data center.

194

Installing and configuring CFS
The Storage Foundation Common Product Installer

The Storage Foundation Common Product Installer

Storage Foundation products generally consist of multiple installable packages.
The interactive Common Product Installerincluded with all Storage Foundation
products simplifies installation and initial configuration of products and
bundles to the greatest extent possible. The Common Product Installer does the
following:

m Identifies the task. Prompts the administrator to determine which Storage
Foundation bundles or products are to be installed

m Gathers information. Prompts the administrator for information required to
install the selected products or bundles

m Installs. Selects and installs the individual packages that make up the
products or product bundles

m Configures. Creates and populates configuration files required by the
installed products

For the most part, administrators that install Storage Foundation products and
bundle are not concerned with the details of individual product installation and
integration.

Best practices for installing Storage Foundation

products

Observing a few simple best practices can expedite Storage Foundation
installation and configuration. These practices generally fall into one of two
areas:

m Preparation. Making sure that the systems on which the software is to be
installed and the surrounding hardware and software environment are
properly prepared for installation

m Information gathering. Acquiring the information required during
installation, so that installation can proceed uninterrupted from start to
finish

Preparing for installation: the Storage Foundation pre-check utility

The Storage Foundation Common Product Installer includes a pre-check utility
that can be run directly from the installation media. Given a list of the products
to be installed, the utility produces a report of the operating system, patch level,
and other requirements.

In addition to running the pre-check utility, administrators should refer to the

Installing and configuring CFS
Best practices for installing Storage Foundation products

Release Notes documents included with all Storage Foundation products.
Release Notes contain information such as patch requirements and restrictions
that is discovered after product content is frozen for release. Administrators
should apply all required upgrades and patches for operating systems and other
software prior to installing Storage Foundation products.

Preparing for installation: the Veritas Installation Assessment

Service

Alternatively, administrators can access the free web-based VERITAS
Installation Assessment Service (VIAS, found at https:// vias.symantec.com/
vias/vias/) to determine the readiness of a designated set of systems for
installation of Storage Foundation products.

To use the VIAS service, an administrator first downloads the VZAS Data
Collector from the Symantec web site. The VIAS Data Collector runs on a single
system. It collects hardware and software configuration information from a
designated list of target systems and consolidates it into a file. The file is
transmitted to Symantec, where its contents are compared against current
hardware and software compatibility lists, and a report is generated listing
requirements that must be met for a successful installation or upgrade of the
designated Storage Foundation products or bundles.

For installations whose operating policies prohibit communication of
configuration information outside the organization, the VIAS service includes
downloadable checklists that exhaustively specify the prerequisites for
successful installation of Storage Foundation products.

The free online VIAS service is the preferable means of verifying the readiness
of systems for Storage Foundation product installation, in part because it is
simple to operate, but most importantly because Symantec updates VIAS
hardware and software compatibility lists dynamically, so the online service
always evaluates configuration information against the latest known
requirements for successful installation.

Information gathering

Certain information about the data center environment is required to install
Storage Foundation products. For example, the Common Product Installer
requires data center domain names, VCS cluster names and ID numbers, node
names, a default CVM disk group name, and so forth, in order to create accurate
configuration files. Some “information” is actually in the form of decisions, for
example, which network interfaces are to be used as a cluster’s private network,
or whether CVM enclosure-based naming is to be used to identify disk locations.
These decisions should be made prior to starting installation to avoid the need
for hasty “in-flight” data center policy decisions.

195

https://vias.symantec.com/vias/vias/
https://vias.symantec.com/vias/vias/

196

Installing and configuring CFS
General installation considerations

To assure a smooth installation process, administrators should read the
installation guides for the products to be installed to determine what
information and decisions are required (for the most part, the Common Product
Installer Guideis adequate for this purpose). Storage Foundation product
installation guides can be found on:

m Distribution media. All Storage Foundation distribution media contain
installation guides for the products on them

m Symantec Web site. Installation guides and other documentation are
available from http://www.symantec.com/business/support/index.jsp

Downloading documentation is useful for pre-purchase product evaluation, as
well as in preparing for installation prior to product delivery.

General installation considerations

Observing a few general installation practices for CFS-related Storage
Foundation products simplifies installation and results in reliable and trouble-
free cluster operation:

m Remote installation. Storage Foundation products can be directly installed
on the systems on which they are to run, or they can be installed remotely
using secure shell (ssh) or remote shell (rsh) connections. All Storage
Foundation bundles that include CFS (SFCFS, SFHA, SFSCE, and SFRAC) also
include VCS, for which ssh or rsh is an installation requirement. Remote
console shells must be configured to operate without passwords during
installation. Administrators must be authorized to run ssh or rsh on the
systems from which they install, and must have superuser (root) access to the
systems on which they install Storage Foundation products

m Time synchronization. Both CFS and VCS require that all cluster nodes have
a synchronized notion of time. Symantec does not recommend manual time
synchronization, because it is difficult to accomplish, fragile, and error-
prone. A cluster-wide or data center-wide Network Time Protocol (NTP)
service is preferable for this purpose. NTP should be installed in the data
center and operating prior to Storage Foundation product installation

m Cluster and data disk fencing. VCS requires at least three coordinator disks
that support SCSI-3 Persistent Group Reservations (PGR) to resolve cluster
partitions that result from failures of the private network. (Alternatively, a
coordinator servercan be configured in place of one of the disks.) If a cluser’s
data disks are PGR-capable, CVM uses data disk fencing (“Feature 1: Cluster
and data disk fencing” on page 33) to protect against data corruption when a
partition occurs. Volumes for CFS file systems can be configured from non-
PGR disks, but PGR-based data disk fencing is the most trustworthy
mechanism for avoiding data corruption if a cluster partitions. If a cluster’s

http://www.symantec.com/business/support/index.jsp

Installing and configuring CFS
Installation overview

disks are PGR-capable, Symantec strongly recommends that Storage
Foundation products be installed with data disk fencing enabled

Response files. During installation, the Common Product Installer generates
several files, among them a response file, in which all administrator
responses to installer queries are captured. An administrator can edit the
response file from an installation to change system-specific information and
use it as a script to drive subsequent installations. Response files are
particularly useful in larger clusters and in data centers with a number of
similar clusters

Event notifications. Administrators can configure Storage Foundation
products to deliver event notifications to electronic mail accounts, to one or
more Simple Network Management Protocol (SNMP) consoles, or to a
combination of the two. During installation, administrators supply
configuration information for whichever of these services are to be employed
(server names or IP addresses, port numbers, electronic mail addresses, and
so forth)

Symantec Security Services. In data centers that use Symantec Security
Services, administrators can configure Storage Foundation products to use
their services for central user authentication and to encrypt inter-system
communication traffic. Symantec Security Services must be operating during
Storage Foundation installation in order for this option to be elected

Installation overview

The Storage Foundation Common Product Installer insulates administrators
from most details of component product installation and basic configuration.
When the Common Product Installer completes installation of one of the CFS
products (SFCFS, SFHA, SFSCE, and SFRAC), it has configured and verified a
cluster, and created service groups for CVM and CFS. When product installation
is complete, the administrator next executes the system and application-specific
configuration steps:

Volume configuration. Adding the disks or LUNs that make up the cluster’s
pool of shared storage to the CVM default volume group, and create the
needed volumes

Cluster fencing configuration. Creating a volume group to contain the LUNs
used as cluster fencing coordinator disks and adding three or more suitable
LUNS s to it (alternatively, coordinator servers can be configured in place of
one or more of the coordinator disks)

File system creation. Creating the file systems required by applications that
will run on the cluster’s nodes with the parameters most suitable to the
applications they will serve

197

198

Installing and configuring CFS

Volume configuration

m Mount configuration. Specifying the mount configuration, volumes that
contain shared file systems, the mount points at which they are to be
mounted, and the mount parameters (for example, sharing and writability)

m Application preparation. Installing applications, configuring them as VCS
service groups if necessary, and specifying any required configuration
parameters

While the Storage Foundation Common Product Installer does insulate the
administrator from most VCS and CVM details, a working knowledge of both
products is helpful during initial configuration of a CFS cluster. Similarly, a
working knowledge of applications that will co-reside with CFS on cluster nodes
helps make their installation and initial configuration trouble-free, particularly
if they are to be configured as VCS service groups.

Volume configuration

CFS shared file systems use CVM volumes to store data.

Architecturally, CVM volumes are organized Configure

identically to those managed by Symantec’s (single- CVM volumes

host) VXVM volume manager. Each volume is a layered ‘

structure built up from plexes, which in turn consist of :

subdisks, or subdivisions of the block address spaces Conflgl.!re

presented by physical disks or LUNs. VO fencing

The Common Product Installer runs the cfscluster p l’

utility to perform initial configuration of the CVM Create

cluster service. Once CVM is configured, the | CFS file systems

administrator uses CVM commands to create the ‘

default disk group and any additional disk groups p

required. For each disk group, the administrator uses Create

the cfsdgadm command configure it as a cluster |File system mounts |

resource. The administrator then scanseach node’s ‘

disk I/O interfaces to discover disks and LUNSs, and 's Prepare

adds each one to a disk group. Disks are added to the .
applications

default disk group phase if no alternate group is
specified;

CVM disk groups are either shared among all cluster nodes or private to a single
node. In order for a CFS file system to be shared among cluster nodes, the
volumes it occupies must be allocated from a shared disk group. An
administrator can use the cfsdgadm command to specify different disk group
activation modes for different cluster nodes. A cluster node can activate a disk
group to share read or write access with other nodes, to be the exclusive writer
of volumes in the disk group, or to become a reader and deny all other nodes
ability to write to the disk group’s volumes. Volume activation modes apply to
all volumes in a disk group, and can therefore be used to regulate cluster nodes’

Installing and configuring CFS
Volume configuration

access to all file systems whose volumes are in the disk group.

Once disks and LUNs have been assigned to disk groups, the administrator uses
CVM administrative commands to create volumes in anticipation of file system
requirements. Best practices for shared volumes are essentially the same as for
single-host volumes:

m Disk grouping. It is usually advantageous to place all of an application’s
disks in the same disk group to simplify administration and especially,
migration to another system

m Similar disk types. For consistent performance and reliability, volumes
should normally consist of disks or LUNs of the same, or at least closely
similar, type in terms of raw I/O performance and reliability. An exception
might be made for solid state disks, which can be mirrored with rotating
disks using the CVM preferred plex option to direct read requests to the
higher performing device

m Mirrored volume allocation. While they do offer performance benefits for
certain I/O loads, in most cases mirroring and RAID are employed to protect
against data loss due to disk failure. For many applications’ data, the
mirroring or RAID protection provided by disk arrays is adequate. If disk
array mirroring is not available, or if the criticality of data warrants
protection beyond that offered by a single disk array, CVM can mirror data
between two or more disks or LUNs. For maximum protection, the disks that
make up a mirrored volume should utilize different physical resources—disks
at a minimum, but in addition, separate I/O paths and, in cases where
multiple disk arrays are employed, LUNs from different disk arrays

m Thin provisioning. If the disk arrays used to store CFS file system data are
capable of thin provisioning, they should be configured to make use of the
feature. CFS space allocation algorithms are “thin provisioning-friendly” in
the sense that they reuse storage space that has been used previously and
then deallocated in preference to allocating space that has never been used
before. For thin-provisioned disk arrays, this results in fewer provisioning
operations and less physical storage consumption.

m DST storage classes. When
Dynamic Storage Tiering is
configured for a file system,
CFS transparently moves files Administrators can use the DST
between different storage tiers | analyzer tool, available at no cost from
based on criteria like recent the Symantec web site, to determine the
activity, location in the name cost impact of different multi-tier
space, owner and group, andso | gtorage strategies on overall file system

Administrative hint 29

forth. The primary benefit of storage cost.
DST is reduction of overall

storage cost with minimal
impact on application performance, although its use may also be justified
based on other criteria. When creating and tagging volumes that will become

199

200 | Installing and configuring CFS
Cluster fencing configuration

members of multi-volume file system VSETSs, the administrator should
ensure that volumes meet the cost, data availability, and I/O performance
requirements of the storage tiers of which they will become part

Cluster fencing configuration

coordination servers to enable a single cluster node to Configure
unambiguously gain control of a majority in the event CVM volumes
of a cluster partition. Three or any higher odd number *

of coordinator disks or servers are required; all disks [

VCS requires three or more coordinator disks or [

must be directly visible to all cluster nodes. For Conflgl!re
maximum resiliency, each coordinator disk should be /O fencing
presented by a different disk array. CVM does not use *

coordinator disks to store data, so storage

o] .. Create
administrators should configure LUNs of the minimum CFS file systems
capacity supported by the disk array. LUNs to be used ™ J
as VCS coordinator disks must support SCSI-3 *
Persistent Group Reservations (PGR). (Create
The administrator uses an option of the CVM vxdg | File system mounts)
command to create a dedicated disk group for a *
cluster’s coordinator disks, and adds the coordinator Prepare
disks to it epa

’ applications

Administrative hint 30

Administrators can use the Storage
Foundation vxfentsthdw utility to
determine whether a given disk or LUN
supports SCSI-3 Persistent Group
Reservations.

Installing and configuring CFS
File system creation

File system creation

An administrator uses the UNIX mkfs command, or
alternatively the CFS-specific mkfs.vxfs command to
create a CFS file system, specifying certain options that
can affect the file system’s performance. Some creation
time options cannot be changed, so administrators
should choose them carefully:

Configure
CVM volumes

Conflgure
[e] fencmg

File system block size. The atomic unit of CFS space
management. CFS supports file system’s block sizes
of 1, 2, 4, or 8 kilobytes. File systems with larger Create

block sizes can allocate space for large files faster; CFS file systems
file systems with smaller block sizes utilize space
more efficiently when storing small files. The block [

Create

size chosen for a file system that will contain
File system mounts)

database table space files should be the same as the
database block size

inode size. CFS persistent inodes are either 256 or Prepare

512 bytes in size. The main benefit of larger inodes applications
is that they can hold more access control list entries
(But inherited access control lists are stored in separate inodes and linked to
files’ inodes. Administrators should almost always accept the default 256
byte inode size

First volume. To make storage tiering (Chapter 10) possible, a CFS file system
must occupy more than one volume. An administrator can add volumes to or
remove them from a file system’s volume set (VSET), except for the volume
on which the file system is originally created. CFS storage tiering best
practice is to create the file system on a resilient, high-performing volume,
and specify file placement policy rules that limit it to storing metadata

In addition to these parameters that cannot be changed, an administrator can
override the default size of the intent log. A larger intent log can be useful in file
systems that are expected to be subject to high frequency metadata activity.
Both of these parameters can be changed after file system creation, so they are
not as critical as file system block size, inode size, and first volume, which are
fixed at file system creation.

During file system creation, CFS queries CVM to determine the geometry of its
volume (volume 0), and uses the response to set default values for alignment and
sequential read-ahead and write-behind parameters (read_pref _io,
read_nstream, write_pref_io, and write_nstream, “Sequential read-ahead and
write-behind ” on page 220). The defaults set by CFS are based on the geometry

that CVM reports for the file system’s first volume. The administrator can use
the vxtunefs utility to change these parameter values to optimize for other
volumes.

201

202

Installing and configuring CFS
Mount configuration

Mount configuration

Configure
CVM volumes

Configure
I/0 fencing

v

Create
| CFS file systems |

v

Create h
File system mounts;

Prepare
applications

~ An administrator mounts each CFS file system either
for shared or localaccess. File systems mounted in
shared mode must use shared CVM volumes for storage
‘ (local file systems can use private volumes, or indeed,
N operating system raw devices, for storage). While
mounted as local, a file system cannot be mounted on
other cluster nodes.

Administrative hint 31

If a file system is to be mounted with
different read-write access on different
cluster nodes, the primary mount must
include the crw option.

File systems that are initially mounted for shared
access can be mounted by some or all of a cluster’s
nodes. A shared file system can be mounted for read-
write access on its primary node can be mounted either

for read-write or read-only access on other cluster
nodes, provided that the crw mount option is specified when it is first mounted.
A file system mounted for read-only access on its primary node can only be
mounted for read-only access on other nodes. File system mounts whose write
access option differs from node to node are called asymmetric mounts.

The CFS instance on the first
cluster node to mount a shared
file system becomes the file
system’s primary instance. Other
instances that mount the file
system become its secondary
instances.

Most CFS file system
management functions, including
intent logging, space allocation,
and lock management are
performed by both primary and
secondary instances. Certain key
functions, including delegation of
allocation unit control and
Storage Checkpoint creation and

Administrative hint 32

CFS reserves the CVM volumes used by
shared file systems, and thus protects
them from inappropriate access by
Storage Foundation administrative
commands. There is no similar
protection against operating system
commands, however. Administrators
should use caution with UNIX
commands such as dd on shared
volumes, to avoid corrupting data in
shared file systems.

deletion, are performed only by a file system’s primary instance. In clusters that
support multiple CFS file systems, therefore, it is usually advisable to distribute
the file systems’ primary instance roles among nodes by issuing mount

commands on different nodes.

Obviously, a CFS file system must
have a primary instance at all
times. If a file system’s primary
instance fails (for example,
because the node on which it is
running fails), CFS elects one of
the secondaries as the file
system’s new primary instance.

Administrators run the
cfsmntadm command, installed
during CFS installation, prior to
mounting a shared file system.
The cfsmntadm command
configures the required VCS
resources and service groups for
the file system, and sets up
automatic file system mounting
and unmounting as nodes join

and leave a cluster. Using options of the cfsmntadm command, an administrator
can specify which cluster nodes are eligible to mount a file system, the nodes on

Installing and configuring CFS
Mount configuration

Administrative hint 33

After initial configuration of CFS and
shared file systems, administrators use
the cfsdgadm and cfsmntadm
commands for on-going administration
of shared disk groups and file systems.

Administrative hint 34

Administrators can use an option of the
fsclustadm command to learn which
node is hosting the primary CFS
instance of a given file system and to
change the node hosting the primary
instance.

which the file system should be mounted automatically, the preferred primary
node (another node takes on the primary role if the preferred primary node is
not running at mount time), and the file system’s mount options.

203

204 | Installing and configuring CFS

Application preparation

Application preparation

In general, applications running on nodes of a CFS
cluster use file systems just as they would if they were
running on individual non-clustered systems.
Cluster-specific preparation is necessary for an
application to run as a failover or parallel service
group.

To prepare an application to operate as a VCS service,
a developer defines the resources it requires and the
dependencies among them. To be part of a service
group, a resource requires a VCS type definition and
an agent that can start, stop, and monitor it. VCS
includes type definitions and agents for the most
common types of resources, such as network
interfaces, virtual IP addresses, CVM disk groups and
volumes, and some popular applications such as the
Apache web server.

The administrator uses either command line or
graphical VCS configuration tools to create a VCS

Configure
CVM volumes

v

Configure
I/0 fencing

v

Create
| CFS file systems

'

Create

\File system mounts |

Prepare
applications

service group definition for the application. The service group specifies the
application’s resources and dependencies among them, as well as any inter-
service group dependencies, and is inserted into the cluster’s main.cf file.

The cfsdgadm and cfsmntadm utilities structure CVM volumes and CFS file
systems as parallel VCS service groups; applications that use them are normally
structured as failover service groups, and should have group dependencies on
the file systems and volumes they require. The VCS service group names of file
systems and volume groups can be found in the cluster’s main.cf file after the

utilities run.

Chapter

Tuning CFS file systems

This chapter includes the following topics:

To tune or not to tune

An overview of CFS tuning

Hardware configuration: tuning the CFS environment
Tuning CFS file systems

File system creation time tuning considerations
Mount-time file system tuning considerations

Tuning CFS during daily operation: the vxtunefs command
Tuning CFS during daily operation: the fsadm utility
Application development tuning considerations
Tuning CFS for space efficiency

Tuning CFS for performance

Tuning CFS for sequential I/0 with disk arrays

Tradeoffs in designing CFS-based applications and systems

206

Tuning CFS file systems
To tune or not to tune

The process of adjusting the operating parameters of a file system to optimize
space utilization and I/O performance is commonly called tuning. CFS has a
number of parameters that an administrator can adjust to tune a file system to
match the needs of different I/O workloads.

CFS tunables are stored persistently in two locations:

B /etc/vx/tunefstab. CFS stores parameters specified by the vxtunefs
administrative command in the /etc/vx/tunefstab file. Tunables may be file
system-specific or may apply to all file systems in a cluster. CFS propagates
changes in the tunefstab file to all cluster nodes

m Operating system configuration files. Certain CFS tunables are stored in
operating system configuration files, such as /etc/system on Solaris
platforms. An administrator modifies these by editing the file on the node for
which the tunables are to be changed. Changes to driver-level tunable values
take effect after driver reload; others take effect after node reboot

This chapter presents general guidelines tuning CFS to optimize I/O
performance and space efficiency for the most frequently-encountered file
types and access patterns. For definitive information and detailed instructions
about the use of tunables, mount options, and application program advisories,
the reader is referred to the Veritas Storage Foundation Cluster File System
Administrator’s Guide and the man pages for the applicable operating system.

To tune or not to tune

CFS file systems have been deployed in production applications for nearly a
decade. During that time, much has been learned about optimizing storage space
efficiency and I/O performance. As a result, the default values for most CFS
tunables tend to provide optimal storage utilization and I/O performance for
workloads that contain a balance of:

m File I/O types. Random and sequential, small and large, and read and write
I/0 requests

m Data and metadata operations. Metadata (file creation, deletion, renaming,
permission changes, and so forth) and data (reading and writing) operations

m File sharing. Single-client and shared file access

If a file system’s I/0 load includes all of these, leaving tunables at the default
values (set when a file system is created) generally results in near-optimal
performance. For example, CFS tunable default values usually provide good
performance for file systems that contain the home directories (personal files)
of large numbers of users. Default tunables are also usually acceptable for
Oracle transactional databases for a different reason: the Oracle database
management system uses the ODM APIs to do its own “tuning.”

Many CFS file systems are deployed in applications with specific file sizes, I/O

Tuning CFS file systems | 207
To tune or not to tune

loads, and data consistency needs. File systems used as storage containers for
databases of business transactions are a good example. Once an initial set of
database container files has been created, these file systems experience
relatively few file system metadata operations—files are opened when a
database starts up and usually remain open indefinitely. Occasionally, a
database administrator creates new container files, or extends existing ones. I/O
requests are addressed to random database blocks; their sizes are typically a
small multiple of the database block size. Thus, a CFS file system that will be
used for transactional database container storage should be tuned to handle
many small random I/O operations, and relatively few file creations and
deletions.

File systems that provide workstation backing storage for groups of media
artists or product designers would typically have somewhat different I/O loads.
Metadata operations would be more frequent, but not greatly so. I/O requests
would typically be large (multiple megabytes) and sequential, as users “check
out” entire files to work on, and check them in again when they finish. File
systems used in these applications should be tuned for large sequential I/O
operations, and strong consideration should be given to minimizing
fragmentation.

CFS file systems are deployed in a wide variety of applications with a wide
variety of file storage requirements and I/O characteristics. Especially popular
are seven classes of applications, each of which makes unique demands on a file
system:

m Transactional databases. Applications that keep records of sales, product
and service deliveries, registrations, and so forth, fall into this category,
whether they use relational database management systems or other indexing

techniques?* to organize their data. Transaction records are typically small
in size (a few kilobytes of data), and are read and written in random order,
with read activity dominating in most cases. I/O load tends to be “bursty,”
characterized by busy peaks whose timing is not always predictable, followed
by idle periods. The nature of transaction processing is such that I/O
resources must be provisioned to handle peak activity with little or no
increase in latency

m Datamining. Applications that analyze large bodies of records fall into this
category. They process thousands or millions of records at a time, searching
for trends or patterns, or simply accumulating statistics. Their I/O usually
consists predominantly of large sequential reads—they typically scan data
sets from beginning to end—with very little writing

m Personal file serving. Most enterprises provide some form of managed
central storage for data created and used by their employees. The nature of
personal business data varies from industry to industry, but in general

24.For example, see the discussion on page 50 about using sparse files to simplify data
organization for large index spaces.

208

Tuning CFS file systems
To tune or not to tune

personal file serving is characterized by large numbers of clients and
frequent metadata activity. Individual file accesses tend to be sequential, but
the number of clients results in random I/0 to the file system. Because clients
tend to read files, work with them, and return them to the data store, overall
I/0 to the file system is usually balanced between reading and writing

Media. Audio-visual media are usually stored centrally on high-capacity file
servers, and downloaded to workstations for editing or to “server farms” for
transformation and rendering. I/O workloads are dominated by high-
bandwidth sequential transfers of multi-gigabyte files. As with personal file
serving, media workloads have a balance of reading and writing. Distribution
of the finished product, however, is dominated by reading from the file server

Extract, Transform, and Load (ETL) As enterprises seek to derive value from
their digital assets, applications that extract data from transactional
databases, transform it for analysis, and load it into specialized databases,
are becoming popular. CFS is particularly suitable for applications of this
type, because different phases of an application can run on different cluster
nodes and share access to data, either simultaneously or sequentially. The
extraction phase of a typical ETL application writes somewhat less data than
it reads, because it preserves only those data elements needed for later
analysis. The loading phase tends to be dominated by large sequential writes
as the application lays out data for efficient analysis

Build server. Enterprises that develop software, either for their own use or
for sale, often dedicate servers to compiling and building complete packages
on a daily basis. Compiling and linking software is “bursty”—periods of
intense I/O activity are interspersed with lulls as computations are
performed. Data (source code files, temporary files, and binary module
images) is accessed randomly, with a balance of reads and writes

Messaging. Many enterprises use dedicated messaging servers to integrate
disparate applications into a cohesive information processing whole.
Applications communicate with each other by sending messages to the
messaging server, which queues them for processing by their destination
application servers. Messages may indicate major events (e.g., close of
business day), or may be as simple as a single online transaction that triggers
shipping, billing, accounting, and customer relationship management
processes. As the central coordination point for all IT, messaging servers
must be absolutely reliable. Driven by external events, I/0 is typically
random, and the request load can be heavy during active periods. Messages
themselves are typically small

Each of these seven classes of application places unique demands on a file
system. Table 13-1 summarizes the seven applications’ relative characteristics
as a backdrop for the discussion of tuning CFS file systems for efficient space

utilization and optimal I/O performance.

Tuning CFS file systems

To tune or not to tune

Table 13-1 Typical properties of common CFS application /O workloads
Extract
D Fil . ’ Buil .
Property Databas.e a.tapase € . Media Transform, Clle Messaging
(transaction) | (mining) serving server
Load
Typical Large Large Mixed Very large | Mixed Small Small
file size
Typical Small Small Very Tens of Moderate Thou- Tens of
number of large thousands sands thousands
files
Metadata Negligible Negligible Very Moderate Moderate Heavy Small
1/0 load heavy
Read- Heavy Heavy Heavy Moderate Heavy Heavy Heavy
write load
Typical Small Large Mixed Very large | Mixed Small Small
I/0 size
1/0 type Random Sequential | Random Sequential | Sequential Random Random
Read- 70%-30% 95%-5% 50%-50% | 50%-50% 40%-60% 50%50% | 80%-20%
write mix
Example Oracle Sybase NFS, CIFS | NFS, CIFS Informatica | Various Tibco EMS

The sections that follow describe how CFS can be tuned to utilize storage
efficiently, provide appropriate data integrity guarantees, and perform

optimally for these and other workloads.

209

210 | Tuning CFS file systems
An overview of CFS tuning

An overview of CFS tuning

A few CFS tuning considerations
are not specific to data types or
application workloads, but are
applicable in all situations. Chief
among them is distribution of the
file system primary role in
clusters that host multiple file
systems. While CFS is largely

Administrative hint 35

An administrator can use the setpolicy
option of the cfsmntadm console
command to permanently designate the
order in which cluster nodes assume the
mastership of a file system. The

symmetric, in the sense that all
instances can perform most
functions, a few key functions,
such as file system resizing and
online layout upgrades, are
performed only by a file system’s
primary CFS instance. By default,
a file system’s primary instance is
the one that mounts it first. Administrators may override this, however, and
designate specific cluster nodes to fill the primary role for specific file systems.

setpolicy option of the fsclustadm
command can also be used for this
purpose, but it operates only on the
running cluster; it does not change the
VCS main.cf configuration file
permanently.

In clusters that host multiple file systems, administrators may wish to distribute
file systems’ primary instance roles among nodes to distribute primary instance
processing load evenly.

CFS tuning points

Administrators and developers can affect CFS file system tuning in six areas:

m Hardware configuration. While CFS and CVM can be configured for greater
or lesser I/O performance and resiliency to failures, it is also true that for a
given software configuration, higher performing or more resilient hardware
components will out-perform or outlast lesser ones

m CVM volume creation. The number of columns and mirrors in a volume can
affect both business transaction (random access) and sequential streaming
1I/0 performance

m File system creation. Administrators specify file system options such as file
system block size, inode size, and intent log size, at file system creation time.
Some of these are irreversible choices that cannot be altered during a file
system’s lifetime

m File system mounting. Administrators can specify options that affect I/O
performance and data integrity guarantees when they mount file systems.
These include Quick I/O and concurrent I/0 (discussed in Chapter 11 on
page 182), data and metadata logging guarantees, and caching behavior.
Some mount options override default behaviors that are assumed by or

Tuning CFS file systems | 211
Hardware configuration: tuning the CFS environment

programmed into applications, and so should be used only with full
knowledge of the consequences on application behavior

m Ongoing operation. An administrator can use the CFS vxtunefs utility
program to alter the values of certain file system performance parameters,
particularly those that affect sequential I/O performance and File Change
Log behavior, while a file system is mounted and in use. In addition, the
fsadm utility can be used to reorganize (defragment) files and directories,
resize and move intent logs, and enable or disable large file support

m Application development. Application developers can include CFS libraries
in their applications. These libraries allow them to program advisories that
affect CFS behavior into their applications. Advisories include both those
that control file system cache behavior and those that affect storage
allocation for individual files

The sections that follow discuss CFS tuning in each of these areas.

Hardware configuration: tuning the CFS
environment

Tuning a CFS file system starts with its storage. Different types of disks, disk
array logical units, I/O interfaces, access paths, volume configurations, and
other factors can affect file system performance. The two primary factors in
tuning the CFS environment are the hardware components and configuration
and the CVM volume configuration.

Hardware configuration tuning considerations

Choosing and configuring the hardware that provides persistent storage for a
CFS file system is a classic three-way balance between cost, resiliency to
failures, and I/0 performance requirements.

Beginning with disks, the choice has conventionally been between high-RPM
disks of moderate capacity (200-400 gigabytes) and lower-RPM, high-capacity
(1-2 terabytes) ones. Disk drive vendors claim greater reliability for high-RPM
disks, but this distinction is blurring as the increasing amounts of online data
drive the market toward high-capacity disks, which motivates vendors to
enhance their quality.

Recently, solid-state disks (SSDs) have matured to the point where they can
realistically be considered for enterprise-class file storage. But aside from their
cost per byte, which can be an order of magnitude greater than that of rotating
disks, SSDs perform relatively better with workloads consisting primarily of
random reads.

Most CFS file systems store their data on disk array logical units (LUNs), and

212 | Tuning CFS file systems
Hardware configuration: tuning the CFS environment

most disk arrays can be configured with a mixture of disk types. This flexibility
enables a file system designer to choose the most appropriate disk type for each
application. Generally, this means high-RPM disks for transactional
applications, SSDs for smaller data sets where data criticality justifies the cost,
and high-capacity disks for other data.

CFS Dynamic Storage Tiering makes it possible to distribute a file system across
several CVM volumes, each consisting of disks of a different type.
Administrators can define file relocation policies that cause CFS to relocate files
between different types of storage as their states or usage changes.

Disk arrays organize disks into mirror or RAID groups that provide a first line of
protection against disk failure. File system designers can choose among disk
array resiliency options, realizing that CVM can provide a second layer of
protection by mirroring LUNSs, even those presented by different disk arrays.
The main performance-related choices are the number of columns (disks) across
which the disk array stripes data, and the number of access paths for
communicating with LUNs (the latter is also a resiliency concern).

The final hardware configuration choice is the amount of memory in each
cluster node. CFS instances use dedicated cache memory to hold active inodes
and directory entries, but the greatest usage is for data cached in operating
system page cache. When configuring memory, file system designers should
consider the expected demands on each node, both those of file systems and
those of applications and the operating system itself.

Volume configuration tuning considerations

CFS requires CVM volumes for persistent storage, even if no CVM mirroring,
striping, or multi-path capabilities are configured. File system designers can
configure multi-LUN CVM volumes to increase flexibility, resiliency, and I/O
performance in the following ways:

m Flexibility. During operation, mirrors can be split from CVM volumes, and
deported to other systems for backup, data analysis, or testing, while the
main volumes remain in production use. Using the Portable Data Container
facility (PDC, page 43), volumes formed from split mirrors can even be
imported and used on platforms of different types

m Resiliency. CVM can mirror LUNs presented by different disk arrays, and
support multiple access paths to a LUN to increase resiliency above and
beyond what a disk array can provide. CVM can take either full-size or space-
optimized snapshots of volume contents to protect against data corruption.
Finally, its volume replication (VVR) facility, can replicate the contents of a
set of volumes across long distances for recoverability from site disasters

m I/O performance. CVM can configure volumes in which data is striped across
multiple columns (LUNs). Striping tends to improve performance beyond
that of a single LUN, both for sequential streaming applications and for

Tuning CFS file systems
Tuning CFS file systems

transactional applications that access data randomly. File system designers
should coordinate hardware and CVM configuration choices with CFS tuning
parameters so that the two interact synergistically

Tuning CFS file systems

Both the file system designer, the administrator, and the application developer
have access to tuning parameters that can affect CFS file system performance,
in some cases in conflicting or overriding ways. To appreciate the effects of
tuning parameters, it may be helpful to review the sequence of individual events
and actions that make up a simple CFS I/O operation. Figure 13-1, which repeats
Figure 9-2 for convenience, summarizes the sequence of actions that CFS
performs to append data to a file. Some details, such as resource locking, are
omitted, because the purpose of the figure is to illustrate how I/0O performance
can be affected by tuning parameter values.

Figure 13-1 A representative CFS |/O operation
’:I‘)’l;gm‘”:‘;f'; ..wait ... continues Application Aﬂ;m"
append {data and
reqrm in cache)
--_—_--—----------_----_----_ L B N
Processing Snml]
thread noadv:mnsJ

Asynchronous
activity

Asynchronous
activity

Create
intentlog
transaction
(update AU)

Intent log
activity

time —»

As Figure 13-1 suggests, CFS starts executing the operation by creating a
transaction, allocating storage for the new data, and committing the
transaction. If the file system is configured to write intent log transactions
immediately (mounted with the log mount option), CFS writes the intent log
record for the transaction at this point. Otherwise, writing can be delayed.

Next, if either of the VX_DIRECT or VX_UNBUFFERED tuning options that
cause data to be written directly from application buffers is in effect, CFS
schedules the data to be written directly from application buffers. Otherwise, it
allocates operating system cache pages and copies the data into them before
writing.

Next, CFS creates a transaction for updating the file’s inode (to reflect the new
file size, data location, and access time) and the allocation unit’s space map (to
reflect the storage allocated to the file). For recoverability, the order of
operations is important. The data must be written and the transaction must be
committed before the inode and allocation unit metadata are updated.

213

214

Tuning CFS file systems

File system creation time tuning considerations

The upward-pointing vertical arrows in the figure indicate points in the
sequence of actions at which I/O completion can be signaled to the application
requesting the append, depending on which of the tuning options discussed in
the sections that follow are in effect.

File system creation time tuning considerations

When using the mkfs.vxfs console command to create CFS file systems,
administrator specify (either explicitly or implicitly by allowing them to default)
options that can affect the file system’s performance. Some of these cannot be
changed once a file system has been created, so they should be chosen carefully.
The immutable parameters chosen at file system creation time are:

m File system block size. The file system block size is the unit in which CFS
manages the space assigned to it. A file system’s block size can be specified as
1, 2, 4, or 8 kilobytes. File system block size determines the largest file system
that can be created (32 terabytes with 1 kilobyte file system blocks; 256
terabytes with 8 kilobyte file system blocks) and the efficiency of space
utilization (all files occupy at least one file system block, no matter how little
data they contain)

m inode size. As stored on disk, a CFS file system’s inodes are either 256 or 512
bytes in size (When CFS caches inodes in memory, it appends additional
metadata to them). The primary use for larger inodes is to store more unique
access control list entries (Access control lists that are common to multiple
files are stored in separate inodes that are linked to files’ inodes.) Under most
circumstances, administrators should accept the CFS default inode size of
256 bytes, particularly if system memory is limited, or if the file system is
expected to host multiple Storage Checkpoints

m Volume zero. A CFS file system can occupy multiple CVM volumes, for
example to support storage tiering. With the exception of the first volume
assigned when a file system is created (Volume 0), volumes can be added to
and removed from a file systems volume set (VSET) at any time. When a file
system is expected to occupy multiple volumes, a best practice is to choose a
highly resilient, high-performing Volume 0, and specify file placement policy
rules that limit Volume 0 to storing file system metadata

Two other parameters that affect file system tuning can be specified at file
creation:

m Largefile support. Limiting a file systems to file sizes of 2 gigabytes or less
simplifies data structures and manipulation, and is primarily useful for
platforms with very limited memory. Large file support is enabled by default
for all platforms supported by CFS

m Intentlogsize. An administrator may specify the size of a file system’s intent
log (between 256 kilobytes and 256 megabytes, with a default of 16

Tuning CFS file systems
Mount-time file system tuning considerations

megabytes) when creating it. Each CFS instance’s intent log can be sized
separately. When a node mounts a file system for the first time, its CFS
instance creates an intent log with a size equal to that of the primary
instance’s log. In file systems subject to heavy metadata activity, larger
intent log sizes may improve performance, because they reduce the chance
that a full intent log will cause application requests to stall until transactions
have been made persistent in the on-disk log

Both of these parameters can be changed during a file system’s lifetime, so they
are not so critical to define correctly at creation time as are the immutable ones.

Mount-time file system tuning considerations

Administrators can affect application I/O performance through the options they
specify when mounting file systems. Mount options remain in effect only until a
file system is unmounted by all CFS instances. They can affect file system tuning
in three important ways:

Database I/O acceleration. Either Quick I/O or Concurrent I/O (CIO) database
I/0 acceleration (Chapter 11 on page 182), but not both, can be enabled by
mount options. Quick I/O and CIO improve database management system I/0
performance by bypassing kernel write locking and in-memory data copying
and by making it possible for database management systems to issue
asynchronous I/0 requests

Cache advisory overrides. File data and metadata caching advisories
encoded in applications can be overridden by specifying the convosync and
mincache mount options

Intent log behavior. Mount options can be used to alter the time at which the
intent log is written as well as suppress logging of atime and mtime metadata
updates

POSIX data and metadata persistence guarantees

By default, CFS signals applications that their write requests are complete when
both data and any consequent metadata updates are in page or buffer cache. It
performs disk writes after the completion signal. The POSIX standard includes
two cache advisories that enable applications to direct CFS to persist data and
metadata before signaling write request completion:

O_SYNC. Both data and any metadata updates implied by the request have
been stored persistently when request completion is signaled

0O_DSYNC. Data, but not necessarily implied metadata updates have been
stored persistently when request completion is signaled

215

216

Tuning CFS file systems

Mount-time file system tuning considerations

CFS data and metadata persistence guarantees

The CFS mount command includes two options that affect cache behavior:

m convosync. The convosync (convert O_SYNC) mount option overrides file
system cache behavior for application write requests that specify the
O_SYNC or O_DSYNC advisories

m mincache. The mincache mount option overrides file system cache behavior
for application read and write requests that do not specify the O_SYNC or
0O_DSYNC advisories

Table 13-2 lists the values that can be specified for these mount options and the
resulting modifications in caching behavior. The convosync option affects
metadata caching for write requests; mincache can affect both reads and writes.

Specifying the convesync mount option causes CFS to override all O_SYNC and
O_DSYNC advisories attached to application I/O requests. This option is
generally used to improve overall I/O performance, but can affect data integrity
if a system fails with unwritten data from O_SYNC or O_DSYNC requests in
cache. Application recovery procedures might assume that data reported as
having been written is in the file system’s disk image. Administrators should
therefore use the convosync mount option carefully, in full consultation with
application developers and support engineers.

Specifying the mincache mount option causes CFS to treat application I/O that
do notexplicitly specify a cache advisory as indicated in Table 13-2. In general, it
applies more stringent persistence guarantees to writes, but in the case of the
unbuffered option, applications must leave I/O buffers untouched until CFS
reports I/O completion to ensure that the data in them at the time of an I/O

Table 13-2

request is what is actually written.

Effect of mount options on CFS cache advisories

Mount option

convosync option
(effect on application write requests that

mincache option
(effect on application I/0 requests

VD specify O_SYNC or O_DSYNC) without O_SYNC or 0_DSYNC)

direct Transfers data directly from application buf- Transfers data directly to and from applica-
fers tion buffers
When CFS signals write completion, file data, | When CFS signals I/O completion, file data,
but not metadata, is guaranteed to be persis- but not metadata, is guaranteed to be persis-
tent tent

dsync Converts O_SYNC requests to VX_DSYNC Treats all application I/O requests as though

(equivalent to O_DSYNC)

When CFS signals I/O completion, file data,
but not metadata, is guaranteed to be persis-
tent

they had specified the VX_DSYNC advisory

Table 13-2

Tuning CFS file systems
Mount-time file system tuning considerations

Effect of mount options on CFS cache advisories (Continued)

Mount option

convosync option
(effect on application write requests that

mincache option
(effect on application I/0 requests

value . .
v specify O_SYNC or O_DSYNC) without O_SYNC or O_DSYNC)
unbuffered Transfers data directly from application buf- Transfers data directly to and from applica-
fers tion buffers
Neither file data nor metadata are guaranteed | Neither file data nor metadata are guaran-
to be persistent when CFS signals write com- teed to be persistent when CFS signals I/O
pletion completion
closesync Nullifies applications’ O_SYNC and O_DSYNC | Same behavior as
advisories convosync=closesync
Writes file data persistently only when the
last application to have a file open closes it
delay Nullifies applications’ O_SYNC and O_DSYNC | n/a
advisories.
Neither file data nor metadata are guaranteed
to be persistent when CFS signals I/O comple-
tion
tmpcache n/a Does not specify when file data and meta-

data are persistent

Other mount options that affect file system tuning

Other ways in which mount options can affect I/O performance include:

m Suppressing time stamp updates. The POSIX standard specifies that the
access (atime) and modification (mtime) times recorded in a file’s inode
should be updated each time the file is accessed and modified respectively.
Inode update transactions can result in substantial I/O overhead, however.
Because many applications do not require accurate atime and mtime, CFS
provides noatime and nomtime mount options. The noatime option
suppresses atime-only inode updates. The nomtime option causes CFS to
update mtime only at fixed intervals

m Erase on allocate. CFS provides a blkclear mount option to prevent
scavenging (allocating storage and reading its contents to discover what had
previously been written). The blkclear causes CFS to return zeros when
blocks that have not previously been written are read

m Datainlog. Normally, the CFS intent log records metadata updates. The
datainlog mount option causes the data from small (less than 8 kilobyte)
writes be written in the log as well. This option can reduce disk seeking in
high-frequency random access update scenarios, especially when the same
file system blocks are updated repeatedly

217

218 | Tuning CFS file systems
Tuning CFS during daily operation: the vxtunefs command

Finally, the log, delaylog, and tmplog mount options described in Table 13-3
affect performance by altering the time at which CFS writes intent log entries.

Table 13-3 Effect of mount options on CFS intent logging
Mount
. Intent log update time

option gup t

log CFS writes intent log entries that pertain to an application I/O request
persistently before signaling the application that its request is com-
plete.

delaylog CFS delays most intent log writes for about 3 seconds after signaling

completion to the application, and coalesces multiple entries into a sin-
gle write if possible. File deletion records are guaranteed to be persis-
tent.

delaylog is the default logging mode.

tmplog CFS delays all intent log writing for an indeterminate period, and
coalesces multiple entries into a single write if possible.

The log, delaylog, and tmplog mount options are cluster node-specific. To
enforce consistent log behavior throughout a cluster, the mount option must be
specified for all nodes.

Tuning CFS during daily operation: the vxtunefs
command

Administrators can use the vxtunefs command to make immediate adjustments
to tunable I/O parameters for mounted file systems. The vxtunefs command can
affect:

m Treatment of I/O requests. Parameters that specify how CFS buffers,
throttles, and schedules application I/O requests

m Extent allocation. Parameters that control file system extent allocation
policy

m File change log. Parameters that affect the behavior of file change logs

The vxtunefs command operates — ——
either on a list of mount points Administrative hint 36
specified in the command line, or . .
on all mounted file systems listed An administrator can specify an

in the /etc/vx/tunefstab file. File alternate location for the tunefstab file
system parameters that are by setting the value of the
altered through the vxtunefs VXTUNEFSTAB environment variable.

command take effect immediately

Tuning CFS file systems | 219
Tuning CFS during daily operation: the vxtunefs command

when the command is issued, and are propagated to all nodes in a cluster.

Buffered and direct 1/0

An administrator can mount a CFS file system with the option to transfer data
for large I/0 requests directly from application buffers, even for applications
that do not specify the VX_DIRECT or VX_UNBUFFERED cache advisories.
Table 13-4 lists the vxtunefs tunable parameters that affect application I/O
requests buffering.

Table 13-4 Parameters affecting direct and discovered direct I/0
vxtunefs parameter { Effect/comments
discovered_direct_iosz 1/0 request size above which CFS transfers data directly
(default: 256 kilobytes) to and from application buffers, without copying to page
cache.
max_direct_iosz Maximum size for non-buffered I/O request that CFS

issues to a volume. CFS breaks larger application I/O
requests into multiple requests of max_direct_iosz or

fewer bytes.
In addition: Maximum I/O request size that CVM issues to a disk.
vol_maxio CVM breaks larger requests into requests for vol_maxio
(default: 2,048 sectors) or fewer sectors, and issues them synchronously in
sequence

(Not set with vxtunefs)

CFS treats buffered read and write requests for more than
discovered_direct_iosz bytes as though the VX_UNBUFFERED cache advisory
were in effect. This is particularly significant with large I/O requests because it
conserves system memory and processing by eliminating copying of data
between application buffers and page cache.

The max_direct_iosz tunable specifies the largest non-buffered (subject to the
VX_DIRECT or VX_UNBUFFERED cache advisory, or specifying more than
discovered_direct_iosz bytes) I/O request CFS issues to a CVM volume. CFS
breaks larger non-buffered requests into requests of no more than
max_direct_iosz bytes, and issues them in sequence.

In addition to these, the CVM vol_maxio CVM parameter limits the size of I/O
requests that CVM issues to volumes’ member disks. If a CFS I/O request to a
volume would require CVM to issue a disk request of more than vol_maxio
bytes, CVM breaks it into smaller disk requests of vol_maxio-or fewer bytes.

220

Tuning CFS file systems
Tuning CFS during daily operation: the vxtunefs command

Write throttling

By default, CFS flushes file data from operating system page cache at regular
intervals. Administrators can limit the amount of operating system page cache
that CFS will allow a single file’s data to occupy in two ways. Table 13-5
describes how the max_diskq and write_throttle tunables affect CFS’s periodic
flushing of page cache.

Table 13-5 vxtunefs parameters affecting buffered write throttling
vxtunefs parameter | Effect/comments
max_diskq Maximum number of bytes of data that CFS will hold in
(default: 1 megabyte) page cache for a single file. CFS delays execution of I/O

requests to the file until its cached data drops below
max_diskq bytes

write_throttle Maximum number of write-cached pages per file that
(default: 0) CFS accumulates before flushing, independent of its
(implying no limit) cache flush timer

If the number of bytes in page cache waiting to be written to a single file reaches
max_diskq, CFS delays execution of further I/O requests for the file until the
amount of cached data drops below max_diskq.

If the number of pages cached for a single file exceeds write_throttle, CFS
schedules pages to be written until the number of pages cached for the file drops
below write_throttle, even if it has not reached its cache flush interval.

Sequential read-ahead and write-behind

Administrators can tune CFS to discover sequential buffered read and write
patterns and pre-read or post-write data in anticipation of application I/0
requests. Table 13-6 describes how the read_ahead, read_nstream,
read_pref_io, write_nstream, and write_pref _io tunables control CFS’s read-
ahead and write-behind behavior.

Table 13-6 vxtunefs parameters affecting read-ahead and write-behind
caching I/0

vxtunefs parameter | Effect/comments

read_ahead Disables read-ahead, or enables either single-stream or
(default: 1—detect multi-threaded sequential read detection
sequential read-ahead)

Tuning CFS file systems | 221
Tuning CFS during daily operation: the vxtunefs command

Table 13-6 vxtunefs parameters affecting read-ahead and write-behind
caching I/0 (Continued) (Continued)

vxtunefs parameter J Effect/comments

read_nstream read_nstream is the maximum number of read-ahead
(default: 1) and requests of size read_pref_io that CFS will allow to be
read_pref_io outstanding simultaneously

(default: 64 kilobytes)

write_nstream write_nstream is the maximum number of coalesced
(default: 1) and write requests of size write_pref io that CFS will allow to
write_pref_io be outstanding simultaneously

(default: 64 kilobytes)

An administrator can set the read_ahead tunable either to disable CFS read-
ahead entirely, to detect a single stream of sequential reads, or to detect
sequential reads from multiple sources.

When CFS detects that a file is being read sequentially, it allocates cache pages
and issues read_nstream sequential read requests, each for the next
read_pref_io bytes in the file, in anticipation of application read requests.
Similarly, when it detects that a file is being written sequentially, it coalesces up
to write_pref_io bytes of data in cache before issuing a write request. It allows
up to write_nstream sequential write requests to be in progress concurrently.
CFS sets default values for all four of these tunables by querying CVM when a
file system is mounted to determine the volume’s geometry (in particular,
number of columns and stripe unit size), so administrators typically need not be
concerned with them.

Controlling storage allocation and deallocation

Table 13-7 lists the vxtunefs tunable parameters that affect how CFS allocates
storage space when applications create or append data to files. The
initial_extent_size and max_seqio_extent_size tunables control the amount of
storage CFS allocates for files as they are written. By default, when an
application first writes data to a file, CFS allocates the larger of:

m Calculated minimum. the smallest number of file system blocks that is larger
than the amount of data written by the application

m Specified minimum. 8 kilobytes

An administrator can raise the default value by setting the initial_extent_size
tunable. Larger initial_extent_size is useful for file systems that predominantly
contain large files, because it tends to reduce the number of extents across
which file data is distributed.

Each time CFS allocates additional storage for an extending sequential write to a

222

Tuning CFS file systems

Tuning CFS during daily operation: the vxtunefs command

file, it doubles the amount of its preceding allocation, until
max_seqio_extent_size is reached, at which point it continues to allocate
max_seqio_extent_size-size extents when additional space is required. This
again tends to minimize the number of extents across which a large file’s data is

distributed.

Table 13-7 vxtunefs parameters affecting storage allocation

vxtunefs parameter |

Effect/comments

initial_extent_size

Minimum size of the first extent that CFS allocates to
files whose storage space is not preallocated

inode_aging_count
(default: 2,048)

Maximum number of inodes to retain in an aging list
after their files are deleted (data extents linked to aged
inodes are also aged). Aged inodes and extents accelerate
restoration of deleted files from Storage Checkpoints

inode_aging_size

Minimum size of a deleted file to qualify its inode for
aging rather than immediate deallocation when its file is
deleted

max_seqio_extent_size

Maximum extent size that CFS will allocate to sequen-
tially written files

The inode_aging_size and inode_aging_count tunables control CFS treatment
of deleted files’ inodes and data. When files larger than inode_aging_size are
deleted, CFS saves their inodes in an age-ordered list of up to
inode_aging_count inodes, and does not immediately delete their data. As
applications delete additional qualifying files, CFS removes the oldest entries
from the list. If Storage Checkpoints are active, files deleted from the primary
fileset whose inodes are still on the aging list can be recovered (effectively
“undeleted”) quickly by copying them back to the active fileset, along with their

data.

Tuning the File Change Log

The CFS File Change Log is useful for applications that depend on knowledge of
which files in a file system have changed, but for certain types of activity, the
overhead it imposes can be significant. Table 13-8 describes vxtunefs
parameters that can be adjusted to reduce FCL activity.

The fcl_keeptime and fcl_maxalloc tunables control the retention of FCL
records. To limit the amount of space used by the FCL, CFS discards records that
are older than fcl_keeptime and frees the space they occupy. If the size of an
FCL reaches fcl_maxalloc before any records have aged to fcl_keeptime, CFS
“punches a hole” in the FCL by discarding the oldest records. Thus, for file

Tuning CFS file systems
Tuning CFS during daily operation: the fsadm utility

systems subject to heavy update loads, it is advisable to increase fcl_maxalloc,
particularly if applications use FCL entries for auditing or other purposes.

Table 13-8 vxtunefs parameters that affect the file change log

223

vxtunefs parameter J

Effect/comments

fcl_keeptime

Number of seconds, that the File Change Log (FCL)
retains records. CFS purges FCL records that are older
than fcl_keeptime and frees the extents they occupy

fcl_maxalloc

Maximum amount of space that CFS can allocate to the
FCL. When space allocated to the FCL file reaches
fcl_maxalloc, CFS purges the oldest FCL records and frees
the extents they occupy

fcl_ointerval
(default: 600 seconds)

Minimum interval between open-related FCL records for
a single file. CFS suppresses FCL records that result from
opening a file within fcl_ointerval seconds of the preced-
ing open.

fcl_winterval
(default: 3,600 seconds)

Minimum interval between write, extend, and truncate-
related FCL records for a single file. CFS suppresses FCL
records of these types that occur within fcl_winterval
seconds of the preceding operation of one of these types.

The fcl_ointerval and fcl_winterval tunables limit the number of FCL entries that
CFS writes for files that are subject to repetitive activity. If the same file is
opened repeatedly, for example, by an NFS server in a CNFS configuration, CFS
suppresses the writing of all open-related FCL records within fcl_ointerval
seconds of the last such record. Similarly, if a file is written repeatedly, as for
example an application log might be, CFS suppresses write-related records
within fcl_winterval seconds of the last FCL record.

Tuning CFS during daily operation: the fsadm utility

Administrators can use the fsadm command to tune certain properties of file
systems while they are mounted, or if they have been cleanly unmounted. The

principal uses of fsadm are:

m Defragmentation. Reorganizing file extents and directories to reduce
fragmentation, and thereby improve performance

m Resizing. Increasing or reducing the storage space allocated to a file system,
and the size of its intent log

m Spacereclamation. Reclaiming storage space in disk arrays that support thin

provisioning

224

Tuning CFS file systems

Tuning CFS during daily operation: the fsadm utility

In an empty file system, CFS allocates space to files in an order that tends to
optimize I/O performance. Over time, as files are created, extended, and deleted,
free space tends to become fragmentedinto a large number of small extents.
Fragmentation tends to degrade file system performance, both because CFS
must search harder to find free space to allocate to files, and because files that
occupy many non-contiguous extents cannot be accessed with large I/0 requests
that use hardware resources efficiently.

CFS defragmentation

The fsadm utility defragments a mounted file system in three ways:

m Filereorganization. Wherever possible, fsadm allocates contiguous extents
of file system blocks and moves files to them to reduce the number of extents
they occupy. CFS reorganizes files while a file system is in use; fsadm locks
each file while it is reorganizing it

m Free space consolidation. In the course of reorganizing files, fsadm
consolidates free space into as few extents as possible. Free space
consolidation simplifies future space allocation because it enables CFS to
allocate larger extents

m Directory compaction. When files are deleted, their directory entries remain
in place, flagged so that they are invisible to users. fsadm compacts directory
files by removing entries for deleted files and freeing any unused space that
results from compaction

Fragmentation generally occurs sooner in file systems with high “churn”—rate
of file creation, resizing, and deletion. Administrators should therefore schedule
fsadm reorganizations regularly, for example, weekly for active file systems,
and monthly for less active ones.

Because defragmentation is I/0
intensive, administrators should

ideally schedule it to correspond o . .
with periods of low or non-critical Administrators can experiment with

Administrative hint 37

I/O activity. To help determine defragmentation frequency, increasing
the need for defragmentation, the interval if it does not result in much
fsadm can produce a report that change in free space distribution, and

summarizes the level of free space | decreasing it if the opposite is true.
fragmentation. The percentage of
file system free space that is in very small and very large extents can be a guide
to whether a file system should be defragmented. For example, if less than 1% of
a file system’s free space is in extents of 8 file system blocks or fewer, the file
system is probably not excessively fragmented. If the number grows to 5% or
more, then defragmentation is probably warranted.

Tuning CFS file systems
Tuning CFS during daily operation: the fsadm utility

Resizing CFS file systems and their volumes

Large files

One possible cause of fragmentation, and of lengthy fsadm defragmentation
runs is lack of free space. If 90% or more of a file system’s storage space is
allocated to files, defragmentation may have little effect, primarily because
there is little free space to reorganize. If this is the case, file system resizing may
be warranted.

Administrators can increase or
decrease a file system’s size while
it is in use, provided that the
volumes it occupies have

Administrative hint 38

Administrators use a combination of the

sufficient unallocated space to vxassist and fsadm commands to
support an increase. CFS change the size of a CFS file system
defragments a file system if along with that of any of its underlying
necessary before decreasing its volumes. Alternatively, the CVM

size. Decreasing a file system’s vxresize command can be used to resize
size does not change the size of both a volume and the file system that
the volume it occupies. occupies space on it in the same

An administrator can increase or operation.

decrease a file system’s intent log
size from the default of 16 megabytes when creating the file system. Larger
intent log sizes may be desirable, for example, in file systems that provide NFS
service, or those subject to write-intensive workloads. While they can improve
performance by allowing more file system transactions to be buffered, larger
intent logs use more memory, and may increase recovery time after system
crashes, because there may be more logged transactions to replay.

By default, a CFS file system can host files larger than 2 gigabytes. An
administrator can disable /argefiles support when creating a file system, or can
use the fsadm utility to disable or re-enable support while the file system is
mounted. If a file system actually contains one or more files larger than 2
gigabytes, largefiles support cannot be disabled.

Reclaiming unused space in thin-provisioned disk arrays

For disk arrays that support thin provisioning, an administrator can use the
fsadm thin reclamation feature to release physical storage occupied by unused
file system blocks. The thin reclamation feature uses special APIs to
communicate unused disk (LUN) block ranges to supported disk arrays. The disk
arrays free the physical storage that backs the unused blocks. An administrator
can optionally specify aggressive reclamation, which causes CFS to compact
files prior to instructing disk arrays to reclaim space. Aggressive reclamation
generally reclaims more space, but the compaction phase takes longer and

225

226 | Tuning CFS file systems
Application development tuning considerations

consumes more I/O resources. CFS supports APIs that enable applications and
utility programs to initiate physical storage reclamation.

Application development tuning considerations

Using a library supplied as part of CFS, application programs can issue I/0
control calls (ioctls) to specify advisories that control how CFS uses cache on a
file-by-file basis. Applications can specify:

m Buffering. The VX_DIRECT and VX_UNBUFFERED advisories direct CFS to
read and write data directly into and from application buffers, rather than
copying it to page cache before writing, or reading it into page cache before
copying to application buffers. Direct I/O improves performance by
eliminating the CPU time and memory consumed by copying, but
applications must ensure that buffer contents remain intact until I/O
operations complete. The VX_DIRECT advisory delays I/O completion until
any metadata updates implied by writes have been written to disk; specifying
VX_UNBUFFERED does not. Both advisories require page aligned
application buffers; if they are not, CFS buffers the I/O

m Metadata persistence. By default, CFS signals I/O request completion before
file metadata updates are persistent. This improves performance from the
application’s point of view. Applications that require absolute disk image
consistency, can use the POSIX O_SYNC advisory to force CFS to delay
signaling completion of I/O requests until metadata changes have been
written to disk. Alternatively, specifying the POSIX O_DSYNC advisory (or its
VX_DSYNC equivalent) delays request completion signals until data (but not
necessarily metadata) has been persistently stored

m Read-ahead behavior. To accelerate sequential read performance, CFS
detects sequential buffered reads from applications, and reads file data ahead
in anticipation of application requests. Single-stream applications can
specify the VX_SEQ advisory to instruct CFS to read ahead in the file by the
maximum allowable amount. Multi-threaded applications that read several
sequential streams in a file simultaneously can specify the VX_ERA advisory
to cause CFS to maintain multiple read-ahead streams. Applications that read
file data randomly can suppress read-ahead by specifying the VX_RANDOM
advisory

m Concurrent I/O. Applications that manage their threads’ file I/O requests so
that concurrent requests do not corrupt data or cause incorrect behavior can
specify the VX_CONCURRENT advisory to cause CFS to both bypass file
write locking and to read and write directly into and from the application’s
buffers. The VX_CONCURRENT advisory provides the same accelerations
for individual files that the cio mount option (page 189) provides for entire
file systems

For these advisories and others, applications can determine the file system-wide

setting by issuing the VX_GETFSOPT ioctl.

Tuning CFS file systems | 227
Tuning CFS for space efficiency

In addition to these, other ioctl functions allow applications to control space
allocation on a file-by-file basis. Applications can reserve space, trim reserved
but unused space, specify a file’s extent size, and specify alignment for newly
allocated extents. Of these, the ones that affect I/O performance most directly
are reservations that can allocate contiguous space for a file, and alignment,
that can meet the constraints of the VX_DIRECT and VX_UNBUFFERED
advisories. The VX_TRIM advisory, which deallocates unused space allocated to
a file, promotes efficient space utilization.

Tuning CFS for space efficiency

The smallest unit of space that CFS can independently allocate is a file system
block. As applications append data to a file, CFS allocates sufficient file system
blocks to hold it. If the amount of data in a file is not a multiple of the file system
block size, storage space is allocated but not used.

For example, a file that contains only one byte of data consumes a file system
block whose size is between one and eight kilobytes. Table 13-9 illustrates the
space efficiency (ratio of space occupied by data to space allocated) for a file
containing 2,500 bytes of data (roughly comparable to a page of text in this
document) and one ten times as large.

Table 13-9 Small and large file space efficiency for different file system block
sizes
File Space allocated SR
system t0 a 2.500 byte Data:space | allocated to a Data:space
L 0a2,ou00by ratio (%) | 25,000 byte ratio (%)
block size file .
file
1,024 bytes 3,072 bytes 81% 25,600 98%
(3 file system (25 file system
blocks) blocks)
2,048 bytes 4,096 bytes 61% 26,624 bytes 94%
(2 file system (13 file system
blocks) blocks)
4,096 bytes 4,096 bytes 61% 28,672 bytes 87%
(1 file system (7 file system
block) blocks)
8,192 bytes 8,192 bytes 30% 32,768 bytes 76%

(1 file system
block)

(4 file system
blocks)

228

Tuning CFS file systems

Tuning CFS for space efficiency

Table 13-9 represents a “best case” scenario, in the sense that no more file
system blocks are allocated to the file than are required to hold its data. Thus,
the maximum “wasted” (allocated but not used to store file data) space is one file
system block. The table underscores the point that for small files, this can be a
significant percentage of file size.

As the second and third columns of Table 13-9 suggest, smaller file system block
sizes result in greater space efficiency (greater percentage of storage space
occupied by actual data) for file systems that hold mostly small files. This
suggests that if the average size of files that a file system will contain is known
to be small when the file system is created, a smaller file system block size
should be specified to optimize storage utilization. For example, if file sizes are
expected to cluster between zero and 1.5 kilobytes, the administrator creating
the file system should choose one kilobyte as a file system block size. For file
sizes between 1.5 and 2 kilobytes, a file system block size of 2,048 is likely to be
optimal, and so forth. This decision should be tempered by an awareness that
the maximum size of a CFS file system is determined by its file system block
size, because of the way free space data structures are organized. For example,
the maximum size of a file system with a 1 kilobyte file system block size is 32
terabytes.

For larger files, storage space efficiency is less of a consideration, as the fourth
and fifth columns of Table 13-9 suggest. Maximum “wasted” space for a file is
again one file system block, but this is a much smaller percentage of file size,
even for the relatively modest sized 25 kilobyte file size in the example.

For larger file sizes, another consideration may be more important than space
efficiency—allocation efficiency. When files are extended, CFS allocates
contiguous space from within a single allocation unit if possible. But when a file
system becomes fragmented, it may not be possible to allocate large blocks of
contiguous space. CFS must create an extent descriptor for each non-contiguous
range of file system blocks it allocates to a file. Larger file system block sizes
result in fewer extent descriptors than smaller block sizes. Files can grow larger
before indirect extent descriptors are required, leading to better I/O
performance for two reasons:

m Larger disk reads and writes. Because each extent is a contiguous range of
block addresses on a single disk, an internal CFS I/O request can read or write
as much as the size of an entire extent

m Fewer accesses to indirect extent descriptors. In file systems with larger file
system block sizes, a file’s inode can map more data than with smaller ones.
Therefore, it becomes less likely that CFS will have to refer to an indirect
extent descriptor to retrieve or store data at the end of a large file

Tuning CFS file systems | 229
Tuning CFS for performance

Tuning CFS for performance

Typically, CFS tuning delivers the greatest benefit for data streaming
applications that access large files sequentially.

Tuning for sequential access

An administrator can further enhance storage utilization and I/O performance
in file systems that create and access large files sequentially through the use of
two other CFS tunables, initial_extent_size and max_seqio_extent_size. CFS
allocates a single extent large enough to hold the data in an application’s first
write to a file. If CFS detects that the application is continuing to write data
sequentially, it doubles the size of each subsequent allocation up to a default
maximum of 2,048 file system blocks. If if no writes are issued to a file for a
period of 60-90 seconds, CFS deallocates unused file system blocks.

Figure 13-2 CFS file system block allocation for sequential files

Firstallocation Second allocation Third allocation

~— " - A N

Successively double until
max seqio extent size
is reached

initial extent size 2 x initial extent size 4 x initial extent size

By raising the value of initial_extent_size, an administrator can cause large,
sequentially written files to be more contiguous on disk. This reduces the
number of times CFS must allocate storage for a large file, and at the same time,
improves subsequent read performance because more data can be read with
each disk request.

The value of max_seqio_extent_size limits the amount of storage that CFS will
allocate to a sequentially written file at one time. Administrators can use this
tunable to reduce allocation failures caused by files occupying excessively large
contiguous ranges of file system blocks. CFS prevents the value of
max_seqio_extent_size from falling below 2,048 file system blocks.

Tuning CFS for sequential I/0 with disk arrays

Figure 13-3 illustrates the path taken by a sequential I/O request issued by CFS.
The CFS I/O request is either the direct result of a request made by an
application, or, if an application request specifies more than max_direct_iosz

230 | Tuning CFS file systems

Tuning CFS for sequential 1/0 with disk arrays

bytes, one of the smaller requests for max_direct_iosz or fewer bytes into which
CFS breaks it.

Figure 13-3 Stages in sequential I/0 operations

Operating system Storage Disk

«— CFS —+—CVM——+— > >

CFS /O
request

dnver stack network amay

Cache

If the CFS request specifies more than vol_maxio bytes, CVM breaks it into
multiple requests. Figure 13-3 assumes that the request is not for more than
vol_maxio bytes, and therefore is not broken down further.

CVM supports striped, mirrored, and striped mirrored volumes. If the volume
has any of these configurations, CVM decomposes CFS I/O requests into stripe
unit-size read and write commands to its member LUNSs (@).

Each LUN is associated with one or more host bus adapters (HBAs). If the LUNs
that make up a volume are associated with different HBAs, they can process
read and write commands and transfer data concurrently (®). Likewise, if the
LUNs are associated with different disk array ports, commands can be processed
and data transferred on them concurrently (©).

When CVM writes to a disk array, the data is typically absorbed by the array’s
non-volatile cache (@), and written to disk media at some time after the array
has signaled completion of the write. Client read commands may be satisfied
from disk array cache, and indeed often are, because some disk arrays are able to
detect sequential read patterns and “read ahead” in anticipation of client
requests. For random reads, however, cache hit rates are typically low,
especially if the application’s working set of data is much larger than the disk
array’s cache.

Ultimately, the disk array transfers data to or from the disks that make up the
LUNs to which commands are addressed (®). In most cases, LUNs are striped,
mirrored, or RAID-protected, so they present further opportunities for parallel
execution.

The makeup of CVM volumes can be exploited to maximize sequential I/O

Tuning CFS file systems | 231
Tuning CFS for sequential I/0 with disk arrays

performance. If the LUNs that make up a volume have separate paths to the disk
array, then all can transfer data concurrently.

Thus, for example for a volume striped across four LUNSs, the ideal I/O size is
four times the stripe unit size. CVM splits such an I/0 request into four smaller
requests that execute concurrently (assuming the buffers are properly aligned).
Figure 13-4 illustrates how this might work in the case of read-ahead.

If CFS detects that an application is reading from a file sequentially, and if the
file’s read_ahead (described in Table 13-6 on page 220) tunable parameter
allows read-ahead detection, CFS allocates read_nstream buffers of
read_pref_io bytes each, and issues read commands to CVM to read sequential

file blocks into them.
Figure 13-4 Optimizing read-ahead performance
Operating system Storage < Disk
CFS CvM driver stack network amay
CFS /O cvM
request

‘ Bu"rer ‘

Read-ahead

CFS aligns read-ahead buffers with volume stripe units, so that, as Figure 13-4
suggests, CVM is able to split the read-ahead request into four commands, each
of which it issues to one of the volume’s LUNs. As long as there is a separate
path to each LUN (or alternatively, the paths to the LUNs have sufficient
bandwidth to carry concurrent data transfers for all of them) the four
commands execute concurrently, and data is ready for the anticipated
application read request in a little more than a quarter of the time that would be
required to read it in a single stream.

CVM Dynamic Multipathing (DMP) can simplify read-ahead optimization as
well. For disk arrays that support concurrent multi-path LUN access, CVM can
schedule I/0 on different paths (For example, if the administrator selects
shortest queue scheduling, CVM will usually issue a sequence of near-
simultaneous requests such as that illustrated in Figure 13-4 to different paths.)
Using DMP with supported disk arrays can provide the performance advantage
of parallel I/O scheduling along with protection against I/O path failure.

232 ‘ Tuning CFS file systems

Tradeoffs in designing CFS-based applications and systems

Tradeoffs in designing CFS-based applications and

systems

While for the most part, CFS can be considered to be “pre-tuned” for all except
the most homogeneous workloads, designers should be aware of a few obvious
factors as they develop applications and plan for deployment. The sections that
follow present some guidelines for designing applications and configuring CFS-
based clusters for high performance and optimal recoverability.

Performance consideration: sharing file systems, files, and

directories

One of the primary advantages of CFS is that it enables applications running on
different cluster nodes to simultaneously access shared data at all levels of
granularity including concurrent write access to individual files. CFS uses its
Global Lock Manager, described in Chapter 8, to maintain structural and content
integrity of directories and files as applications create, manipulate, and delete
files.

While the GLM design minimizes inter-node locking traffic, exchanging lock
messages over a cluster’s private network inherently takes longer than locking
access to resources within a single node. As designers determine the cluster
nodes on which applications that share data will run, they must be aware of the
tradeoff between the benefits of aggregating CPU power, cache, and network
bandwidth by running applications on separate nodes, and the “cost” of
increased I/0 latency due to lock messaging as applications on different nodes
access shared files concurrently.

Performance consideration: using directories to organize data

CFS implements the common UNIX hierarchical directory model by structuring
each directory as a file. A CFS directory file is essentially a list of file (or
subdirectory) names along with their corresponding inode numbers. As
designers structure the data for their applications, they can choose between
“flat” structures with few levels, and “deep” structures containing multiple
levels of subdirectories.

In applications that involve a high frequency of directory operations, designers
should be cognizant of the implications of different directory hierarchy designs.
Because directories tend to grow in small increments, they often become
fragmented in dynamic file systems that experience large numbers of file
creations and deletions. Moreover, as files are deleted, directory blocks are not
fully utilized (until directories are compacted administratively). Lookups in a
large flat directory therefore tend to require a non-contiguous disk read for each
extent, and may therefore be time-consuming, at least until frequently accessed

Tuning CFS file systems
Tradeoffs in designing CFS-based applications and systems

entries are cached. Deeper directory structures, with an average of fewer files
per directory may have less tendency to fragment, but initial lookups in such a
structure must traverse each level in the hierarchy.

Performance consideration: monitoring resources

CVM can be configured to monitor virtual volumes by accessing their disks
periodically, and raising alerts if it encounters exception conditions. Application
I/0 to volumes also causes alerts to be raised when exceptional conditions are
encountered, but volume monitoring can detect problems with idle volumes so
that administrators can take remedial action before failures become critical, but
in clusters with hundreds or thousands of disks, can result in considerable I/O
activity that can have a discernible impact on application I/O. When CVM
volumes provide the storage for CFS, however, there is sufficient background
I/0 activity that exceptions can usually be detected in the course of CFS I/0
operations, so volume monitoring is unnecessary.

VCS monitors mount and volume resources for each file system and volume so it
can take action (for example, failover) if it detects abnormalities. In clusters that
host a large number of file systems, the number of resources that VCS must
monitor is correspondingly large, and may consume noticeable processing and
network resources. Designers should be cognizant of resource monitoring
overhead as they specify virtual volume makeup and file system name spaces.

Recoverability consideration: file system sizing and Storage Check-

points

CFS supports up to a billion files in a single file system. Data structures, caching,
resource locking, and buffer management, are all designed to accommodate file
systems on this scale. Moreover, CFS supports Storage Checkpoints within the
context of a file system. Storage Checkpoints are extraordinarily useful for
several purposes-for establishing application-consistent baselines for backup or
data analysis, for testing applications against live data, for training developers,
users, and administrators, and for enabling users to recover their own deleted or
corrupted files. For the latter purpose especially, some administrators keep
large numbers (dozens to hundreds) of active Storage Checkpoints of a file
system. Again, CFS data structures and algorithms are designed to cope with the
large amount of metadata that Storage Checkpoints necessarily entail.

When a UNIX system that crashes with mounted file systems recovers from the
crash, it is generally necessary to verify file system structural integrity before
remounting and making files accessible to applications. Verifying the integrity
of a file system containing hundreds of millions of inodes could take days, and is
clearly impractical if any reasonable service level agreement is to be met.

CFS overcomes this deficiency in almost all cases because it is a journaling file
system that performs structural modifications transactionally and logs all

233

234

Tuning CFS file systems

Tradeoffs in designing CFS-based applications and systems

metadata updates in its intent logs before executing them. To recover from a
system crash, CFS “replays” crashed nodes’ intent logs, which contain a precise
record of which file system metadata structures might be at risk. As a result,
recovery time is related to the number of transactions in progress at the time of
a failure rather than to the size of a file system or the number of files it contains.

On rare occasions, however, such as when disk media or memory failures
corrupt file system structural data, it may become necessary for CFS to perform
a full file system integrity check (“full fsck”) during recovery. The most time
consuming part of full file system checking consists of verifying that extent
descriptors are consistent with the data structures that the file system uses to
manage storage space. This time is proportional to both the number of files in
the file system, the number of active Storage Checkpoints, and the degree of file
fragmentation (average number of extents per file). While it is very rare that full
file system checking is required, designers should be cognizant of the recovery
time implication of file systems that contain very large numbers of files, have
hundreds of active Storage Checkpoints, or are allowed to become very
fragmented. Configuring more file systems with fewer files in each and limiting
the number of active Storage Checkpoints can reduce recovery times in these
rare instances, but at the expense of managing multiple name spaces.

Recoverability consideration: CFS primary and CVM master

placement

While CFS and CVM are largely symmetric in the sense that any instance can
perform nearly any function, each architecture incorporates the concept of a
special instance that is the only one able to perform certain key operations.
CVM'’s master instance manages all volume configuration changes, while each
CFS file system’s primary instanceis responsible for allocation unit delegations
and other administrative tasks. Both the CVM master instance and CFS file
system primary instances do slightly more work than other instances, and
perhaps more importantly, are critical to uninterrupted volume and file system
operation respectively. The critical roles they play suggest that designers should
carefully consider their placement in clusters of non-identical nodes or nodes
that run at significantly different resource saturation levels. The CVM master
instance should generally be configured to run on the most powerful or least
loaded cluster node. CFS file system primary instances should generally be
distributed across a cluster, with a with a slight bias toward more powerful or
lightly loaded nodes, to equalize the file system processing load, but more
importantly, to minimize the time to recover from a node crash, which is longer
if one or more CFS primary instances must be recovered. For the same reason,
CFS instances should be biased toward nodes whose application loads are the
most stable (least likely to crash the nodes on which they are executing).

Tuning CFS file systems | 235
Tradeoffs in designing CFS-based applications and systems

Checkpoints and snapshots

With respect to frozen image technology, CFS enjoys the proverbial
“embarrassment of riches.” File system Storage Checkpoints provide both read-
only and read-write space-optimized point-in-time images of file system
contents. In addition, CVM snapshots provide both full-size and space-
optimized point-in-time images of administrator-selected groups of volumes
that contain CFS file systems. Each of these frozen image techniques has its own
advantages and limitations, and each is the optimal for certain scenarios. For
example, Storage Checkpoints are simple to administer, because they occupy
storage capacity within a file system’s volume set. No separate storage
administration tasks are required to create or remove a Storage Checkpoint.

Because they are space-optimized, Storage Checkpoints typically consume
relatively little space compared to the file systems whose images they capture.
This tends to motivate administrators to keep large numbers of them active.
When this is the case, it becomes necessary to monitor file system space
occupancy regularly, and to specify a strategy for handling out of space
conditions should they arise, for example by making Storage Checkpoints
automatically removable.

In addition to their other uses, Storage Checkpoints are an important
mechanism for recovering from file loss or corruption; Deleted or corrupted
files can be recovered by copying them from a Storage Checkpoint to the live file
system. By themselves, however, they do not protect against data loss due to
storage device failure, because they do not contain full file system images.
Volumes mirrored by CVM or based on failure-tolerant disk array LUNs should
be configured to protect against physical data destruction.

Administrators must explicitly designate the devices storage to be used by
volume-level snapshots. They are useful for creating snapshots of multiple file
systems at the same point in time. Full-size file system snapshots require
storage space equivalent to that of the snapped file system, but can be used to
take frozen file system images “off-host”, for example to other cluster nodes,
where they can be mounted privately and processed without interfering with
live production I/O performance. As with Storage Checkpoints, space-optimized
volume snapshots do not contain full images of their parent volumes contents,
and so must be used by cluster nodes that are connected to the parent volumes.

236 | Tuning CFS file systems
Tradeoffs in designing CFS-based applications and systems

CFS: meeting the technical
challenge

For the past 4 years, it has been my privilege to lead Symantec’s File System
Solutions development team, the group responsible for creating and evolving
CFS. When I commissioned this book, I did so in the hope of giving the
enterprise IT user community an appreciation for what goes into the
architecture, development, and effective deployment of the robust, scalable
distributed file system that manages some of the most critical data on the planet
and takes on some of the most demanding workloads in enterprise computing.

Reviewing the manuscript has led me to reflect on the team that has built this
software to run on several operating systems and hardware platforms, and that
continues to develop it apace with increasing customer demands and changing
hardware and software platforms. The single-host VXFS file system that is the
foundation for CFS has been developed over the past two decades by a team of
several dozen engineers who work from three major locations: Symantec’s
Mountain View, California headquarters, Pune, India, and Green Park (Reading),
England.

The on-going challenge of CFS attracts the best and the brightest. An average
CFS engineer has nearly ten years of file system development experience; some
of the most senior have over a decade of experience on CFS alone. CFS engineers
have “earned their spurs” at some of the industry’s leading companies,
including Microsoft, Hewlett-Packard, IBM Corporation, Oracle, Cisco, Amdahl,
Novell, and others, before joining the CFS team. Over a dozen have earned the
rank of Technical Director at Symantec during or after tenure on the CFS team.
Several CFS developers have gone on to successful careers, including a handful
who are CEOs of startup companies and several others who are architects in
firms developing storage products.

CFS has been developed by some of the most talented individuals in the field, but
the real secret to success has been how they function as a disciplined
development team, and integrate with other Symantec product teams to
produce high-quality releases in synchronization with VCS, CVM, and other

238

Afterword

Symantec software with which there are mutual dependencies. Each release
starts with negotiation of a prioritized list of product requirements driven by
product management. Once requirements are agreed upon, a regular series of
File System Steering Committee meetings gives all stakeholders an opportunity
to discuss and review designs and evaluate dependencies. Development occurs
in a number of “sprints,” each with well-defined outcomes and measurement
criteria that include customer feedback, so that managers have a real-time
picture of progress, both for CFS itself, and for related Storage Foundation
components, throughout the cycle.

Fairly early in the development process, Quality Assurance begins testing new
capabilities against an expanding repertoire of regression tests, to ensure that
new features do not “break” existing functionality on which our customers
depend. Later in the cycle come targeted beta tests, often with the very
customers who have helped motivate new features and capabilities. Finally, CFS
and all the other products that make up the various Storage Foundation bundles
come together in release form for delivery to customers. And for engineering,
the cycle begins again. Enthusiastic customers continually press for more, and
the CFS team continues to develop CFS to meet the requirements they articulate.

Symantec puts customers first. Responsiveness to customer needs is a primary
driver for CFS, and indeed, for the entire Symantec file system development
team. All development managers, and most engineers regularly accompany
product managers on customer visits. The first-hand exposure to users’
concerns gained during these visits becomes a strong motivator to excel.
Developers work extra hard on a feature when they’ve sat across the table from
someone who wants it. Because CFS manages so many enterprises’ most critical
data, any customer problem that escalates to engineering becomes a top
priority. Engineers interleave development with problem resolution, working
round the clock if necessary.

I describe all of this in the hope that the reader will come to appreciate the
complexity of our task, and the dedication and enthusiasm we bring to it. The
CFS team takes its role as custodian of some of the world’s most important data
very seriously, and expends every effort to deliver the highest quality file
system products in the industry, release after release. I am truly proud to
manage this team of skilled, talented, and motivated people who bring you the
best there is in enterprise file systems.

Bala Rumaresan

Bala Kumaresan
Director, Symantec File System Solutions Team
Mountain View, California

December 2009

CFS cache organization

To understand CFS performance, it is helpful to understand the internal actions
required to execute client requests. Like most UNIX file systems, CFS relies
extensively on cache memory to maximize performance, particularly in highly
concurrent environments. Both data and metadata are held in cache at times
during and after I/0 request execution. File system mount options and
application program cache advisories give both the administrator and the
developer a degree of control over when and how data is cached and when in the
I/0 operation life cycle it is made persistent by writing it to disk storage.
Chapter 13 discusses mount options and cache advisories and their interactions.
This appendix discusses the five types of cache that CFS uses to optimize
performance.

CFS internal cache

CFS uses five separately managed cache memories to hold metadata and data at
various times throughout the I/O operation life cycle:

m inode cache (i-cache). CFS instances keep file inodes and related data struc-
tures in this dedicated cache while the files they represent are in use, and
indefinitely thereafter, until it must reclaim space for the inodes of other
active files

m Quota cache. CFS instances keep records of changes to file systems’ quota
files in this dedicated cache for rapid reconciliation and accurate response to
requests that are subject to quotas (for example, a user or group with an
assigned quota appending data to a file)

m DNLC. A file system directory is itself a file containing a list of data struc-
tures, each of which includes a [file name, inode number] pair. Given a path
name, for example, in a file open request, CFS looks up the corresponding
inode number by traversing the hierarchy of directories in the name. Because
traversal can be time-consuming, CFS stores lookup results in a Directory
Name Lookup Cache (DNLC) for future references. CFS instances’ DNLCs are
independent of each other; CFS does not reconcile them, but does manage

240

Appendix
CFS internal cache

them so that inconsistencies between instances do not arise. Enterprise UNIX

versions of CFS allocate and manage DNLCs; Linux versions use the operating
system’s dcache, which serves the same purpose

The CFS i-cache, quota cache, and DNLC are each dedicated to a single type of
frequently used metadata, which simplifies both content management and
searching. For other, less homogeneous, types of metadata and application data,

CFS manages two other cache pools:

m Buffer cache. CFS instances use their own buffer cache to hold metadata that

is not kept in the i-cache, quota cache, or DNLC

m Page cache. CFS instances use host operating system page cache to hold file

and snapshot data

A CFS instance allocates memory
for inode cache, quota cache,
DNLC, and buffer cache when
mounting a file system. It
calculates the amount of memory
allocated for each based on the
memory size of the system in
which it is running. Thus, in a
cluster whose nodes have
different memory capacities,
different CFS instances may
allocate larger or smaller
amounts of cache.

CFS uses operating system page
cache memory “greedily,” relying
on the operating system to
regulate the amount of memory it
is consuming relative to other
processes in its hosting system.

In some cases, an administrator

Administrative hint 12

The vxfs_ninode tunable parameter is
available on all platforms that CFS
supports, but is manipulated differently
on each. In Solaris systems, for example,
it appears in the /etc/system file,
whereas on RedHat Linux platforms it is
specified in a configuration file in the
/etc/modprobe.d directory.
Administrators should consult the
Veritas Storage Foundation Cluster File
System Administrator’s Guide for the
platform and file system version in use
to determine the location of the
vxfs_ninode parameter.

can adjust individual cache sizes by manipulating CFS parameters (“tunables”)
directly. For example, changing the value of the vxfs_ninode tunable causes CFS
to override its computed size of the i-cache with the supplied value.

As Chapter 8 discusses, CFS implements several mechanisms by which instances
synchronize access to critical metadata structures that are held in cache in

various cluster nodes.

Key works related to CFS and other UNIX file systems

File System Forensic Analysis, by Brian Carrier

Addison Wesley Professional, March, 2005, ISBN-13: 978-0321268174
NFS Illustrated, by Brent Callaghan

Addison Wesley Professional, January 7, 2000, ISBN-13: 978-0201325706

Shared Data Clusters: Scaleable, Manageable, and Highly Available
Systems, by Dilip M. Ranade

John Wiley & Sons, July 2002, ISBN-13: 978-0471180708

Storage Virtualization: Technologies for Simplifying Data Storage and
Management, by Tom Clark

Addison Wesley, March 2005, ISBN-13: 978-0321262516

UNIX Filesystems: Evolution, Design, and Implementation, by Steve D. Pate
John Wiley & Sons, ISBN-13: 978-0471164838

Using SANs and NAS, by W. Curtis Preston
O’Reilly Media, February 2002, ISBN-13: 978-0596001537

Related Symantec publications

(available at no charge from www.symantec.com/yellowbooks)
Using Dynamic Storage Tiering
Using Local Copy Services

Standardizing Storage Management

http://www.symantec.com/yellowbooks

242

page cache 36, 37, 103, 104, 141,

B 143, 163, 168, 182, 183,
block 29, 69, 71, 101, 105, 217, 228 187, 189, 212, 213, 219,
block mapping 29 226, 240
block range 30 quota cache 239
disk block 96, 97, 113, 114, 115, CIO 36, 37, 103, 182, 186, 189, 215,
116, 117, 118, 120, 126, 226
188, 228 CNEFS 3, 29, 47, 53, 65, 73, 74, 75, 76,
file block 32, 48, 49, 50, 126, 128, 77,78,79, 223
129, 153, 156, 179, 231 Common Product Installer 87, 186,
file system block 29, 41, 48, 68, 69, 194, 195, 197, 198
122, 123, 125, 127, 128, Concurrent I/O See CIO
129, 130, 133, 138, 141, coordinator disk 31, 34, 35, 56, 196,
142, 145, 201, 210, 214, 197, 200
217, 221, 224, 225, 227,
228,229 D
volume block 96, 97, 102, 105, 106, database management system 3, 30, 31,
107, 108 36,52,56,59,60,61, 83,102,103, 104,
block address space 198 110, 111, 181, 182, 183, 185, 186, 187,
188, 193, 207, 215
C DBMS See database management sys-
cache 72, 77, 117, 210, 211, 215, 216, tem
219, 220, 239 disk group 35, 45, 46, 58, 85, 89, 99,
buffer cache 124, 143, 144, 240 101, 106, 109, 110, 195, 198
cache advisory 36, 142, 189, 215, DNS 65, 74, 76, 77, 93
219, 226 Domain Name Service See DNS
cache coherency 5 DST 51, 173, 174, 175, 176, 177, 178,
database cache 183, 187 179, 180, 199
Directory Name Lookup Cache Dynamic Storage Tiering See DST

(DNLC) 212, 239
inode cache 141, 212, 214, 239

244

Index

E

extent 29, 46, 48, 50, 117, 120, 123,
124, 125, 126, 128, 129, 133, 141, 179,
218,222,223,224,227, 228

extent descriptor 122, 123, 126, 127,
128, 130, 133, 141, 174, 179, 228
extent map 122

F
feature 172
fencing 31, 33, 196
cluster fencing 34, 197, 200
data disk fencing 31, 35, 196
Fibre Channel 30, 45, 72, 74, 98, 175
fileset 119, 167
active fileset 222
fileset chain 167
primary fileset 47, 119, 120, 126,
165, 167, 169, 222
structural fileset 119, 120, 135

G
GAB 84, 156, 157
Group Atomic Broadcast See GAB

|
indirect extent map 127, 130
inode 43, 117, 120, 121, 126, 130, 132,
133, 134, 138, 140, 141, 148, 153, 154,
155, 158,179, 201, 212, 213, 214, 217,
222,228,239, 240

attribute inode 121, 127, 134

inode list 126

inode size 210
intent log 59, 118, 120, 121, 131, 132,
133, 137, 139, 140, 141, 143, 144, 146,
180, 202, 210, 211, 213, 214, 215, 217,

223,225
1SCSI 30, 72, 74, 98

L
LLT 84
Low-Level Transport See LLT

M
mount 28, 30, 37, 38, 39, 41, 44, 46, 47,
53,57,59,64,67,75,76,717, 85, 88, 97,
109, 115, 116, 132, 133, 134, 135, 139,
141, 142, 144, 158, 179, 185, 188, 198,
202,211, 215, 218, 221, 223, 224, 225
mount option 36, 86, 88, 103, 142,
143, 162, 165, 185, 189,
203, 206, 210, 215, 216,
217,218, 219, 226
mount point 88, 218
mount protocol 78
mount resource 86, 87, 88, 110
multi-volume file system 145, 171, 174,
179

N
NAS 3,71, 73
NAS head 71
Network Lock Manager See NLM
NLM 75, 76,78, 79

o
ODM 36, 37, 103, 104, 105, 111, 182,
183, 184, 185, 206
cached ODM 185
Oracle Disk Manager See ODM

P
partitioning
application partitioning 65
cluster partitioning 31, 33, 34, 35,
56, 196, 200
data partitioning 54
disk partitioning 96, 185
resource partitioning 131, 133

persistent group reservation See PGR
PGR 31, 34, 35, 196, 200

R
reconfiguration 29, 30, 35, 36, 55, 56,
89,109, 111, 132,133,137, 157, 158

S
SmartSync 107
snapshot 31, 40, 43, 63, 185, 240
full-size snapshot 31, 40, 41, 105,
106, 107,212
space-optimized snapshot 31, 41,
72,103, 105, 106, 212
Storage Checkpoint 31, 41, 72, 119,
222
superblock 115, 116, 117, 118, 119,
120, 121

T
thread
application execution thread 148,
189, 226
CFS execution thread 125, 149,
150, 151, 152, 153, 154,
155, 156, 157, 158

Index

database management system exe-
cution thread 37, 103, 183

execution thread 148

file system execution thread 117,
130, 147

thread grant 151, 152, 153, 154

transaction

business transaction 29, 43, 64, 155,
171, 179, 207, 208, 210,
212,213

CVM transaction 100

file system transaction 5, 58, 115,
121, 132, 133, 137, 138,
139, 140, 141, 142, 144,
146, 213, 215, 225

v
VCS 27, 30, 32, 64, 66, 73, 76, 79, 83,
84, 86, 87, 88,97, 109, 193, 195, 196,
198, 203
high availability (failover) service
group 30, 35, 60, 65, 66, 89,
93, 109, 204
parallel service group 53, 73, 79,
89, 93, 98, 109, 204
resources 109
service group 84, 85, 88, 89, 110,
198, 203
service group dependency 93
VERITAS Cluster Server See VCS
virtual device 96
virtual disk 115
virtualization 93, 96, 104
volume 31, 39, 41, 45, 46, 53, 58, 64,
68, 75, 89, 96, 101, 106, 108, 110, 123,
124, 125,126, 173, 175, 176, 178, 187,
196, 197, 199, 201, 211, 212, 225

246 | Index

CVM volume 41, 44, 51, 67, 76, 85,
86, 88, 96, 97, 99, 102, 105,
107, 109, 111, 118, 129,
163, 173, 174, 198, 202,
204, 210, 211, 212, 214,
219, 230
data-only volume 179
first volume 201, 214
intent log volume 146
metadata-eligible volume 179
mirrored volume 97, 100, 101, 104,
105, 107, 184, 199, 230
private volume 64, 97, 202
shared volume 58, 97, 100, 193,
199, 202
striped volume 108
thinly provisioned volume 96
virtual volume 36, 51, 57, 69, 96,
99, 181
volume geometry 108, 221
volume group 197
volume manager 30, 36, 40, 96, 97, 107
volume set See VSET
VSET 51, 68, 69, 129, 174, 179, 180,
200, 201, 214

Index | 247

The Veritas Cluster File System: Technology and Usage

Distributed applications with dynamic computing and I/0 demands benefit greatly when they can share data,
particularly when performance scales linearly as servers are added. Symantec’s Veritas Cluster File System (CFS) is
the file management solution of choice as major applications evolve to take advantage of modern data center “scale
out” architectures.

Part | of “The Veritas Cluster File System: Technology and Usage” positions CFS within the spectrum of shared file
management solutions. It goes on to describe CFS’s unique properties and application scenarios in which it is used,
and introduces an exciting new application: the industry’s highest-performing NFS file server. Part |l takes a “deep
dive” into the structure of CFS and its VCS cluster environment, with particular emphasis on transactions, lock
management, dynamic storage tiering, and performance accelerators for database management systems and other
applications. Part lll is an overview of CFS installation procedures and tuning options, along with a description of the
tradeoffs between performance, cost, and data integrity that system administrators and application managers must
inevitably make.

The audience for “The Veritas Cluster File System: Technology and Usage” includes both executives who wish to
understand the distributed file management options available to them, application designers and developers in
search of optimal ways to use CFS, and administrators responsible for the performance and robustness of CFS
clusters. The authors’ goal has been to answer questions commonly asked about CFS by those evaluating it, by new
users, and by veterans wishing to understand its inner workings.

About Symantec Yellow Books"

Symantec Yellow Books deliver skills and know-how to our partners and customers as well as to the technical
community in general. They show how Symantec solutions handle real-world business and technical problems,
provide product implementation and integration knowledge, and enhance the ability of IT staff and consultants
to install and configure Symantec products efficiently.

$49.99
ISBN 978-0-615-36045-4

54999>
symantec. “ ‘ “

www.symantec.com

Copyright © 2010 Symantec Corporation. All rights reserved. 01/10 20982271 7806157360454

