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Foreword

Why a Cluster File System?

Distributed applications with dynamic computing and I/O demands benefit 
greatly from simultaneous access to shared data from multiple servers, 
particularly if performance continues to scale nearly linearly when new 
applications and servers are added to the mix. Symantec’s primary motivation 
in developing the Cluster File System (CFS) has been to meet the file storage 
requirements for this high growth market, as major applications evolve to be 
more distributed, taking advantage of modern datacenter “scale out” 
architectures. 

Today, the most popular use case for CFS is active-passive clustering of single 
node applications. In this scenario, CFS enables failover times that are as much 
as 90% lower than single node file system solutions. Increasingly, however, the 
growth in CFS deployments is coming from applications that take advantage of 
the consistent simultaneous access to file data from multiple cluster nodes. 
These applications include clustered database management systems, messaging 
applications, workflow managers, video streaming, risk analysis, business 
intelligence, and more.

In addition, an increasing number of users are replacing NFS servers with CFS 
clusters that run applications directly on the servers that provide file access, for 
improved reliability and data consistency, as well as elimination of the network 
bottlenecks often seen with NFS based file storage solutions.

Other users retain the NFS file server data center architecture, but replace NAS 
systems with CFS-based CNFS servers to improve price-performance, scalability 
and flexibility. In effect, with the introduction of CNFS, CFS is commoditizing 
NAS while it improves scalability and quality of service.

Still other users choose CFS because it supports the top three enterprise UNIX 
platforms as well as Linux. This enables them to standardize data management 
and operating procedures across the data center, no matter which UNIX 
platforms they use. Finally, some users choose CFS-based solutions because they 
support more disk arrays than any other suite, making it possible for users to 
fully exploit their storage hardware investments. 

While users deploy CFS for a variety of reasons, on closer inspection, there are 
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common file storage and management requirements that make CFS an ideal 
solution in a wide variety of situations. 

Using clustering to scale out an application or a data center adds a dimension to 
the sizing and tuning complexities found in single-server environments. File 
sharing, distributed decision making, I/O workload asymmetry among cluster 
nodes, migration of applications from node to node, are among the variables 
that can make “getting it right” an arduous task. 

Numerous interviews with CFS users have made it apparent that application 
specific guidance for CFS deployment and knowledge of how CFS works and 
interacts with other components in the storage stack are high on the list of 
users’ concerns. Primarily for that reason, Symantec’s File System Solutions 
team undertook the creation of this book, with the goal of putting the whole 
story, from technology to administration, to use cases, in one place. It is our 
sincere hope that the result addresses the concerns of our users, present and 
future. 

As the product manager for CFS, my thanks go out to the author, the 
management team that supported this effort by granting people the flexibility to 
take time from their “day jobs” to participate in the project, and the individuals 
who patiently provided the knowledge and painstakingly reviewed the 
manuscript.

David Noy
David Noy

Regional Product Manager, EMEA
Symantec Corporation

December 2009



About this book

About About this book

About this book

This book describes Symantec’s Veritas Cluster File System (CFS), an 
implementation of the cluster architectural model for sharing data among 
multiple computers. Based on Symantec’s long-proven Storage Foundation File 
System (commonly known as VxFS), CFS is exceptionally scalable, robust, and 
high-performing. Building on a solid base of VxFS technology, CFS adds cluster-
wide cache coherency, distributed resource control and file system transactions, 
and other features that enable scaling and enhance performance and load 
balancing across a cluster of application or database servers.

An astute reviewer noted that the book seems to address different audiences, 
and that is indeed the case. The Introduction sets the stage by defining the 
problem of sharing data among multiple application servers and contrasts the 
CFS approach with other commonly encountered solutions. 

Part I presents an overview of CFS, with emphasis on the features that make it 
unique and the capabilities they enable, along with some examples of scenarios 
in which CFS is particularly suitable. It should be of interest to new application 
designers who require an appreciation of online data management in the data 
center environment. 

Part II describes the CFS “secret sauce”-the internal architecture that gives CFS 
its unique combination of scalability, flexibility, robustness, and performance. It 
should be of interest to experienced developers and administrators who need to 
understand what’s going on “under the hood.” 

Part III is a guide to installing CFS and tuning file systems. Multi-server cluster 
environments are inherently complex, as are their file I/O requirements. This 
part should be of interest to system administrators who are either installing CFS 
for the first time or are tasked with monitoring and managing the performance 
of a CFS cluster. 

Most of the material is available in some form from other sources. The unique 
contribution of this book is to “pull it all together,” and to answer the question, 
“why” in addition to describing the “what.” 

Books tend to live longer than software product versions. While every effort has 
been made to ensure the accuracy of the material, you should consult current 
product documentation and support sources before putting the principles and 
techniques described herein into practice. 
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Introduction

File systems for data sharing

This chapter includes the following topics:

■ The role of file systems in information technology

■ Shared data file system architectures

■ Model 1: network-attached storage (NAS)

■ Model 2: The file area network (FAN)

■ Model 3: The SAN (direct data access) file system

■ Model 4: The cluster file system

The role of file systems in information technology 
Enterprises of all kinds increasingly depend on their digital data assets to 
operate. But the business world has moved beyond simple dependence on data 
availability. As information processing operations integrate across the 
enterprise, not only must data sets be highly available, they must also be readily 
accessible to multiple business applications running on different computers. 
Moreover, as the increasing velocity of business change is reflected in 
information processing, the stable, unchanging data center is becoming a thing 
of the past. Instant reaction to rapidly changing business conditions and 
computing requirements is a must. In short, the digital data that enterprises 
need to operate must be both highly available and simultaneously accessible to 
an ever-changing array of applications and servers 

Moreover, the storage that holds business-critical data must be scalable-able to 
grow and shrink, both in size and accessibility-as requirements fluctuate. 

From a technology standpoint, this means that key data sets must be 
simultaneously accessible by multiple computers and applications, in such a 
way that each one perceives itself as the sole user of the data. 
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 The file system in the I/O software stack 

The typical application server software “I/O stack” 
illustrated in Figure Intro-1 can be a useful aid to 
appreciating the advantages and limitations of 
different approaches to sharing data among 
computers and applications.

Nearly all applications deal with files. Files are a 
convenient representation of both business and 
technical objects-transactions, activity logs, 
reports, design documents, measurement traces, 
audio-visual clips, and so forth. Even the so-called 
“structured data” typically managed by relational 
database management systems is typically stored 
in container files. 

The properties of files allow applications to deal 
with data much as people would deal with the 
business objects the data represents: 

■ Flexibility. Files are easily created, added to, 
truncated, moved, and deleted 

■ User-friendliness. Files’ names are human and 
application-readable, and can be chosen for 
convenience 

■ Hierarchical organization. Files can be 
organized in hierarchies along departmental, 
application, project, temporal, data type, or 
other convenient lines for easy reference 

■ Security. Files can be protected against both tampering and physical 
destruction to a greater or lesser degree, depending on their value and the 
cost of protection 

Virtualization in the I/O stack 

As Figure Intro-1 suggests, applications manipulate files by requesting services 

from a file system1. The role of the file system is to present an application-
friendly file abstraction, and to implement it using a more primitive abstraction, 
the virtual block storage device. 

Figure Intro-1 The file 
system’s position in the 
application server software

1. The term file system is commonly used to refer to both (a) the body of software that 
manages one of more block storage spaces and presents the file abstraction to clients, 
and (b) a block storage space managed by such software and the files it contains. The 
intended meaning is usually clear from the context.
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Virtual block storage devices resemble disk drives. To file systems, they appear 

as numbered sets of fixed-size “blocks” of persistent storage capacity2 in which 
data can be stored and from which it can be retrieved. Functionally, they differ 
from physical disk drives primarily in that the number of blocks they contain 
can be increased (and in some cases reduced) administratively. 

Virtual block storage devices are implemented by mapping their block numbers 
to corresponding blocks on physical storage devices-magnetic or solid state disk 
drives-in some way that achieves a desirable data resiliency, I/O performance, or 
flexibility effect. For example, virtual blocks may be mapped to striped, 
mirrored, or RAID disk configurations. Mapping virtual block numbers to block 
addresses on physical storage devices can be performed at different locations in 
the hardware stack: 

■ Application server. Volume managers run in application servers and 
coordinate the operation of devices they perceive as disks 

■ Disk array. Disk array control firmware manages the physical storage 
devices in the array 

■ Storage network. Firmware in intelligent network switches that connect disk 
arrays to application servers manages the already-virtualized devices 
presented by the arrays 

There may be two or even three layers of block device virtualization in an I/O 
path. A disk array may create a RAID group of several disks and present them as 
logical units (LUNs) to a network switch, which mirrors them with LUNs 
presented by another array, and presents the resulting virtual LUN to a volume 
manager, which mirrors it with a directly attached solid state disk for 
performance and resiliency. 

What’s in a file system 

The file system software that implements the file abstraction using the much 
more primitive virtual block device abstraction for persistent storage, is a 
complex component of the server I/O software stack with multiple functions: 

■ Storage space management. It manages one or more “flat” (sequentially 
numbered) spaces of virtual device blocks, allocating them to files and other 
structures as needed, and keeping track of those that are free for allocation

■ Name space management. It implements a name space, in which an 
application can give a file any unique syntactically valid name. In most file 

2. Persistent storage is storage whose contents persist, or last across periods of inactivity. 
Information written on paper is persistent, whereas information displayed on a video 
screen is not. In digital data storage terms, persistence usually means retention of con-
tents in the absence of electrical power. Thus, magnetic disk drives and solid-state flash 
memories are persistent. Computers’ dynamic random access memories (DRAMs) are 
not persistent.
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systems, a file’s full name represents the path on which it is reached when 
traversing the name space hierarchy. In a UNIX file system, for example, the 
file /a/b/c would be located by starting at the top of the hierarchy (/), and 
traversing directory a, which contains directory b. File c is situated within 
directory b. File /a/b/c is distinct from file /a/d/c, which has the same name 
(c), but is located on a different path (/a/d) 

■ Security. It enforces file ownership and access rights, granting applications 
read and write access to files only if they present the proper credentials

■ File data mapping. It maps file data addresses to block numbers on the 
underlying virtual block devices so that each file appears to applications as a 
stream of consecutively numbered bytes, independent of the block device 
locations at which it is stored 

In addition to these externally visible functions, file systems perform internal 
functions that are transparent to applications. These include caching of file 
system objects (“metadata” that describes certain properties of data such as its 
owner, its location, and so forth) and file data to enhance performance. File 
system designs assume that computer main memories can be accessed four or 
five orders of magnitude more quickly than persistent storage. For example, 
scanning a directory in search of a particular file name is much faster if some or 
all of the directory’s contents are immediately accessible in memory (“cached”), 
and do not have to be read from disk. 

File systems perform these tasks concurrently on behalf of as many applications 
and other system software components as are running in the system. Each 
application sees itself as the only user of files in the system, except where two or 
more mutually aware applications explicitly share access to files. Even in this 
case, file systems appear to execute application requests strictly in order. For 
example, if one application writes data to a file, and another reads the same file 
blocks shortly thereafter, the data returned is that written by the preceding 
application. 

File systems manage this complexity by a combination of: 

■ Careful writing. Performing their internal operations in a strictly controlled 
order, particularly those that update file system metadata 

■ Controlling access to resources. Maintaining elaborate and constantly 
changing sets of locks that limit access to parts of the file system’s data and 
metadata while it is in use, so that multiple accesses by uncoordinated 
applications do not corrupt data or deliver incorrect results 

Typically, file system locks are in-memory data structures that record which 
data and metadata are “busy” at the moment, and which therefore cannot be 
perturbed by additional accesses from applications or from the file system itself. 
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The problem with files: data islands 

While files are an extremely useful abstraction, implementing the abstraction in 
a file system that runs on a single application server ultimately creates an 
inherent limitation that is suggested by the graphic of Figure Intro-2. In Figure 
Intro-2, each set of virtual block storage devices is managed by a file system that 
runs in an application server. Each file system controls its storage devices, and 
presents a name space to all applications running in its server. There is no 
connection between the file systems on different servers, however. Each one 
presents a separate name space to the applications (“clients”) that use it, 
creating uncorrelated “islands” of storage and data. 

Figure Intro-2 “Islands” of data

Islands of storage and data are costly in several dimensions: 

■ Storage cost. Excess storage capacity connected to one application server is 
not readily available to other servers that might require it. In most cases, 
each application manager provisions storage for the worst case, resulting in 
overall waste

■ Bandwidth and time. Data required by two or more applications must be 
copied between originating and consuming servers. Copying uses network 
bandwidth, and perhaps more important, takes time. The degree to which 
applications can be synchronized with each other is limited by the time 
required to copy data from one to another 

■ Potential for error. Keeping two or more copies of data on different “islands” 
synchronized is a fragile, error prone process. Moreover, each time 
applications, data structures, system or network configurations, or operating 
procedures change, data copying and other management procedures must be 
reviewed and changed as well. Infrequent, non-routine operations are 
generally the most error-prone, occasionally with catastrophic consequences 
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As suggested earlier, applications that process digital data are becoming 
increasingly integrated-from the point of origin of data, through editing and 
modification, analysis, reporting, action, and finally archiving. The “islands of 
data” scenario represented by Figure 2 is becoming correspondingly less 
acceptable. Enterprises need technology that enables many applications (or 
many cooperating instances of the same application) to access the data in a 
single file system, even if they are not all running on the same application 
server. 

There are several architectural solutions to this problem of shared access to file 
systems. The most frequently encountered are: 

■ Network Attached Storage (NAS) 

■ File Area Networks 

■ SAN file systems 

■ Cluster file systems 

Each solution has its strong and weak points, and consequently, classes of 
application for which it is more or less optimal. The sections that follow describe 
these file sharing solutions and enumerate their strengths and weaknesses. 

Shared data file system architectures 
File systems that enable data sharing by multiple client applications running on 
interconnected computers can generally be characterized by: 

■ Functions performed by the client. The file system tasks performed by the 
application server 

■ Location of data access software. The location of the file system software 
that accesses and transfers file data 

■ Location of metadata management software. The location of the file system 
software that manages file system metadata 

Shared data file system models have other characteristic properties, such as the 
network technologies they use, but these are generally either historical artifacts 
(for example Fibre Channel with SAN file systems or Ethernet with NAS 
systems) or market-driven implementation choices (for example, Infiniband for 
high-performance computing), rather than being inherent in the architectures. 
This section discusses the four most frequently-encountered shared data file 
system architectural models, including the cluster file system model 
implemented by Symantec’s Veritas Cluster File System (CFS). 
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Model 1: network-attached storage (NAS) 
Perhaps the most frequently encountered shared data file system architecture is 
the network-attached storage (NAS) model depicted in Figure Intro-3. In a NAS 
system, a single computer (the NAS “head” in Figure Intro-3) manages file 
system metadata and accesses file data on behalf of clients. The NAS head, 
which in smaller configurations is often integrated with the disk drives it 
controls, communicates with client computers over a network (usually TCP/IP) 
using a file access protocol such as Network File System (NFS) or Common 
Internet File System (CIFS). To applications running on client computers, NAS-
hosted file systems are essentially indistinguishable from local ones.

A file access client software component running in the client computer 
translates applications’ file access requests expressed by operating system APIs 
such as POSIX into CIFS or NFS protocol messages and transmits them to the 
NAS system. 

Figure Intro-3 Network-attached storage model

CIFS, NFS, and other network file access protocols express file access and 
metadata manipulation requests, which the NAS head executes on behalf of 
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clients. Table Intro-1 summarizes the characteristics of the NAS model. 

Advantages and limitations of the NAS architectural model 

The NAS model has become very popular for use with both UNIX and Windows 
application servers. Popularity has resulted in a high level of maturity 
(performance and robustness) and integration, for example, with network 
management and security tools. NAS systems are widely deployed as second-tier 
data storage, and are increasingly coming into use in more performance-critical 
applications. 

As may be apparent from Figure Intro-3, however, the NAS model has certain 
inherent limitations: 

■ Protocol overhead. Applications running on NAS client computers use 
operating system APIs (POSIX or WIN32) to express file access requests. File 
access client software translates these into CIFS or NFS messages and sends 
them to the NAS head. The NAS head executes the requests using its own 
operating system APIs to access file system data and metadata. Thus, client 
requests are translated twice before being executed. Similarly, the NAS 
system’s responses are translated twice as well.

A more pronounced effect in some applications is data movement overhead. 
The CIFS and NFS protocols do not lend themselves to so-called “direct,” or 
“zero-copy” file I/O, in which data is written directly from or read directly into 
application buffers. Typically, CIFS and NFS client software moves data 
between user buffers and the kernel operating system buffers from which I/O 
is done. Particularly for streaming applications, which read and write large 
blocks of data, the overhead of copying data to and from application buffers 
can be substantial. 

■ Bottlenecking. A NAS head is the single access point for the file systems it 
hosts. Thus, a NAS system’s total performance is limited by the ability of the 
head to process requests and to absorb and deliver data. Data centers with 
more clients or greater I/O demands than a NAS system can satisfy must 
divide their workloads among multiple NAS systems, creating “islands” of 
unconnected data. Chapter 3 describes a novel capability of Symantec’s 

Table Intro-1 Properties of the NAS model

Tasks performed by 
application server

Location of file data 
access software

Location of metadata 
management software

Translate applications’ file 
access requests to the NAS 
protocol (typically NFS, 
CIFS, http, DAV, or similar)

NAS head NAS head
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Veritas Cluster File System that relieves this limitation, the clustered NFS 
server, or CNFS. 

In addition to the inherent limitations of the model, NAS implementations have 
historically lacked certain features that are important for critical enterprise 
data, notably high availability (the capability of a system to sustain single 
component failures and continue to perform its function), and disaster 
protection (typically in the form of replication of data to a remote location). In 
recent years, these features have been introduced in NAS systems, but they 
remain in the minority of deployments. 

NAS systems are generally most suitable for storing large amounts of file data 
with modest individual client access performance requirements, and least 
suitable in applications such as business transaction processing, for which the 
lowest possible latency (end-to-end I/O request execution time) is the defining 
performance criterion. Historically, they have been perceived as simple to 
administer relative to systems that implement other shared data file system 
architectural models. 

Model 2: The file area network (FAN) 
The popularity of NAS systems, and the consequent growth of “data islands” 
(Figure Intro-2) has led to another shared data file system model that is 
sometimes called the file area network (FAN). File area networks bring multiple 
NAS systems together into a single logical name space that is presented to 
clients. Figure Intro-4 illustrates the FAN model. 

Figure Intro-4 File area network model
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In a FAN file system, multiple NAS systems connect to a file system aggregator, 
usually a highly specialized network router with large amounts of internal 
bandwidth, network connectivity, and cache memory. As its name implies, the 
file system aggregator combines the file systems presented to it by two or more 
NAS into a single name space hierarchy, which it in turn presents to clients. 

A FAN file system appears to clients as a single name space. The aggregator 
keeps track of the locations of sub-trees within the aggregated name space and 
relays each client request to the NAS system that holds the referenced data. 
Table Intro-2 summarizes the distinguishing properties of the file area network 
architectural model. 

Advantages and limitations of the FAN architectural model 

FAN file systems have two important advantages over other shared data file 
system technologies: 

■ Name space consolidation. They combine isolated “islands” of data stored on 
NAS systems into larger, more flexibly accessed and more easily managed 
collections. For data centers with dozens of NAS systems to administer, this 
is particularly important 

■ Advanced functions. They enable advanced functions, principally those 
based on copying data from one NAS system to another under the control of 
the file system aggregator. This facility has several applications; three 
important ones are NAS system-based backup, load balancing across NAS 
servers, and migration of data from older NAS servers to their replacements. 
Copying is generally transparent to client computers, so FAN aggregators can 
generally migrate data while applications are accessing it 

The limitations of the FAN architectural model are similar to those of the NAS 
model that underlies it, long I/O paths (even longer than with direct NAS 
access), protocol translation overhead, and the bottleneck represented by the 
file system aggregator itself. Thus, FAN technology is most suited for “tier 2" 
applications, for which simple administration of large amounts of data stored on 

Table Intro-2 Properties of the file area network model

Tasks performed by 
application server

Location of file data 
access software

Location of metadata 
management software

Translate I/O requests 
to NAS protocol (typi-
cally NFS, CIFS, http, 
DAV, or similar)

NAS aggregator 
(client request 
distribution)
Subordinate file 
servers 

(data access)

NAS aggregator 
(data location mapping) 
Subordinate file 
servers
(metadata access)
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multiple NAS systems has a higher priority than the low-latency access by client 
computers that is characteristic of business transaction processing. 

Variation on the file area network theme: distributed file systems 

Microsoft Corporation’s Distributed File System (DFS) implements a model 
similar but not identical to the FAN model illustrated in Figure Intro-4. In 
addition to the files it hosts, a DFS file server stores referrals-links to directory 
trees hosted by other servers. When a client requests access to a file or directory 
represented by a referral, the DFS server responds with the hosting server’s 
network name. The client establishes a connection with the server that hosts its 
data, and communicates directly with it to manipulate files. The DFS referral 
architecture is sometimes referred to as out-of-band file area networking, 
because client access to referred files is not in the communication path between 
the client and the server containing the referral. 

DFS minimizes the bottleneck inherent in the in-band FAN model illustrated in 
Figure Intro-4, because data transfer is distributed between clients and the 
servers that hold their data, rather than being funneled through a single point. 
Similarly to the in-band FAN model, it enables advanced features based on 
copying data transparently to clients. It poses challenges, however, 
synchronizing the copies, and in keeping referrals current as files are created 
and deleted, and as directory structures change. 

Model 3: The SAN (direct data access) file system 
The storage area network (SAN) file system is a more recent shared data file 
system architectural model. SAN file systems can also be termed parallel, or 
direct data access, because they enable client computers (usually application 
servers; SAN file systems are rarely used with single-user desktop computers) to 
access file data directly from block storage devices, without funneling it through 
an intermediate stage, as is the case with NAS systems. Figure Intro-5 illustrates 
a parallel data access shared data file system. 
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Figure Intro-5 Direct access model

In the model illustrated in Figure Intro-5, client computers running applications 
communicate with a cluster of metadata servers to authenticate themselves and 
gain authorization to access file systems. Once authenticated, clients access files 
by requesting from the metadata service a map of the files’ data locations. They 
use this map to form read and write requests which they communicate directly 
to storage devices, as the right side of the figure suggests. Table Intro-3 
summarizes the properties of the direct data access model. 

Table Intro-3 Properties of the direct data access file system model

Tasks performed by 
application server

Location of file data 
access software

Location of metadata 
management software

Request metadata from 
metadata server 

Access to file data is 
direct from data 
servers

Application server Metadata server
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Advantages and limitations of the SAN file system architectural 
model 

The name “SAN file system” derives from the storage network that connects 
client computers directly to storage devices (typically a Fibre Channel-based 
storage network, although iSCSI is also used). The SAN file system architectural 
model has three important advantages: 

■ Bottleneck elimination. It eliminates the bottleneck represented by the NAS 
head) (Figure 3) 

■ Independent scaling. It enables storage capacity, metadata processing 
power, and I/O bandwidth to scale independently as required by applications 

■ Low protocol overhead. It eliminates the double protocol conversion 
overhead, and for data transfer, increases the potential for zero-copy I/O, at 
least with Fibre Channel 

All of these advantages tend to promote scaling, particularly of I/O 
performance. In fact, the SAN file system architectural model has been most 
successful in the high-performance computing sector-simulation, experimental 
data reduction, and similar applications. 

With a SAN file system, once application servers have block storage devices’ 
network addresses, they can access data on the devices directly. This is a 
strength of the direct data access model, because it shortens the path between 
application and data. But it is also the weakness, because block-oriented storage 
network protocols are typically designed to respond to any command from an 
authenticated initiator. (This property is sometimes colorfully referred to as 
promiscuity.) 

While the danger of a “rogue” application server in a controlled data center 
environment is minimal, there is no protection against a software error causing 
data, or worse yet metadata, to be corrupted. Viewed from another perspective, 
for a SAN file system to function correctly, all metadata servers and all client 
application servers have to function perfectly all the time. Arguably, this risk 
has inhibited broader commercial adoption of SAN file systems. 

Variation on the direct data access theme: object-based file systems 

Object-based storage devices (OSDs) are a relatively new arrival on the file 
storage scene. Based loosely on the file system paradigm, OSDs and the file 
systems that utilize them eliminate much of the security risk inherent in the 
SAN file system architectural model. 

In essence, OSDs are persistent storage devices that manage their block storage 
internally and present “objects” that resemble files to clients. Clients’ read and 
write requests specify block ranges within objects; they do not have access to an 
OSD’s entire range of block storage. 
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The OSD-based file system model resembles the metadata server-data server 
model illustrated in Figure Intro-5. It differs in that file data locations are 
expressed in terms of object identifiers and block ranges within objects rather 
than in terms of ranges of raw disk blocks. 

Standards-based OSD access protocols include security mechanisms that allow 
metadata servers to limit client access to specific objects, and to revoke it if 
necessary, for example if a client times out or unmounts a file system. Thus, 
clients can only access objects that a file system’s metadata servers have 
authorized them to access. Malfunctioning clients have little or no capacity to 
damage file system data integrity. Moreover, metadata servers typically detect 
failing or misbehaving clients immediately and block them from accessing the 
file system entirely. 

Advantages and limitations of OSD-based file systems 

While they are technically attractive, two factors limit the adoption of OSD-
based direct data access file systems: 

■ Limited availability. OSD technology is relatively new, and no OSD devices 
are available on the market. Consequently, file system developers have little 
motivation to create file systems for OSD devices. Generally, the object-based 
file systems that have been developed are part of complete storage systems 
that include both software-based OSDs and metadata servers 

■ Inherent access latency. Because opening a file requires access to both a 
metadata server and an OSD, OSD-based file systems have inherently higher 
“time to first byte” than block storage-based ones. Thus, they are not 
particularly well-suited to applications such as desktop file serving in which 
files are opened and closed frequently 

As mentioned earlier, direct data access file systems have gained popularity in 
high-performance computing, where the scale is large (petabytes), the 
computing environments are generally trusted, and the magnitude of the data 
storage and access problems is such that they simply cannot be solved any other 
way. 

Direct data access file system architectural models are evolving rapidly, at least 
by data access protocol standards. The parallel network file system (pNFS) is a 
proposed standard for direct client access to file data stored either on block 
storage devices, OSDs, or NAS systems. Like the OSD technology after which it is 
patterned, pNFS is a functionally rich model that is finding early success in the 
high-performance computing sector. As the protocol itself matures, and more 
storage devices and systems support it, its acceptance in the commercial sector 
can be expected to broaden. 
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Model 4: The cluster file system 
Figure 6 illustrates the cluster file system architectural model for shared access 
to files. Cluster file systems provide low-latency access and a near linear 
capacity and performance scaling for a moderate-size (typically 32-64) cluster of 
nodes (application servers) accessing one or more common sets of files in 
different file systems. 

Figure Intro-6 Cluster file system model

With the cluster file system model, each node runs a complete instance of file 
system software that is functionally equivalent to the single-server local file 
system illustrated in Figure Intro-1 in addition to its applications. Each cluster 
file system instance is aware of the others, and they all cooperate by 
continuously exchanging state and resource control information over a private 
network to provide coordinated file system access to their respective 
applications. 

In a cluster file system, all file system instances operate on the same logical 
images of data. Multiple physical copies of data may exist, for example where 
disk-level mirroring is used to enhance performance and resiliency, but file 
system instances perceive a single data image). Table Intro-4 lists the defining 
characteristics of the cluster file system model. 
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In a cluster file system, all file system instances manipulate file system 
metadata directly, after first coordinating with their peer instances in other 
nodes via network messages to “lock” access to the metadata they are 
manipulating (the icons labeled “Cluster file system” in Figure Intro-6). 
Likewise, each file system instance accesses data directly, again, after locking 
access to it to prevent inadvertent corruption by peer instances running 
elsewhere in the cluster. 

Advantages and limitations of the cluster file system architectural 
model 

The advantages of the cluster file system model are: 

■ Low latency. Direct application server access to data with minimal protocol 
translation minimizes I/O request latency 

■ Resource scaling. Metadata processing power, cache memory available to file 
systems, and storage access bandwidth all increase as nodes are added to a 
cluster. Storage capacity increases independently as disk arrays are added to 
the storage network 

■ Cache coherency. Each node’s updates to cached data are instantly available 
to all nodes in a cluster so that all have an up-to-date picture of data at all 
times 

■ Load balancing. When integrated with application clustering, cluster file 
systems make it possible to redistribute application and file system workload 
when a cluster node fails or when workload requirements change 

■ Rapid recovery. Because cluster file systems are mounted on all cluster 
nodes, restart of failed applications on alternate cluster nodes (called 
failover) tends to be faster than with other approaches, because file systems 
need not perform full checking and restart. Typically, only replay of the 
failed node’s file system log by a surviving node is required.

Cluster file systems offer low latency data transfer, and so are suitable for 
business transaction processing as well as other workloads. With short data 
paths and no protocol conversion during data transfer, cluster file systems are 
also suitable for high-bandwidth streaming workloads. 

Table Intro-4 Properties of the cluster file system model 

Tasks performed by 
application server

Location of file data 
access software

Location of metadata 
management software

Full file system functionality Application server 
(cluster node)

Application server 
(cluster node)
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The number of nodes in a typical cluster is relatively modest–common upper 
limits are between 32 and 64. Cluster file systems are therefore not well-suited 
for personal computer data sharing, where there might be hundreds, or even 
thousands, of client computers, many of which are mobile. The NAS and FAN 
architectural models are usually preferable for large numbers of personal 
computer clients. Chapter 3 describes a novel cluster file system capability, a 
clustered NFS server (CNFS) that enables a cluster of up to 32 nodes running 
Symantec’s Veritas Cluster File System to be deployed as a scalable, resilient 
NFS server suitable for providing file access services to dozens of application 
servers or thousands of personal computer clients. 
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Chapter 1

What makes CFS unique 

This chapter includes the following topics:

■ CFS foundation and platforms

■ What makes CFS unique

■ The top 10 in depth

■ Using CFS

CFS foundation and platforms 
The cluster file system component of Symantec’s Veritas Storage Foundation 
Cluster File System package (SFCFS), known informally as CFS, evolved from 
Symantec’s proven Storage Foundation File System (commonly called VxFS), 
originally developed by VERITAS Software Corporation. CFS is a 64-bit fully 
POSIX-compliant cluster file system available for Sun Microsystems’ Solaris 
(SPARC and 64-bit Intel), Hewlett-Packard’s HP-UX, IBM’s AIX, and Linux 
distributions offered by RedHat, SuSe, IBM, and Oracle. 

CFS can host multiple file systems3, each encompassing up to 256 terabytes of 
storage and containing up to a billion files. It includes several advanced 
capabilities that make it the file system of choice in complex production data 
center environments. The “top 10 list” of CFS advanced capabilities are 
described later in this chapter. 

CFS implements the cluster file system architectural model described in “Model 
4: The cluster file system” on page 21 in UNIX and Linux-based VERITAS Cluster 
Server (VCS) computer clusters, as well as Hewlett-Packard MC-Service Guard 

3. The term file system is commonly used to refer to both (a) the body of software that 
manages one of more block storage spaces and presents the file abstraction to clients, 
and (b) a block storage space managed by such software and the files it contains. The 
intended meaning is usually clear from the context. 
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clusters on the HP-UX operating system. CFS instances in a VCS cluster of as 

many as 32 nodes4 (application servers) cooperate to provide simultaneous 
shared access to file systems for applications running on some or all of the 
cluster’s nodes. Figure 1-1 illustrates the software topology of a cluster in which 
CFS provides shared file system access. 

Each CFS instance provides file access services to applications running on its 
node. For example, in Figure 1-1, the CFS instance on Cluster node 1 can mount 
file systems /X, /Y, and /Z, and make them available to Applications A, B, and C. 
The instance on Cluster node 2 can mount the same three file systems and make 
them available to Applications D, E, and F, and so forth. CFS instances 
coordinate file access across the entire cluster so that all applications have the 
same view of the file system state and file contents at all times, and so that 
potentially conflicting updates do not interfere with each other or with other file 
accesses. 

Figure 1-1 CFS topology

In the scenario illustrated in Figure 1-1, the applications might be completely 
independent of each other, or they might themselves be structured as high 
availability cluster services. For example, Application A might be configured as 
a cluster service that would “fail over” to (automatically restart on) Cluster node 

4. Symantec supports CFS in clusters of up to 32 nodes at the time of publication. Readers 
should consult the most recent product documentation for up-to-date product parame-
ters. 
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2 if Cluster node 1 were to fail. The surviving nodes discover the failure, and 
reconfigure themselves into a new cluster consisting of nodes 2-N. After the 
reconfiguration, Application A automatically restarts on node 2. Since the CFS 
instance on node 2 serves the same file systems to applications running there, it 
seamlessly provides file system access to the restarted Application A. 

Alternatively, applications may be structured as parallel cluster services. 
Instances of parallel services run concurrently on multiple cluster nodes, 
sharing access to CFS files and serving the same or different clients. If a node 
fails, its clients are shifted to an instance on a surviving node, and service 
continues uninterrupted. 

CFS applications 

With the ability to support up to 256 terabytes of storage and up to a billion files 
per name space, multi-volume file systems, and individual sparse files as large 

as 8 exabytes5, CFS file systems can be sized to meet demanding enterprise 
requirements. 

Supporting large file systems is much more than data structures. CFS is 
designed for reliable high performance file data access across a broad spectrum 
of enterprise applications, including: 

■ Media. CFS efficiently maps multi-gigabyte media files for fast access 

■ Science and engineering. CFS is an ideal repository for large data sets 
collected during experiments or generated by modeling applications, and 
reread piecemeal for analysis 

■ Commercial. CFS is versatile enough to support databases accessed 
randomly by business transaction processing applications as well as those 
accessed sequentially by decision support systems 

■ Unstructured. CFS file systems make high-performance platforms for file 
serving where users are constantly creating, deleting, opening, and closing 
large numbers of files of varying size and composition. The Clustered NFS 
(CNFS) feature described in Chapter 3 extends scalable file serving to 
thousands of users through the Network File System (NFS) protocol 

CFS uses an efficient extent-based scheme to map blocks of file data to file 
system block locations. CFS data mapping is particularly concise for large 
contiguous files: in principle, it can describe the largest file that CFS supports 
with a single descriptor. Concise data block mapping is an important factor in 
I/O performance. Not only does it minimize the amount of metadata required to 
map a file’s data, it simplifies application read and write request execution 

5. Because it supports “sparse” files (files for which no storage is allocated to block ranges 
until data is written to them), CFS can create file address spaces that are larger than the 
amount of block storage allotted to a file system. 
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because it minimizes the number of file block ranges that must be read or 
written with separate disk I/O commands. 

CFS prerequisites 

In order for CFS instances to share access to file systems, the storage devices 
that hold the file systems must be directly accessible by all cluster nodes; that is, 
storage devices and the cluster nodes must all be interconnected by a storage 
network as Figure 1-1 suggests. CFS stores metadata and data on virtual storage 
devices called volumes that are managed by the Symantec Cluster Volume 
Manager (CVM) component of the Storage Foundation. CVM configures volumes 
by combining disks and disk array logical units (LUNs) connected to the cluster’s 
nodes by Fibre Channel, iSCSI, or Serial Attached SCSI (SAS) storage networks.

In addition to their connections to shared storage devices, the nodes in a VCS 
cluster must be interconnected directly to each other via an Ethernet-based 
private network, as illustrated in Figure 1-1. VCS uses the private network to 
transmit heartbeat messages among nodes and to coordinate cluster 
reconfigurations and application failovers. CFS uses the VCS private network to 
coordinate access to shared file system resources such as file and free space 
metadata.

CFS packages 

Four Symantec products include CFS technology: 

■ Storage Foundation CFS (SFCFS). In addition to CFS and CVM, the SFCFS 
package includes the VCS components and configuration tools that enable a 
group of computers to form a cluster, create volumes, and create, mount, and 
access shared file systems. It does not include the VCS facilities required to 
structure arbitrary applications for automatic failover 

■ Storage Foundation CFS for high availability (SFCFS-HA). The SFCFS-HA 
package includes CFS, CVM, and full-function VCS. With SFCFS-HA, most 
applications can be configured as highly available VCS service groups that 
store their data in CFS shared file systems mounted on CVM volumes 

■ Storage Foundation for Oracle Real Application Cluster (SFRAC and 
SFCFSRAC). The SFRAC package, and the companion SFCFSRAC (for Linux 
platforms) include CFS, CVM, and VCS, along with additional software 
components that facilitate high availability for Oracle’s Real Application 
Cluster (RAC) clustered database management system software 

■ Storage Foundation for Sybase Cluster Edition (SFSYBCE). The SFSCE 
package includes CFS, CVM, and VCS, along with additional software 
components that facilitate high availability for Sybase Cluster Edition 
clustered database management system software 

Any of these can be installed on a supported UNIX or Linux cluster. In addition, 
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CFS is the file system component of file storage systems that are based on 
Symantec’s FileStore NFS and CIFS file server technology. 

What makes CFS unique 
The remainder of this chapter describes the CFS “top ten list”—ten features that 
differentiate CFS from other cluster file systems for UNIX platforms and from 
other approaches to file data sharing. The features are listed alphabetically 
because it is impossible to assign relative importance to them: 

■ Feature 1: Cluster and data disk fencing. Any cluster runs the risk of 
partitioning into two groups of nodes that cannot communicate with each 
other. To avoid incorrect operation and data corruption, there must be a 
foolproof algorithm for dealing with partitioning that always results in one 
partition continuing to operate as a reduced cluster and the other shutting 
down. VCS uses coordinator disks to resolve cluster partitions that result 
from failures of the private network. (Alternatively, a coordinator server can 
be configured in place of one or more of the disks.) In addition, if CFS file 
systems reside on volumes configured from PGR-capable disks, CVM uses 
data disk fencing to protect against data corruption when a cluster partitions 
(see “Feature 1: Cluster and data disk fencing” on page 33) 

■ Feature 2: Database management system I/O accelerators. CFS includes 
three different database acceleration options that make it possible for 
database management systems and other I/O intensive applications to get 
the administrative convenience of using files as data containers without 
incurring the performance penalty typical of this approach.
(see “Feature 2: Database management system I/O accelerators” on page 36 
and Chapter 11) 

■ Feature 3: The File Change Log (FCL). A CFS file system can be configured to 
maintain a circular File Change Log (FCL) in which it records descriptions of 
all changes to files in the file system. Incremental backup, auditing, and 
similar applications can use APIs supplied with CFS to determine which files 
in a file system were changed during a given period. 
(see “Feature 3: The File Change Log (FCL)” on page 37) 

■ Feature 4: The file system history log. CFS permanently logs all maintenance 
performed on a file system in the file system itself. The file system history log 
gives support engineers instant access to reliable, up-to-date information 
about the state of a file system for faster problem diagnosis and resolution. 
(see “Feature 4: The file system history log” on page 39) 

■ Feature 5: Flexible snapshots and clones. Products that include CFS support 
both snapshots of sets of CVM volumes and snapshots of file systems (called 
Storage Checkpoints). Administrators can choose between full-size volume 
snapshots that can be taken off-host for separate processing and space-
optimized snapshots of either volumes or file systems that occupy space in 
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proportion to amount of changed data in a data set, rather than the data set’s 
size. All Storage Foundation snapshot technologies can be configured for use 
either as read-only point-in-time images of data, or as writable clones of their 
parent data sets. 
(see “Feature 5: Flexible snapshots and clones” on page 40) 

■ Feature 6: Named data streams. Named data streams make it possible for 
applications to attach virtually unlimited custom metadata to files. 
Structured as hidden files, named data streams can contain anything from a 
single byte to a video clip. 
(see “Feature 6: Named data streams” on page 42) 

■ Feature 7: Portable Data Containers (PDC). Storage Foundation Portable 
Data Container (PDC) technology makes cross-platform data sharing possible. 
CFS file systems produced by one type of VCS cluster platform (for example, 
AIX) can be converted for use on a system or cluster of a different type (for 
example Linux), even if the two platforms use different memory addressing. 
(see “Feature 7: Portable Data Containers (PDC)” on page 43) 

■ Feature 8: User and group quotas. CFS enforces both hard (non-exceedable) 
and soft (exceedable for a limited time) quotas that limit the file system 
storage space that individual users and groups of users are permitted to 
consume. 
(see “Feature 8: User and group quotas” on page 47) 

■ Feature 9: Sparse files. CFS files are inherently sparse. By default, the file 
system only allocates storage for file blocks to which applications actually 
write data. No storage is allocated for file blocks that have never been 
written. Sparse files simplify indexing when index spaces are large, without 
exacting a toll in overprovisioned storage. 
(see “Feature 9: Sparse files” on page 48) 

■ Feature 10: Storage tiers. CFS helps minimize blended storage cost in large 
file systems that contain combinations of active and inactive or critical and 
non-critical data by automatically placing files on the “right” type of storage 
throughout their lifetimes. 
(see “Feature 10: Storage tiers” on page 50)

In addition to these ten, all of which are shared with the single-instance VxFS 
file system, many other CFS features, including its “friendliness” to thin 
provisioned underlying storage devices, support for reclamation of unused 
storage capacity, and SmartMove technology for data migration, make it the file 
system of choice for critical enterprise applications in complex, rapidly 
changing data center environments. 
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The top 10 in depth 
The sections that follow describe the “top 10” list of CFS differentiating features 
in depth. 

Feature 1: Cluster and data disk fencing 

Like any shared data cluster whose nodes and storage are interconnected by 
separate networks, a CFS cluster must avoid data corruption due to partitioning 
(sometimes informally called a split brain condition). If a cluster’s private 
network fails in such a way that two or more disjoint groups of nodes cannot 
communicate with each other, one group of nodes can continue to act as the 
cluster, but the remaining groups must shut down to avert data corruption. 

Figure 1-2 illustrates partitioning in a four-node cluster.6 

Figure 1-2 Cluster partitioning

In Figure 1-2, the private network has become partitioned so that Nodes A and B 
can communicate with each other, as can Nodes C and D. But the two halves of 

6. Partitioning is usually described prominently in cluster-related literature, but is in fact 
a fairly rare condition, particularly in VCS clusters, because VCS requires redundant 
private networks, and in addition, supports private networks that are doubly redun-
dant, and therefore capable of sustaining two link failures without partitioning. 
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the cluster cannot intercommunicate on the private network. Both halves of the 
cluster can communicate with storage devices, however, creating the potential 
for corrupting data and file system structures. 

Partitioning of a VCS cluster’s private network is difficult to diagnose because 
the nodes within each partition (Nodes A and B and Nodes C and D respectively 
in Figure 1-2) cannot distinguish between: 

■ Node failure. Failure of the nodes in other partitions. In this case, the failed 
nodes are shut down by definition; the surviving nodes should become the 
cluster and continue to provide services to clients 

■ Private network failure. Failure of communication links between the 
partitions. In this case, there is no automatic “right” answer to which 
partition should continue to function as the cluster. Both partitions are 
functioning properly, but since they cannot intercommunicate, they cannot 
coordinate access to shared storage devices 

Coordinator disks and coordination point servers 

VCS resolves network partitions by using coordinator disks or coordination 
point servers as extra communication channels that allow partitioned cluster 
nodes to detect each other. For resiliency against disk failure, VCS fencing 
requires three (or any larger odd number of) dedicated coordinators. 
Coordinator disks must have the following properties: 

■ Persistent Group Reservation support. Coordinator disks must support 
SCSI-3 Persistent Group Reservations (PGR) 

■ Cluster-wide accessibility. Coordinator disks must be accessible by all 
cluster nodes, ideally each one via a separate I/O path 

Coordinator disks do not store data, so small-(10 megabyte or greater) LUNs are 
the most suitable candidates. The VCS fencing algorithm requires that a cluster 
have three or some larger odd number of coordinators, and that coordinators 
always be accessed in the same order. 

When a cluster node determines (by the absence of heartbeat messages) that it 
cannot communicate with one or more other nodes, it first blocks I/O to shared 
file systems to protect against data corruption. It then requests exclusive access 
to the first coordinator (using the PGR protocol if the coordinator is a disk). All 
nodes in a partitioned cluster do this at approximately the same time. 

The SCSI-3 Persistent Group Reservation protocol and the VCS protocol for 
coordination point servers only permit one node to successfully reserve the first 
coordinator; all other nodes’ requests fail because the coordinator is already 
reserved. A node’s subsequent behavior depends upon its success in reserving 
the first coordinator: 

■ Successful node. The successful node immediately requests reservations for 
the other two coordinators 
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■ Other nodes. Nodes that failed to reserve the first coordinator voluntarily 
wait for a short period before requesting reservations on the other 
coordinators 

Reconfiguring a partitioned cluster 

Once a node succeeds in reserving more than half of the coordinators, it and the 
nodes with which it can communicate on the private network perform a cluster 
reconfiguration resulting in a cluster that does not include nodes with which 
they cannot communicate. The nodes of the reconfigured cluster complete 
failover by performing the following actions: 

■ Revoke partitioned nodes’ access to data disks. The new cluster’s CVM 
master commands all PGR-capable data disks in CVM shared disk groups to 
revoke the registrations of partitioned nodes so that commands from them 
are no longer honored. This is called data disk fencing. Data disk fencing 
greatly diminishes the potential for a cluster partition to result in data 
corruption, and is therefore highly recommended 

■ Fail over virtual IP addresses. Any IP addresses configured as high 
availability service groups fail over to nodes in the reconfigured cluster 

■ Fail over services from partitioned nodes. VCS restarts high-availability 
services from nodes that were partitioned out of the cluster on their 
designated failover nodes 

■ Resume service to clients. Restarted applications on the reconfigured cluster 
resume perform crash recovery and resume service to clients 

VCS forces partitioned nodes that fail to reserve a majority of the coordinators 
to shut down abruptly (“panic”). They remain inoperative until the private 
network has been repaired and an administrator has added them back into the 
cluster. 

While cluster fencing is internally complex, from an administrative standpoint 
it is a simple “set-and-forget” facility. A VCS administrator designates three or 
more coordinator disks or coordination point servers and activates fencing. 
Thereafter, the only administrative requirements are non-routine maintenance 
such as disabling fencing, checking coordinator status, and replacing failed 
coordinator disks. 

Data disk fencing 

For PGR-capable shared data disks, the CVM Master sets their PGR keys to 
reserve them for exclusive use by cluster members (“fences” them). When a 
cluster reconfigures, CVM removes the keys for the departed members to avoid 
the potential for data corruption in case removed nodes behave improperly (e.g., 
by attempting to flush data). Without the PGR capability, there is a remote but 
real possibility that badly-behaved applications in nodes removed from the 
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cluster could corrupt data by continuing to access disks after reconfiguration. 

Feature 2: Database management system I/O accelerators 

Database administrators (DBAs) often use files as “storage containers” for 
database metadata and data because they simplify common administrative 
tasks, such as moving, copying, and backing up selected subsets of database 
records, indexes, and logs. Moreover, when database storage requirements 
change, files are significantly easier to expand or shrink than disks or virtual 
volumes. 

But the data caching and I/O serialization that file systems use to isolate users 
from each other can hamper database I/O performance. Since database 
management systems are the sole users of their files, and since they coordinate 
their own file accesses to avoid conflicting updates, these file system protection 
mechanisms are by and large unnecessary. CFS includes three mechanisms that 
enable database management systems to bypass most of the unneeded file 
system protections against concurrent access and the overheads they incur: 

■ Oracle Disk Manager (ODM). 
Oracle Corporation publishes a 
specification for an Oracle Disk 
Manager (ODM) API that its 
database management system 
products use to optimize I/O 
operations. Perhaps the most 
important function of ODM is 
asynchronous file I/O between 
Oracle’s own buffers and the disks on which the files resides. CFS includes an 
ODM library that uses CFS and CVM capabilities to implement the 
functionality expressed in the ODM APIs 

■ Quick I/O. The Quick I/O for databases feature is the functionally similar 
precursor of CFS’ ODM library implementation. Still supported by CFS on 
enterprise UNIX platforms, Quick I/O provides advantages similar to ODM’s 
for any database management system (or other application) that 
synchronizes its own I/O requests and coordinates buffer usage internally 

■ Concurrent I/O. For database management systems and other applications 
that do not include their own APIs for storage access, CFS includes the 
Concurrent I/O (CIO) feature that makes it possible for any application to 
perform asynchronous file I/O directly between its own buffers and the disks 
on which the files reside. Administrators can specify concurrent I/O as a 
mount option, applying it to all files in a file system. Alternatively, 
application developers can declare cio as a cache advisory for specific files 

Using these CFS mechanisms, database administrators can enjoy the 
convenience of file-based storage administration without paying a penalty in 
diminished database I/O performance compared to that of “raw” block storage 

Administrative hint 1

Systems that use CFS Quick I/O files for 
Oracle database storage should be 
upgraded to the Oracle Disk Manager 
library, to improve integration with 
Oracle current and future releases. 
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devices. The CFS database I/O acceleration mechanisms enhance database 
management system I/O performance in three ways: 

■ Asynchronous I/O. CFS database I/O accelerators make it possible for data-

base management system execution threads to issue I/O requests and con-

tinue executing without waiting for I/O to complete. When a thread requires 

the result of its I/O request, or when it has exhausted its work queue, it waits 

for the I/O to complete 

■ Direct I/O. CFS database I/O accelerators schedule data transfers directly 

between database manager buffers and disk storage. They do not copy data 

between database manager buffers and operating system page cache as CFS 

would for normal application I/O requests 

■ Write lock avoidance. CFS database I/O accelerators bypass the operating 

system’s normal file write locking mechanisms. This increases parallel execu-

tion by allowing concurrent requests to be issued to CVM and thence to the 

hardware I/O driver level 

Chapter 11 discusses the ODM, Quick I/O, and CIO database I/O acceleration 
mechanisms in detail. 

Feature 3: The File Change Log (FCL) 

An administrator can configure CFS to maintain a File Change Log (FCL) for each 
mounted file system in which it records information about all changes made to 
the file system’s files. FCL records identify: 

■ Files. Files or directories affected by the change 

■ Operations. Creation, expansion, truncation, deletion, renaming, and so 
forth

■ Actors. Process IDs and user and group IDs under which changes were 
requested 

■ Times. Times at which operations were performed 

In addition, FCLs can periodically record: 

■ Filestats. I/O activity (called filestats) against individual files

■ All accesses. All file opens, including those for read-only access. These can be 
useful for auditing purposes. 

An FCL records file change events, but does not record changed data. 
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FCLs are circular. If an FCL fills to 
its maximum allowable size 
without being cleared or saved by 
an administrator, CFS overwrites 
the oldest information in it. When 
this occurs, CFS writes a record 
into the FCL indicating that 
records have been deleted. 
Administrators can enable and 
disable FCL recording at any time, 
and can adjust an FCL’s size to increase or decrease the number of records that 
can be retained. Additionally, administrators can set the minimum interval 
between successive open and write records to limit the space that the FCL 
consumes during periods when files are being updated frequently, while still 
capturing the fact that files were updated. Administrators can also copy FCL 
contents to regular files to preserve a permanent record of file system changes, 
and can clear FCL contents at any time (for example, after copying) to “start 
fresh” with file system change recording. 

Each CFS instance maintains an FCL for each mounted file system in which it 
records changes that it makes. Periodically, the primary CFS instance merges all 
instances into a master FCL in which all records, even those from different 
nodes that refer to the same object are recorded in proper sequence. 

CFS includes APIs that any application can use to retrieve FCL records. 
Applications that use these APIs retrieve a single cluster-wide stream of file 
change history records in which all records are in proper sequence, even if they 
were written by different instances. 

Data management applications can use FCL information in several ways, for 
example: 

■ Backup. Backup programs can read FCL records to determine which files in a 
file system changed during a given period, thus eliminating the need to 
examine every file to determine which to include in an incremental backup 

■ Replication. Episodic (periodic) replicators can read FCL records to quickly 
identify files that have changed since the last replication episode, and must 
therefore be communicated to the replication target during the next episode 

■ Search. Search engines that build persistent indexes of file contents can use 
the FCL to identify files that have been created, modified, or deleted since 
their last index update, and thus perform incremental index updates rather 
than full file system scans 

■ Audit. If a file system’s FCL is configured to record every access to every file 
in a file system, auditors can use it to determine the history of accesses and 
modifications to a file and the users and applications that made them 

 Administrative hint 2

An administrator uses the fcladm 
console command to manage the FCL, 
including starting and stopping 
recording, saving FCL contents, and 
adjusting parameters that control FCL 
operation. 
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■ Workflow. Workflow applications can read FCL records to identify 
documents that have been created, modified, or deleted, and use the 
information to schedule tasks accordingly 

CFS itself uses the information in the FCL. The Dynamic Storage Tiering feature 
(Chapter 10) uses FCL filestats to compute files’ I/O temperatures, in order to 
determine whether they should be relocated to alternate storage tiers based on 
the I/O activity against them relative to overall file system activity. 

Feature 4: The file system history log 

CFS maintains a log of all maintenance performed on a file system, including file 
system resizings, volume additions and removals, volume and file system data 
layout changes, and so forth. Entries in a CFS file system’s history log may be 
made by the file system kernel or by file system utilities. Kernel-initiated history 
log entries include: 

■ Resizing. While initiated by administrative action, resizing is actually 
performed by the file system kernel. CFS writes separate history log records 
whenever a file system itself or its intent log is resized 

■ Disk layout upgrade. When the CFS kernel upgrades a file system’s disk 
layout (the pattern used to organize disk blocks into files and metadata) while 
it is mounted, CFS writes a record in the file system’s history log

■ Volume set changes. Each time a storage volume is allocated to or removed 
from a file system, CFS writes a history log record. The history log contains a 
complete record of changes to a file system’s storage complement, no matter 
how many times volumes have been added to or removed from it 

■ Allocation policy change. A multi-volume file system may have a DST 
(Chapter 10) policy assigned. When an administrator alters the policy in a 
way that affects initial file allocations (not relocations), CFS writes a history 
log record 

■ Metadata I/O error. Any unrecoverable I/O error when reading or writing file 
system metadata has the potential for corrupting a file system’s data or 
structural information. CFS writes a history whenever file system metadata 
cannot be retrieved 

History log entries written by file system utilities include: 

■ Cross-platform Data Sharing (CDS) conversion. The fscdsconv utility writes 
a history log record when it converts a file system for mounting on a different 
supported platform 

■ Offline upgrade. When a file system’s disk layout is upgraded offline (while 
the file system is not mounted), CFS writes a history log record capturing the 
upgrade 
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■ Creation. When the mkfs and mkfs_vxfs utilities create a new CFS file 
system, they create a history log and record the creation date and time and 
other parameters in it 

■ Full file system checking. In the rare instances when a full file system check 
(fsck) is required (for example, when the file system’s superblock becomes 
unreadable), CFS records the check event in the file system’s history log 

The CFS file system history log is intended for the use of Symantec and partner 
support engineers, so no user-accessible utilities for it are included in CFS 
products. Having a file system history log leads to faster problem diagnosis and 
resolution by giving support engineers instant access to reliable, up-to-date 
information about the state of a file system and how it got that way. 

Feature 5: Flexible snapshots and clones 

Snapshots, images of data sets as they appeared at an instant in time, are one of 
an administrator’s most useful data management tools. A snapshot is a “stable” 
(unchanging) image of a data set that can processed by auxiliary applications 
while production applications continue to process the data set itself. Snapshots 
can be used for: 

■ Sourcing backup. A snapshot can be the source for making a backup copy of 
data set contents that is consistent as of a single point in time 

■ Data recovery. With periodic snapshots of a data set, files that are 
inadvertently deleted or become corrupted can be recovered by copying their 
images from a snapshot taken prior to the corrupting event 

■ Analysis. Snapshots can be used to analyze, or “mine,” stable images of a 
data set while production applications continue to process the data set itself 

■ Test and development. Snapshots of production data sets are realistic data 
against which to test new software developments and operating procedures 

Snapshots can be classified as: 

■ Full-size. Complete copies of their parent data sets. Full backups of static 
data sets and mirrors separated from mirrored volumes are both full-size 
snapshots

■ Space-optimized. Copies of parent data set data that is modified after 
snapshot creation. For unmodified data, space-optimized snapshots point to 
the parent data sets’ images 

Full-size snapshots can be separated from their parent data sets, moved to other 
systems, and processed completely independently. Space-optimized snapshots 
can only be processed by systems that have access to their parent data sets, 
because they rely on their parent data sets for unmodified data. Nevertheless, 
users and administrators find space-optimized snapshots attractive for most 
applications for two primary reasons: 
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■ Creation speed. Space-optimized snapshots can be created nearly instantly, 
whereas full-size snapshots cannot be created any faster than their parent 
data sets can be copied 

■ Space occupancy. Space-optimized snapshots occupy physical storage in 
proportion to modifications made to their parent data sets; not in proportion 
to their size. In most cases, space-optimized snapshots occupy a tiny fraction 
of the space occupied by their parent data sets. For example, a space-
optimized snapshot of a 100 gigabyte data set, 1% of whose contents have 
changed since the snapshot was taken, occupies only about one gigabyte of 
storage. Because they are so compact, it is usually feasible to maintain dozens 
of space-optimized snapshots, even of very large data sets 

Some snapshot technologies produce writable images called “clones” that can be 
modified by applications without altering the parent file systems from which 
they were taken. Full-size snapshots inherently have this property, but some 
space-optimized snapshots, including those available with CFS, are writable as 
well. Clones are useful for training, destructive software testing, and performing 
“what if” analyses. 

Administrators can choose between full-size and space-optimized snapshots of 
sets of CVM volumes, as well as CFS space-optimized file system snapshots 
called Storage Checkpoints. 

The CFS Storage Checkpoint 
facility produces space-optimized 
read-only file system snapshots 
as well as writable file system 
clones. CFS Storage Checkpoints 
can be mounted and used as 
though they were file systems, 
either cluster-wide or by a single 
node, and used for any of the 
typical snapshot purposes—
backup to tape, data mining, individual file recovery, and (for writable Storage 
Checkpoints) training and other destructive testing. A special form of Storage 
Checkpoint, the Nodata Storage Checkpoint, can be used to keep track of the 
numbers of changed file system blocks without preserving their prior contents. 
Nodata Storage Checkpoints are useful for making block-level incremental 
backups or replicas of a file system image. 

CFS Storage Checkpoints occupy storage capacity in the parent file system’s 
own volumes. Thus, in most cases, creating Storage Checkpoints does not 
require the allocation of additional volumes or LUNs, and so can be 
accomplished by the administrator responsible for the file system, without 
recourse to system or storage hardware administrators. As with file systems, an 
administrator can assign quotas to Storage Checkpoints to limit the amount of 
space they are permitted to consume. 

 Administrative hint 3

An administrator uses the fsckptadm 
console command to create, delete, and 
otherwise manage a file system’s storage 
checkpoints. The VxVM vxsnap 
command is used to manage volume-
level snapshots. 
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Feature 6: Named data streams 

Applications often have a need to associate auxiliary data or application-specific 
metadata with files. Keywords to facilitate searching, information about a file’s 
provenance, projects with which the file is associated, references to related 
documents, and so forth can all be useful or necessary adjuncts to the data in a 
file itself. 

One way to manage application-specific metadata is to create a database or 
spreadsheet table with a row for each file and a cell for each type of metadata. 
This approach can be made to work, but has several drawbacks: 

■ Management overhead. A database or spreadsheet is an additional object to 
manage. Moreover, there is no automatic, permanent association between a 
file and its application-specific metadata. For example, when the file is 
copied, renamed, or deleted, changes to the application-specific metadata 
must be managed separately 

■ Metadata inefficiency. A rectangular table implicitly associates every type of 
metadata with every file represented in it, even if most types of metadata are 
not relevant for most files 

■ Restricted metadata types. Paradoxically, even though it is structurally 
wasteful, a rectangular table restricts the types of metadata that can be 
associated with files to what can practically be stored in a cell 

CFS named data streams offer a simpler and more robust approach to 
associating auxiliary data and application-specific metadata with files. A named 
data stream may be thought of as a file that is permanently associated with a 
data file. Named data stream-aware applications create, write, read, and delete 
named data streams using CFS-specific APIs similar to the corresponding POSIX 
APIs for manipulating data files. Thus, the management of application-specific 
metadata can be embedded within applications; no external operating or 
administrative procedures are needed. Named data streams are invisible to 
applications that do not use the specialized APIs. 

From a CFS structural standpoint, 
named data streams are files that 
are visible only within the context 
of the data file to which they are 
attached. Data stream names are 
entirely at application discretion. 
There is no artificial limit to the 
number of named data streams 
that can be attached to a file. 
Thus, for example, dozens of supporting documents can be attached to a single 
data file. Because CFS treats named data streams as files, they can range from 
very small to very large. Thus, for example, an application can attach objects 
such as audio or video clips to a data file.

 Administrative hint 4

Administrators can refer utility 
programmers to the Veritas™ File 
System Programmer’s Reference Guide, 
which describes the APIs used to create 
and manipulate named data streams. 



What makes CFS unique 43
The top 10 in depth

Figure 1-3 Named data streams

As Figure 1-3 suggests, CFS organizes a data file’s named data streams as a 
single-level directory that is linked to the data file. Each named data stream is a 
file whose data location is described by an inode, but the stream is visible only 
through the named data stream APIs. A data file’s named data stream directory 
file contains the list of stream names and their inode locations. 

Applications can use the named data stream APIs to associate a data stream 
with multiple files. CFS stores the stream once, and maintains a link count in its 
inode, which it increments each time an application associates the stream with 
an additional file, and decrements when the stream is unlinked. 

In most cases, operating system commands cannot manipulate named data 
streams separately from the files with which they are associated. Sun 
Microsystems’ Solaris versions 9 and later, however, implement special 
command syntax that enables certain operations on named data streams. 

Feature 7: Portable Data Containers (PDC) 

For a variety of reasons, many data centers routinely move large amounts of 
data between unlike UNIX or Linux platforms. For example, a data center may 
process its business transactions on a Solaris platform, and periodically mine 
snapshots of transactional databases on a Linux platform. In situations like this, 
data centers usually copy data sets from one platform to the other over network 
links using ftp or other file transfer tools. But transferring multiple terabytes of 
files can be time consuming, and can saturate a network, interfering with, or in 
extreme cases, even denying service to production applications and users. In 
addition, they increase storage requirements, since storage for both source and 
destination data sets must be available simultaneously, at least while the copy is 
being made and used. 

Storage networks that form physical links between storage devices and multiple 
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systems suggest a potential alternative. In principle, it should be possible to: 

■ Disconnect. Logically disconnect disks from the cluster that produced the 
data 

■ Reconnect. Logically connect the disks to a destination system that will 
process it 

■ Use. Mount the file system on the disks on the destination system and 
process the data without having used any incremental storage or consumed 
network bandwidth, and without having taken time to transfer data 

Figure 1-4 Portable Data Containers vs network file copying

This is sometimes called “serial sharing” of data. It works very effectively 
between application platforms of the same type; indeed, it is one of the principal 
value propositions of storage networks. Unfortunately, different UNIX and 
Linux platforms do not format their disk storage devices and file systems in 
exactly the same way. Moreover, applications that support multiple platforms 
sometimes use different file data formats for each platform they support. 

For many common data types, however, including text, html, pdf files, audio-
visual media streams, and others, applications on one platform would be able to 
use data created on a different platform if the underlying disk and file formats 
were compatible. CFS and CVM portable data container (PDC) technology 
enables cross-platform serial data sharing between unlike platforms. PDCs 
make it possible to logically move CVM volumes that contain a CFS file system 
between two unlike platforms, even in cases where the source and destination 

platforms’ “endianness”7 differ from each other. Figure 1-4 illustrates the use of 

7. A computer’s endianness is the order in which bytes of data in its memory are aggre-
gated into larger structures such as words and longwords. In a big-endian computer, the 
most significant byte of a word or longword occupies the lowest memory address. In a 
little-endian computer, the least significant byte of a word or longword occupies the 
lowest memory address. 
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PDCs as an alternative to bulk network data transfer between unlike computing 
platforms and contrasts it with the conventional network data copying 
technique. 

The first requirement for moving 
data between unlike platforms is 
disk format compatibility. The 
CVM disk format has evolved over 
time to accommodate larger and 
more complex storage 
configurations. A system 
administrator can designate SCSI 
and Fibre Channel disks 
formatted with CVM format 
version 110 or any newer version 
as CDS disks. Administrators can 
logically move CDS disks between unlike computing platforms that are 
connected to a common storage network. CVM implementations on all 
supported UNIX and Linux platforms recognize and properly handle CDS disks, 
regardless of platform type. If all the disks in a CVM disk group are CDS disks, 
volumes constructed from them can act as Portable Data Containers, and the file 
systems on them can be serially shared between any combination of Linux, 
Solaris, AIX, and HP-UX platforms supported by Storage Foundation. 

To share data serially between 
unlike platforms, not only must 
source and destination platforms 
recognize the disk formats, they 
must also recognize and 
accommodate the file system 
format. While CFS file system 
metadata is structurally identical 
across all platforms, numerical 
values in it are endian-specific 
(unlike CVM volume metadata), 
primarily because the frequency with which numeric items in file system data 
structures are manipulated makes real-time conversion between big and little 
endian representations impractical. Therefore in order for a file system to be 
moved between a big-endian platform and a little-endian, CFS must convert the 
file system’s metadata between big and little endian representations. 

Moreover, not all operating systems supported by CFS observe the same limits 
on file size and group and user IDs. For example, a CFS file created on a Solaris 
platform might be too large to be opened by a Linux application, or its owning 
userID may be too large to be represented on a Linux system. 

CFS’s fscdsconv utility program both verifies that the CFS implementation on a 
specified destination platform can accommodate all files in a source file system, 
and converts the source file system’s metadata structures to the form required 

 Administrative hint 5

The Veritas™ Storage Foundation Cross-
Platform Data Sharing Administrator’s 
Guide contains instructions for 
upgrading CVM disk formats so that 
volumes can serve as portable data 
containers for cross-platform data 
sharing.

 Administrative hint 6

For cross-platform data migrations that 
are performed on a regular basis, an 
administrator can avoid the need to 
enter migration parameters every time 
by using the fscdsadm console 
command to record them permanently. 
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by the destination platform. To move a CFS file system between two unlike 
platforms, an administrator executes the following steps: 

■ Unmount. Unmount the file system to prevent applications from accessing it 
during conversion 

■ Convert. Run the fscdsconv utility against the device that contains file 
system to convert its metadata and to discover any minor incompatibilities 
between the source and destination platforms 

■ Resolve. Make adjustments to resolve any minor incompatibilities such as 
userID range and path name lengths 

■ Deport. Split the disks that make up the file system’s volumes into a separate 
disk group, and deport the group from the source cluster 

■ Import. Import the disks to the destination system and create a VxVM disk 
group and volumes 

■ Mount. Mount the converted file system contained on the imported volumes 
for use by applications on the destination system 

Portable Data Container conversion time is related to a file system’s size, the 
number of files it contains, and the complexity of their layout (number of 
extents), and whether the source and destination platforms actually are of 
different endianness. It is typically several orders of magnitude less than 
network copy time. Moreover, using CDS does not consume any “extra” storage 
for a second copy of data, or enterprise network bandwidth. Even the storage 
network bandwidth it consumes reading and writing metadata is a small 
fraction of what would be required to read the entire file system contents for 
network transfer. 

Cross-platform conversion of CFS file systems is crash-recoverable—if a system 
crash occurs during conversion, the administrator can invoke the fscdsconv 
utility again after crash recovery to complete or reverse the conversion. 

Administrators can use Portable Data Containers to simplify and streamline the 
transfer of data between unlike platforms either on a one-time basis, as for 
example, when systems are being refreshed by platforms of a different type, or 
periodically, as for example, when different steps in a workflow are performed 
by different types of platforms. 

Portable Data Containers make it possible to transfer entire file systems 
between unlike platforms without copying large amounts of data. CDS does not 
manipulate the data within files however. For PDC-based serial data sharing 
between unlike platforms to be usable, the format of data within files must be 
understood by applications on both source and destination platforms. For 
example, the Oracle database management system supports a feature called 
Transportable Table Spaces that enables database data to be moved between 
platforms. With Portable Data Containers, CFS file systems that contain 
Transportable Table Spaces can be moved between unlike computing platforms 
without bulk copying. 
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Feature 8: User and group quotas 

CFS supports both user and group quotas. CFS quotas limit both the number of 
files and the amount of space that individual users and groups of users are 
permitted to consume. CFS file and space consumption quotas can be: 

■ Hard. CFS fails operations that would cause a hard quota to be exceeded 

■ Soft. CFS permits soft quotas to be exceeded for a limited time that the 
administrator can specify. After the time limit expires, no further space 
allocations or file creations are possible. A user or group soft quota must be 
lower than the corresponding hard quota if one exists 

CFS stores externally-visible user 
and group quota limit and current 
consumption information in 
separate files in the root directory 
of a file system’s primary fileset. 
In addition, per-node structural 
files maintain information about 
current space and inode (file) 
consumption that CFS updates as 
changes occur. CFS periodically 
reconciles all nodes’ consumption 
information into a master quota 
structural file, and reconciles 
internal and external resource 
consumption data whenever 
quota control is enabled or disabled. 

An administrator can enable CFS user and group quota control together when 
mounting a file system by using the –o quota mount option. Either type of quota 
control can be enabled or disabled independently by issuing the vxquotaon and 
vxquotaoff administrative commands with the corresponding parameters. 

When quota control is enabled, CFS automatically checks usage against quota 
limits as applications attempt to create files or append data to existing ones. No 
explicit quota checking is required. If file creation or appending is subject to 
both user and group quota control, CFS applies the more restrictive of the two. 

Although external quota files are 
editable with a text editor, 
administrators should use the 
vxedquota command to edit them 
in order to avoid inadvertent 
formatting errors. CFS quota 
management commands are 
available to CNFS cluster 
administrators, but not to NFS 
client computers. 

 Administrative hint 7

CFS quota management commands have 
unique names to avoid conflicts with 
UNIX commands used to manipulate 
quotas for other types of file systems. 
The primary management commands 
are vxquotaon, vxquotaoff, and 
vxedquota (for editing quota files). The 
vxrepquota, vxquot, and vxquota 
commands can be used to report 
information about quota usage. 

 Administrative hint 8

An administrator can use the setext 
console command to pre-allocate space 
for an ordinary file. If Quick I/O (page 
36) is enabled, the qiomkfile command 
can also be used to create Quick I/O files 
with pre-allocated space. 
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Feature 9: Sparse files

Unless space for them is pre-allocated, CFS files are inherently “sparse”—CFS 
does not allocate storage space for file blocks until an application writes data to 
the blocks. In this respect, CFS files may be thought of as being thinly 
provisioned. 

Any CFS file in which file blocks 
are first written non-sequentially 
is automatically sparse, The file’s 
metadata reflects a notional size 
that encompasses the largest file 
block address written, but storage 
capacity is only allocated for file 
blocks that an application has 
actually written. Sparse files consist of extents (ranges of file system block 
addresses) in which applications have written data and holes—parts of the file 
block address space for which no file system blocks have been allocated. 
Figure 1-5 illustrates storage allocation for a sparse file. 

Figure 1-5 A sparse file

CFS does not expose files’ sparseness when applications read and write data. 
When an application writes data into a file byte range for the first time, CFS 
allocates the necessary file system blocks, and fills any areas not written by the 
application with zeros. For example, if a file system’s block size is 8,192 bytes, 
and an application writes data to file byte addresses 1,024-2,047 for the first 
time, CFS allocates a file system block, zero-fills bytes 0-1,023 and bytes 2,048-

 Administrative hint 9

An administrator can use the fsmap 
console command to locate the “holes” 
in the file block address space of a 
sparse file. 
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8191, and writes the application’s data into bytes 1024-2047 of the block. 

By zero-filling newly allocated partially written file system blocks, CFS 
guarantees that it never returns “uninitialized” data to an application’s read 
request. If an application reads from file block addresses that have never been 
written, CFS simply fills its read buffer with zeros. If it reads data from an as-yet 
unwritten area of a file block to which it has written data, CFS returns the zeros 
with which it filled the block when it was allocated. Continuing the foregoing 
example, if the application were to follow the write immediately by reading file 
bytes 0-4,095, CFS would return a buffer containing:

■ Leading zero fill. The 1,024 bytes of zeros written when the file system block 
was allocated to the file 

■ Application data. The 1,024 bytes of data written by the application 

■ Trailing zero fill. 2,048 of the 6,144 bytes of zeros written when the file 
system block was allocated to the file 

Figure 1-6 An example of sparse I/O

Sparse files are particularly useful for applications that need simple indexing 
schemes to manage large data structures. For example: 

■ Indexed records. Some applications manage indexed records with sparsely 
populated index spaces. For example, a 7-digit index (for example, a 
telephone number) is an index space of ten million potential entries. Locating 
records by multiplying their index values by the record size avoids the 
necessity for the application to manage complicated index trees. Because CFS 
only allocates space when data is first written to a file block range, the file 
occupies storage space in proportion to the number of actual records, not in 
proportion to its potential size 

■ Sparse matrices. Many scientific and engineering applications involve 
matrix calculations that are too large to be contained in memory. They 
perform their calculations on sub-matrices and write intermediate results to 
persistent storage. A common characteristic of these applications is that 
many of the sub-matrices are known a priori to contain zeros. Sparse files 
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simplify these applications by making it possible for them to treat a file as 
though it were large enough to contain the entire matrix, and simply not 
write to any of the file block addresses that represent zero sub-matrices. CFS 
allocates storage only to parts of the matrix written by the application, so 
actual storage consumed is related to size of the non-zero sub-matrices, not 
to the size of the entire matrix 

In both of these examples, CFS effectively provisions file storage for the 
applications as they require it, which they signal by their initial data writes to 
file block addresses. The applications are spared the complexity of having to 
manage index trees or other storage space management structures, and at the 
same time need not grossly over-provision storage. 

CFS itself makes use of the sparse file concept to simplify the indexing of user 
and group quota files in file system structural file sets. For example, there are 
four billion possible unique user IDs and group IDs in a UNIX system. Obviously, 
no file systems even approach that number of actual users or groups. CFS 
computes a record number for each user or group for which a quota is assigned 
by multiplying the user or group ID by the size of a quota file record to give an 
offset into the respective quota file block address space. When it writes a user or 
group quota file record for the first time, CFS allocates storage space and creates 
an extent at whatever file block offset is indicated by the write request. Users 
and groups to which no quotas have been assigned remain as holes in the file 
block address space. 

Feature 10: Storage tiers 

For applications that must keep tens or hundreds of terabytes of data online, the 
cost of storage matters. Many enterprises control cost by adopting the concept 
of two or more storage tiers—sets of storage devices that differ significantly in 
cost, and as a consequence, typically have different I/O performance and 
availability characteristics. Enterprises store especially critical data, or data 
that is frequently accessed, on the “top” (highest performing, most robust, and 
hence, most expensive) tier, and less critical data on “lower,” more economical 
tiers. As files progress through different phases of their life cycles, 
administrators relocate them from tier to tier according to their importance to 
the enterprise at the moment, perceived performance requirements, or other 
factors. 

The viability of storage tiering depends entirely on an ability to place files on a 
storage tier commensurate with their value and I/O requirements, and to 
relocate them as their importance or requirements change (for example, as they 
age, as the I/O activity against them increases or diminishes, and so forth). For 
data centers that manage millions of files, this can be an expensive task, 
requiring significant administrative effort and skill. Moreover, it is difficult to 
“get it right”—to precisely match millions of constantly changing files with the 
right type of storage, and to adjust operating procedures and applications so 
that they can continue to find the data they need to process as it moves 
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throughout its life cycle. The combination of administrative cost and 
susceptibility to error inhibit some data centers from taking advantage of the 
cost reductions inherent in the storage tiering concept. 

Two unique features of CFS completely automate file placement and relocation, 
and thereby make it possible to fully exploit storage tiers of different 
performance and resiliency with minimal service disruption and administrative 
effort: 

■ Multi-volume file systems (MVFS). Conventional UNIX file systems are 
inherently homogeneous (single-tier) because they occupy a single disk or 
virtual volume. A CFS file system, on the other hand, can occupy as many as 
8,192 CVM volumes. The volumes occupied by a CFS file system are called its 
volume set, or VSET. An administrator organizes each file system’s VSET 
into storage tiers by assigning tags to them. Identically tagged volumes in a 
file system’s VSET form a storage tier. 

For example, volumes that mirror LUNs presented by two disk arrays might 
be labeled tier1, and volumes constructed from high-capacity, low-RPM SATA 
drives tier2. 

Because a CFS file system’s name space encompasses all of its volumes, CFS 
can allocate storage for a file on any volume in its VSET, based, for example 
on its file type or owner 

■ Dynamic Storage Tiering (DST). An administrator of a CFS file system can 
define a policy that causes files to be automatically allocated on specific 
storage tiers based on their names, types, sizes, and other attributes. If a file 
system’s volumes are tagged so that each tier consists of similar volumes, 
and so that different tiers have distinctly different cost, performance, and 
availability properties, the effect of the policy is to place files appropriately 
as they are created. 
In addition, DST periodically scans a file system’s directory tree and 
automatically relocates files from one tier to another based on policy rules 
that specify frequency of access, position in the name space hierarchy, size, 
and other criteria that can change during a file’s lifetime. DST relocates files’ 
data between volumes, but does not change their logical positions in the 
directory hierarchy that applications use to access them 

Thus, not only does CFS automatically place files on the proper storage tiers 
initially; it automates the process of relocating them to appropriate storage tiers 
at different phases of their life cycles. Throughout the process, files’ logical 
positions in the file system directory hierarchy remain constant, so from the 
user and application point of view, relocation is completely transparent. From 
the administrative point of view, however, storage utilization is optimized and 
service level agreements are met, down to the level of individual files. 

Chapter 10 on page 171 has a detailed survey of CFS multi-volume file systems 
and dynamic storage tiering. 
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Using CFS
The fundamental properties of CFS—concurrent access to highly available 
shared file systems by applications running on as many as 32 nodes in a 
cluster—make it a particularly suitable solution in several scenarios that occur 
frequently with mission critical enterprise applications. These include: 

■ Fast failover, particularly for database management systems in three-tier 
database application architectures 

■ Highly available concurrent data access for multiple applications, including 
workflow applications in which processing steps operate on data sequentially 

■ Storage consolidation for efficiency and economies of scale 

■ Highly scalable NFS file serving 

The chapters that follow describe these and explain why CFS is the ideal data 
management solution in each case. 



Chapter 2

Using CFS: application 
scenarios 

This chapter includes the following topics:

■ Basic application clustering

■ CFS and highly-available database applications

■ CFS and workflow applications

■ CFS and scale-out applications

■ CFS and storage consolidation

The fundamental advantages of CFS are high availability and scaling. 
Applications that use CFS to access their data can restart on alternative servers 
in a VCS cluster and continue to operate if the servers on which they are 
running fail. Alternatively, as many as 32 instances of an application can serve 
clients from the same CFS data files, scaling both compute power and client 
connectivity to very high levels. These two properties can be combined in client-
server applications structured as VCS parallel service groups, that balance client 
load across instances and use virtual IP address (VIP) service groups that 
redirect clients to alternate application instances in the event of a server failure. 
(The CNFS file server described in Chapter 3 uses this technique to balance load 
and keep NFS services highly available.) 

These properties of CFS clusters make them particularly suitable for certain 
types of applications and data center scenarios: 

■ Fast failover. Compared to other highly available system architectures, CFS 
clusters typically fail over more quickly because volumes and file systems are 
already imported and mounted respectively on failover nodes. This 
eliminates a major source of failover time 
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■ Workflow applications. Application suites in which modules execute 
different stages of a work flow and pass data among themselves are 
particularly well-suited to CFS cluster implementations. Passing a file in a 
CFS file system from one workflow application stage to another is as simple 
as sending a message to the receiving stage that the file is ready to be 
operated upon 

■ “Scale out” applications. An increasing number of applications are achieving 
scale by running in parallel instances on multiple servers. Some applications 
of this type operate on data partitions, but more frequently, all instances 
must operate on a common data set. Because CFS file systems can be 
mounted on up to 32 cluster nodes simultaneously, it is an ideal solution for 
application “scale out” 

■ Storage consolidation. The storage connected to a CFS cluster is completely 
interchangeable among the cluster’s nodes and file systems. If applications 
are consolidated into a CFS cluster, redeploying storage from one to another 
to meet changing needs becomes a simple administrative operation. The need 
for physical reconfiguration and the attendant inflexibility are eliminated 

Basic application clustering 
Figure 2-1 represents the simplest form of high-availability cluster—the active/
passive failover cluster. In this configuration a primary node runs a live 
application which processes data stored on disks connected to it by a storage 
network. A second, failover node, also connected to the storage network, has the 
application installed but not running. 

Figure 2-1 Active/passive failover cluster
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The goal of an active/passive cluster is to provide continued application 
availability to clients if the primary node, the links connecting the primary node 
to clients or storage, or the application executable image itself should fail. 
Cluster managers such as VCS monitor the nodes, the links, and the live 
application. If they detect a failure critical to application execution, they initiate 
failover by transferring control of the network resources to the failover node, 
performing any necessary data recovery, and starting the application on the 
failover node. One of the network resources transferred to the failover node is 
the IP addresses that clients use to communicate with the application. Except 
for a time delay while failover is accomplished, and in some cases, the need to 
reconnect and re-authenticate themselves, clients experience no effects from 
the failover—they still communicate with the same application using the same 
IP addresses. 

The basics of highly available applications 

While clusters exist in several forms, their common architectural principle is to 
integrate redundant computing, connectivity, and storage resources into the 
environment. Under the control of the cluster management software, these 
redundant resources assume the function of the primary resources in the event 
of a failure. Thus, in addition to a redundant failover node, a cluster would 
typically also be equipped with redundant storage and client network paths. 

In an active/passive cluster, cluster software automates: 

■ Failure detection. The primary node, a network link, or the application itself 
may fail. Cluster management software detects and responds to all of these 
failures 

■ Cluster reconfiguration. If the failure is a node failure, the failed node must 
be ejected from the cluster, and the remaining nodes must agree on cluster 
membership 

■ Transfer of resource control. The cluster manager withdraws control of data 
storage devices and client connections from the failed node and enables them 
on the failover node 

■ Data recovery. In general, failures occur while I/O operations or application 
transactions are in progress. Some form of “cleanup,” such as file system 
checking or log replay is required 

■ Application restart. The cluster manager starts the application instance on 
the failover node 

■ Client reconnection. Clients must reestablish communication with the 
restarted application 

The sum of these processes is called failover. The new application instance is 
often called the failover instance, and the node on which it runs, the failover 
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node. In some situations, resource utilization can be improved by running non-
critical applications such as data mining on failover nodes during periods of 
normal operation. In others, failover time is critical, so the failover application 
is pre-started and idling, ready for instant takeover if the primary instance fails. 

Failure detection

Cluster managers like VCS typically detect node failures through regular 
heartbeat messages from each node to others in the cluster. If several heartbeat 
intervals pass with no message being received from a node, other nodes 
conclude that it has failed, initiate cluster reconfiguration. 

Failure of other critical resources, such as network links, the application itself, 
or auxiliary applications like print services, is typically detected by a similar 
heartbeating mechanism within the node. VCS, for example, monitors each of an 
application’s resources by periodically executing a script or program that is 
specific to the resource type. If a critical resource fails to respond properly, VCS 
initiates failover of the application that depends on it to another node. 

Cluster reconfiguration 

If a cluster node fails, as opposed to an application or other resource, the 
remaining nodes must eject the failed one and converge on a common view of 
cluster membership. (A similar reconfiguration occurs when a node is added to a 
live cluster.). In the case of VCS, a specialized Group Atomic Broadcast protocol 
includes message types and conventions that enable the surviving nodes of a 
cluster to reach consensus on membership within seconds. 

Any cluster technology must be able to distinguish between a failed node and 
partitioning, or partial failure of the network links that the nodes use to 
intercommunicate. A primary node that has crashed will not interfere with a 
restarted application running on a failover node, but a node that cannot 
communicate with other nodes must have a foolproof means of determining 
whether it is part of the surviving cluster or has been ejected. VCS uses three 
coordinator disks (see  “Coordinator disks and coordination point servers” on 
page 34.) to make this distinction. 

Transfer of resource control 

A failover node must obtain control of the storage devices that contain the failed 
application’s data. If an application or database management system fails, its 
storage devices must be deported (removed from the primary node’s control). 
Whether the primary node itself, or some critical application resource was the 
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failure, the failover node must import (take control of) the application’s storage 
devices. In systems with hundreds of file systems and virtual volumes, 
deporting and reimporting volumes and remounting file systems can take hours. 
Because CVM shared disk groups are imported on all cluster nodes, this 
potentially time-consuming step is eliminated for clusters implemented with 
the VCS-CVM-CFS stack. 

Recovering data 

Before data can be accessed by restarted applications on failover nodes, the 
structural integrity of file systems and databases on the imported volumes must 
be verified, and repaired if necessary. Full file system checking of very large file 
systems can take days. In almost all cases, however, a CFS file system’s 
structural integrity is restored after a node failure when the primary node 
replays the failed node’s log of outstanding transactions. This is an important 
timing consideration for relational databases that store data in CFS container 
files, because database recovery cannot begin until the integrity of the 
underlying file system has been restored. 

Application restart

Once file system structural integrity has been assured or restored, applications 
can restart. Some applications are stateless—each interaction with a client is 
independent of all prior actions. For these, restart is the same as initial startup. 
The NFSv3 server in CNFS (Chapter 3 on page 71) is of this type (as long as the 
Network Log Manager is not in use). More often, applications conduct multi-step 
transactions with their clients; if these are interrupted by a node failure, they 
must be recovered in a manner similar to file system recovery. Relational 
database management systems fall into this category. Before they can resume 
service to clients after a failure, they must verify database integrity by replaying 
their own work in progress logs. 

Client reconnection 

The final piece of recovery is reconnection of clients to the restarted application 
on the failover node. Cluster managers typically transfer control of virtual IP 
addresses used by clients to the failover node as part of the failover process. 
When clients attempt reconnection, they are connected with the restarted 
application on the failover node. From that point, interaction is client-specific. 

Some client applications, such as NFS, retry failed operations until they succeed. 
NFSv3 in particular is stateless—no client request depends on any previous 
request, so no further reconnection protocol is required. For applications like 
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this, reconnection is transparent, although users may notice a time delay. Other 
applications require that a user or administrator re-establish the connection 
with the application, including authentication and other reestablishment of 
context. 

CFS and active-passive failover 

Table 2-1 lists typical timings for the main functional components of application 
failover in a CFS cluster environment. 

Depending upon the number of volumes and file systems used by an application, 
transfer of storage device control and file system verification can take minutes 
or longer. These are also the least controllable steps in terms of the time they 
take, because they depend both on the number of volumes and file systems, and 
on the number of file system transactions in progress at the time of the failure. 
Using CFS to store application data or for database container files essentially 
eliminates both of these contributions to failover time. 

During normal operation, all cluster nodes import (make available to CFS) all 
shared CVM disk groups, so all nodes have simultaneous access to shared 
volumes. When a cluster node or application fails, the volumes that hold its data 
and the disks that make them up are already known to and accessible by the 

Table 2-1 Why CNFS for NFS file sharing 

Contributor 
to failover 
time 

Conventional 
architecture

CFS cluster Comments

Fault detection ~20 sec ~20 sec Detection is actually much faster. Typically, cluster 
managers require multiple evidence of failure to avoid 
“false failover” 

Cluster recon-
figuration

5-10 sec 5-10 sec Time for nodes to negotiate new membership 

Storage device 
transfer 

Varies 0 Depends on number of devices and volumes Can be 
minutes or longer 

File system 
verification 

Varies <1 sec Depends on file system verification technology. 

Infrastructure 
total

25-30sec CFS eliminates the two largest and most variable com-
ponents of failover time 

Client recon-
nection 

N × 30 sec N × 30 sec N = number of TCP connect request timeouts. May be 
partly concurrent with other failover steps
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failover node; deportation and re-importation of shared disks is completely 
eliminated. At worst, if a failed node is CVM Master, I/O to shared volumes 
pauses momentarily while the remaining cluster nodes select a new master. 

Similarly, CFS shared file systems are mounted on all cluster nodes during 
normal operation, so full verification and re-mounting are not required. CFS 
recovery consists of electing a new primary instance if necessary, recovering 
locks that were mastered by the failed node and replaying the failed node’s 
intent log to complete any transactions in progress at the time of the failure. 

Because CFS virtually eliminates the two most time-consuming steps, typical 
application failover times are under a minute, compared with failover times in 
minutes or tens of minutes that are characteristic of approaches requiring 
storage device and file system failover. 

CFS and highly-available database applications 
One type of “application” that can benefit from active-passive clustering is 
relational database management systems such as Oracle. These are often 
deployed to manage the data in a three-tier architecture such as the one 
illustrated in Figure 2-2. In this architecture, presentation and user interface, 
business logic, and data management run in separate tiers of computers: 

■ User. The user tier employs “thin clients”—minimally equipped desktop 
computers equipped with browsers of forms management software 

■ Application. Servers in the application tier implement business functions. 
Different platforms may be employed, as may different levels of availability 
and performance. Many unrelated applications may access a single database 
or set of databases 

■ Data management. This tier runs the database management system (DBMS) 
and provides database access to clients in the application tier 
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Figure 2-2 Three-tier database application architecture

The basic principle of this three-tier architecture is separation of function. A 
separate data management reinforces a canonical representation of enterprise 
data that is independent of individual applications. Similarly, separating 
business logic from data insulates applications from each other, but at the same 
time, integrates them through the common data they process. It becomes easier 
to deploy new applications, particularly with virtual servers, without being 
concerned about application cross-talk. A secondary benefit of the architecture 
is independent scaling at each layer. Either data management or application 
capacity can be added as required. 

With one database serving multiple applications, availability becomes especially 
critical. For this reason, database management systems are often deployed as 
the “application” in active-passive clusters. The database management system 
and its remote client access module are structured as service groups that run in 
a primary cluster node, with a failover node at the ready. 

In this scenario, failover time is critical, because when the database 
management system is down, none of the applications that depend on it can 
function. Using CFS files as containers for database data is particularly 
beneficial in this scenario, because it eliminates the entire transfer of storage 
device control component of failover listed in Table 2-1 on page 58. Within half a 
minute after a failure, a failover database management system can be replaying 
the failed instance’s activity logs to restore database to complete or reverse 
transactions in progress at the time of failure so that service can be restored to 
clients. 
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CFS and clustered database management systems 

Most database management software vendors offer versions of their products 
that are themselves clustered. Oracle Corporation, for example, offers the Real 
Application Cluster (RAC) edition of Oracle, IBM Corporation the Enterprise 
Extended Edition of DB2, and Sybase the Sybase Cluster Edition. Different 
products differ in detail, but in general, clustered database managers consist of 
multiple instances that run concurrently in different cluster nodes and 
coordinate with each other to access a common database. The physical 
architecture is similar to that represented in Figure 2-2, but clusters of more 
than two nodes are common, and all are active concurrently, running 
cooperating database management instances. 

Clustered database managers make fault recovery functionally transparent to 
clients. Moreover, because mutually aware database manager instances are 
already running on all cluster nodes at the time of failure, recovery is virtually 
instantaneous. 

The VCS-CVM-CFS stack supports clustered database managers as well, 
providing seamless sharing in their underlying file and storage layers. In the 
case of Oracle RAC, for example, the Storage Foundation RAC Edition (SFRAC) 
includes VCS, CVM, and CFS, along with additional Oracle-specific utilities to 
deliver an easy-to-configure highly available storage solution for parallel Oracle 
databases. 

Thus, the designer of a mission-critical database management system has two 
Storage Foundation options for creating a highly available database tier: 

■ Active-passive. An active-passive cluster in which the database management 
system fails over to the passive node within a few seconds of a failure (with 
the option to use the failover node to run non-critical applications under 
normal circumstances) 

■ Parallel. A parallel database cluster in which multiple database management 
system instances cooperate in real time to provide clients with a common 
view of the database as well as near-instantaneous service resumption if a 
node in the database tier fails 

Both options use the VCS-CVM-CFS stack for rapid failover of the storage and 
file layers. 

Given these two options, the choice would seem obvious—near instantaneous 
failover should always be preferable to a service interruption, even of only a few 
tens of seconds. But this analysis ignores two factors that are becoming 
increasingly important in information processing:

■ Cost. Database management system (and other) software vendors typically 
place price premiums of as much as 300% on the capabilities embodied in 
clustered versions of their products, Moreover, additional hardware and 
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network facilities may be required to run them, and they are generally more 
complex to administer 

■ Performance. Clustered database management system instances (and other 
clustered applications) communicate extensively with each other. Thus, 
while failover is nearly instantaneous with a clustered database management 
system, performance under normal operating conditions may actually be 
lower than that of an equivalent non-clustered version of the same database 
manager 

Thus, the application designer must evaluate the value of instantaneous 
failover, and decide whether the incremental costs, both direct and in the form 
of reduced performance, of clustered database management and other 
application software is justified by that value. For databases and applications 
that “absolutely, positively must be available” all the time, the cost of a clustered 
database management system may be justified. For many applications, however, 
an “outage” of a few seconds while a database management system instance 
starts up on a failover node is a cost-effective compromise. 

CFS and workflow applications 
Another important class of application for which the VCS-CVM-CFS stack is 
ideal is the workflow application suite. Many core business processes are 
essentially sequences of steps in which the completion of one step is a trigger 
for the next step. For example, closing the books on sales for a month might 
trigger quarterly roll-ups, commission compensation runs, sales analyses, and 
so forth. Figure 2-3 illustrates a common type of workflow application that is 
part of many enterprises’ core information technology processes. 

Figure 2-3 Typical workflow business application

In Figure 2-3, sales and operations (shipping, inventory control, general ledger 
accounting and similar) applications constantly update their respective 
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databases. Periodically, an ETL (extraction, transformation, and loading) 
application extracts information from the online databases (or more likely, 
snapshots of them), integrates their contents and stores them in a form suitable 
for later business intelligence analysis, or mining, and ultimately, long-term 
storage in a data warehouse. Ideally, the ETL and data warehousing applications 
can read directly across the network from their respective source databases; in 
the worst case, bulk data copying, and the additional storage it implies would be 
required. 

Reduced to their essence, workflow applications consist of processes that ingest 
data from prior steps, analyze or transform it, and create output data for 
analysis by subsequent steps. The data produced at each step must be made 
available to the step that consumes it. It is not uncommon for data files output 
by one process to be copied over an IP network to storage devices that are 
accessible by the next step in the chain. 

Copying data in bulk consumes time as well as storage and network resources, 
and is therefore undesirable. A preferable solution is to use one of the forms of 
shared file storage described in the introduction to this paper. Figure 2-4 
represents the same workflow application deployed in a CFS cluster. 

Figure 2-4 Using data sharing to streamline workflow applications

As Figure 2-4 suggests, with a CFS cluster, all stages of the workflow have direct 
physical access to all data. (Security considerations may result in some barriers 
to logical access, for example, to operational data by sales personnel and 
applications.) 
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The obvious advantage of data sharing for workflow applications is the 
elimination of data copying and extra storage to hold copies. Less obvious, but 
equally important, is flexibility. If business processes change, resulting in 
additional workflow steps or a need for some step to access additional data sets, 
all that is necessary is access permission; no additional storage, bandwidth, or 
administrative setup time is required. 

CFS clusters make particularly attractive platforms for workflow applications 
for several reasons: 

■ Performance. Data is accessible to all application steps at storage network 
speeds and latencies, with no remote file access protocol overhead 

■ Flexibility. Storage capacity can be easily re-provisioned among application 
steps. During high-volume selling seasons, file systems for the sales 
databases can be expanded. When the load shifts toward accounting and data 
warehousing, the sales databases can be shrunk, and the storage they 
relinquish allocated to other applications’ file systems 

■ Security. Shared data access security is enforced uniformly across the cluster 

■ Versatility. Data that is only required by a single application step can be 
stored in privately-mounted file systems to minimize lock traffic. Private file 
systems can quickly be re-mounted in shared mode if multi-node access is 
needed 

■ Application availability. Critical application steps can be structured as VCS 
failover services to make them highly available, while non-critical ones can 
execute on single nodes 

CFS and scale-out applications 
With supported configurations of up to 32 clustered servers, CFS is a natural 
platform for “scale-out” parallel applications in which capacity is increased by 
adding nodes running instances of the application to the cluster. In a typical 
scale-out architecture, all application instances require access to core data files, 
while some data, such as activity logs, is likely to be generated and managed on a 
per-instance basis. To this end, CVM and CFS support both: 

■ Shared data. Cluster-wide volumes and file systems for data that is shared 
among application instances 

■ Per-node data. Private volumes and file systems for data that is maintained 
on a per-node basis 

Scale-out applications may consist of multiple instances of the same executable 
image, replicated in different cluster nodes to increase the aggregate service 
capacity. This design, illustrated in Figure 2-5, is a common one for high-volume 
business transaction processing applications such as point-of-sale data capture. 
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The scenario illustrated in Figure 2-5 works especially well for highly 
partitionable applications that serve large numbers of clients because load 
balancing is easy to accomplish. Network administrators register the name of 
the cluster or application along with a “round-robin” list of the IP addresses that 
are assigned to each node. As successive clients perform DNS lookups on the 
cluster name, they receive a rotated list of IP addresses, from which they 
normally connect to the first that responds. This tends to balance client 
connections across nodes, and therefore across application instances. 

Figure 2-5 Homogeneous scale-out application model

In this model, each node’s IP addresses are typically structured as VCS failover 
service groups with designated alternate nodes. These are called virtual IP 
addresses, or VIPs, because they can move from node to node during failover. 
Each VIP has a dependency on the parallel service group that represents the 
actual application instance. If the application instance fails, VCS fails the VIPs 
that depend on it over to other nodes. 

In this design, when a node fails, its VIPs fail over to other nodes, which start the 
service groups that represent them. Like the primary node’s VIP service groups, 
these groups have dependencies on the local application instance’s service 
group, which is running. Once started, the VIPs on the failover nodes accept 
messages from clients and pass them to their local application instances. 
Application instances must be prepared to handle incoming messages from 
clients. They may be stateful, and require that the client reestablish its 
credentials by logging in, or like CNFS services (Chapter 3), they may be 
stateless, and simply accept and process incoming messages. 

Another type of scale-out application bears a resemblance to workflow. These 
are asymmetric scale-out applications in which different modules on separate 
servers perform different operations on a common or overlapping set of data 
objects. Figure 2-6 is an example of this type of scale-out application in which a 
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sales module generates orders which it passes to a fulfillment module. The 
fulfillment module generate packing and shipping orders and communicates 
them to warehouses. As the warehouses fulfill orders, they communicate to the 
fulfillment module, which forwards shipping and tracking information to a 
customer relationship management module that permits customers to track 
their shipments directly. 

Figure 2-6 Workflow-style scale-out application model 

As Figure 2-6 indicates, in this example, each major function of the integrated 
application executes on a different server. All operate on common data, 
however. The primary distinction between asymmetric scale-out and workflow 
applications is the granularity of shared data. Whereas workflow applications 
tend to operate on large batches of data, scale-out applications share at the 
transaction level. As a result, the modules of an asymmetric scale-out 
application tend to communicate by placing messages on queues. CFS is an ideal 
vehicle for making message queues persistent, so that they are readily shareable 
by producers and consumers, and also so that failure of a cluster node or an 
application module does not result in lost messages. 

CFS and storage consolidation 
Groups of unrelated applications that run on the same UNIX platform can 
benefit in two ways if their servers are consolidated into a VCS cluster and their 
file systems are managed by CFS: 

■ High availability. Applications that run on nodes of a VCS cluster can be 
configured as high-availability service groups so that if a node fails, the 
application it is running can restart on a failover node with full access to its 
data, sharing the failover node’s computing and network resources with the 
application that normally runs on it 
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■ Storage utilization. Consolidating applications’ file systems onto CVM 
shared volumes creates opportunities for improving storage utilization, 
because it makes the underlying storage shareable. If individual applications’ 
file systems reside on shared volumes, imbalances between applications 
provisioned with excess storage and those provisioned with too little can be 
redressed by administrative operations while the applications are running 

Figure 2-7 illustrates how a CFS cluster can minimize storage consumption 
across the data center by consolidating the storage resources for completely 
unrelated applications. 

Figure 2-7 Storage consolidation with CFS

Application designers and managers often provision for “worst case” data 
storage requirements because once an application is deployed, provisioning 
additional storage for it can be a time-consuming operation involving the 
operations and network management organizations as well as the owner of the 
application. This leads to the situation illustrated in the left panel of Figure 2-7, 
in which storage, whether directly attached or on a network, is dedicated to 
applications that use only a relatively small fraction of it. 

This contrasts with the CFS cluster approach illustrated in the right panel of 
Figure 2-7. In this scenario, the applications run on nodes of a CFS cluster, and 
all storage is managed as shared CVM volumes. Each node mounts its own 
application’s file systems; no application has access to any other application’s 
data. 

But because CFS file systems and CVM volumes are resizable, storage capacity 
can be taken from applications that are over-provisioned and given to those that 
require additional capacity using Storage Foundation administrative operations 
performed by the cluster administrator, with no need to involve the storage or 
network administration functions. 
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Online re-provisioning of storage 

An administrator can increase or reduce the storage complement of a CFS file 
system in one of two ways: 

■ Volume resizing. The administrator can increase the size of one or more of 
the CVM volumes occupied by a file system, and the file system expanded to 
utilize the additional capacity. The steps can be reversed to decrease the 
space available to a file system. In most cases, both volume and file system 
resizing can be accomplished in a single step 

■ Addition of volumes. The administrator can add volumes to a file system’s 
volume set. Capacity added in this way automatically becomes part of one of 
the file system’s storage tiers. To reduce file system size by removing 
volumes, the administrator first evacuates the volumes, and then removes 
them 

Thus, if one application controls more storage than it requires, and another is 
running short, the administrator can shrink the first application’s file system 
removing or resizing volumes and provisioning the released capacity to the 
second application. 

Multi-tenant CFS file systems 

If application performance considerations, data set sizes and data center 
security policies permit, provisioning storage for multiple applications can be 
made even more flexible by consolidating their file systems into a single CFS file 
system (for example, as top-level subdirectories of the file system root). With a 
single file system, all underlying storage is available to whichever application 
requires it. As applications create, extend, and delete files, storage CFS allocates 
or frees space dynamically. Thus, all available storage is effectively part of a 
pool whose granularity is the file system block size. No unused space is 
dedicated to any one application, and applications can consume the space they 
require, up to the limit of the file system size. 

CFS provides full POSIX isolation of applications data, using either user and 
group access restrictions or inheritable access control lists that limit file and 
directory access to specific users and groups. Thus, by running each application 
under specific user and group identifiers, and applying the appropriate 
protections to files and directories, administrators can isolate applications from 
each other, even if their data resides in the same file system. 

In this scenario, administrators can use CFS hard and soft quotas to regulate the 
amount of storage available to individual applications. From a storage flexibility 
standpoint, quotas have the advantage over separate file systems occupying 
separate volumes, because while they regulate the amount of storage an 
application can consume, they do not restrict specific applications to specific 
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blocks of storage. 

Administrators can configure Dynamic Storage Tiering (“CFS Dynamic Storage 
Tiering (DST)” on page 172) to bias the allocation of specific applications’ files to 
specific storage tiers based on the user and group IDs of the applications. Thus, 
administrators can give preference to certain applications without enforcing 
hard restrictions on their storage allocation. 

Consolidating the storage for multiple tenants (applications) into a single file 
system has two advantages: 

■ Granularity. Each data center has some minimal unit in which it manages 
storage capacity. For some it is a disk or RAID group; for others a 
standardized virtual volume. When a data center consolidates applications 
into a cluster, this unit, which may be terabytes, becomes the granularity 
with which storage can be moved between applications. When multiple 
applications’ data is consolidated into a single CFS file system, however, 
individual applications allocate and free storage space in units as small as a 
single file system block 

■ Administrative simplicity. While CFS file systems and the volumes on which 
they reside can be expanded and contracted, expansion and contraction are 
administrative operations. When multiple applications’ data resides in a 
single file system residing on a single volume set, each application has 
instant access to the file system’s entire pool of storage, subject only to 
restrictions imposed by hard and soft quotas 

But there are limitations associated with sharing a file system among unrelated 
applications as well. Chief among them is the 256 terabyte size limitation on CFS 
file systems. A second limitation is the performance demands made by multiple 
applications running on different servers. While CFS inter-node resource 
locking is minimal for files and directories that are not actually shared, file 
system metadata is shared among all instances whose nodes mount it, and some 
inter-node lock traffic is inevitable. 
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Chapter 3

Using CFS: scalable NFS file 
serving 

This chapter includes the following topics:

■ CFS as a basis for scalable NAS file storage

■ CNFS: integrated scalable NFS file serving

■ Configuring CNFS for file system sharing

■ CNFS protocols

■ CNFS in a nutshell

Figure Intro-3 on page 13 illustrates the network-attached storage (NAS) model 
for shared file system access, and the accompanying text describes the two 
primary factors that limit its ability to scale: 

■ Latency. Because they represent a higher-level abstraction, file-level data 
access protocols necessarily entail more translation between requests 
forwarded by clients and I/O operations on disks than their block-level 
counterparts. Moreover, they are less amenable to zero-copy I/O, so data read 
and written by clients must often be copied in memory. Primarily for these 
reasons, NAS head processors tend to saturate, especially when client I/O 
workloads are I/O request- or metadata operation-intensive 

■ Bottlenecking. All I/O to a NAS system passes through and is processed by 
the NAS head—essentially a server with certain processing, memory, and I/O 
bandwidth resources. Depending on the nature of the I/O workload, at least 
one of these resources tends to become the limiting factor in a NAS system’s 
throughput 

A third limitation of the NAS model has more to do with implementation than 
with architecture—inflexibility. Typically, NAS systems offer limited 
configuration options. The number and types of disks, processors, cache 
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memories, and network connections that can be configured with a given system 
tends to be fairly narrow. It can be difficult to configure a NAS system with very 
powerful processing capacity to handle metadata-intensive workloads, or with 
very large (but cost-effective) storage capacity to handle lightly loaded archival 
applications. 

But even with these scaling and flexibility limitations, the administrative 
simplicity and universal applicability of the NAS model make it attractive to 
enterprise storage users. NAS technology is readily available in the form of 
purpose-built systems, but since all major UNIX operating systems include NFS 
server software components, many users choose to deploy conventional servers 
with back-end disk arrays as dedicated NAS systems. 

CFS as a basis for scalable NAS file storage 

The properties of the CFS architecture make it an ideal foundation for relieving 
the limitations that characterize NAS storage systems: 

■ Performance scaling. CFS can be configured in clusters of up to 32 nodes, 
each with multi-core processors, large memories, multiple high-performance 
gigabit Ethernet interfaces for client access, and multiple storage network 
interfaces for access to back-end storage 

■ Storage flexibility. CFS supports almost any combination of Fibre Channel, 
SAS, and iSCSI-connected storage devices. These can be configured as 
storage tiers with different cost and performance characteristics 

■ File system scaling. CFS supports individual file systems of up to 256 
terabytes capacity and up to a billion files per file system, with no practical 
limit on the number of file systems hosted by a cluster 

■ Advanced features. CFS supports Storage Checkpoints (space-optimized 
snapshots and writable clones of a file system) and automatic policy-based 
relocation of files between storage tiers, advanced features that are 
increasingly expected to be part of enterprise-class file storage systems 

■ Availability. CFS-based clusters are inherently highly-available, able to 
sustain both network, processor node, and storage failures without 
interrupting service to clients 

■ Universality. CFS runs on all major UNIX and Linux platforms, from the very 
economical to enterprise-class servers with up to 64 multi-core processors. 
Enterprises can select the most appropriate platform for file storage, based 
on requirements for capacity, resiliency, and performance 
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CNFS: integrated scalable NFS file serving 

UNIX and Linux operating systems include both client and server-side Network 
File System (NFS) software. Any UNIX system can act as a NAS server, or 
alternatively, as a client, using NFS to access file systems hosted by another 
server. File systems hosted by NFS servers integrate into clients’ directory 
hierarchies; for most purposes, they are identical to local file systems. 

To deliver the capabilities enumerated in the preceding section over NFS, CFS 
integrates its host operating systems’ Network File System (NFS) server 
components into the VCS-CVM-CFS framework to create scalable clustered NFS 
(CNFS) file services. With CNFS, administrators can configure highly available, 
high-performing, high-capacity NAS servers for NFS clients. 

CNFS architectural overview 

Figure 3-1 illustrates NAS file sharing based on CNFS file services. As Figure 3-1 
suggests, each cluster node runs the VCS-CVM-CFS stack, and in addition, the 
host operating system’s NFS server, which is encapsulated in a VCS parallel 
service group. Each client connects to an NFS server instance in one of the 
cluster nodes. The server instances execute NFS requests directed to them by 
making file system requests to their local CFS instances. The CFS instances 
cooperate to coordinate the NFS servers’ concurrent access to file systems. 

Figure 3-1 Architecture for CNFS-based file services
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CNFS scalability 

All nodes in a CNFS cluster actively serve clients at all times. Clients that use a 
DNS service to determine a CNFS cluster’s IP address receive all nodes’ NFS 
server IP addresses in round-robin order, so that client connections and the load 
they generate tend to balance evenly among cluster nodes. For situations in 
which I/O loads and client rosters are static, client administrators can direct 
traffic to specific CNFS cluster nodes by specifying IP address-based 
connections. 

A single CNFS cluster can scale to as many as 32 nodes, each with multiple 
gigabit Ethernet interfaces for connecting to clients through its data center 
network. Nodes can be added to a CNFS cluster while it is actively serving files to 
NFS clients. The network administrator adds their IP addresses to the cluster’s 
DNS registration, so they immediately begin to participate in load balancing as 
new clients connect to the cluster. 

Figure 3-2 CNFS scaling and load balancing

The server nodes in a CNFS cluster can range from the very economical to the 
very powerful, in terms of processing, memory, and storage network ports to 
connect to the back-end storage network. 

CNFS clusters also scale in terms of storage capacity, limited only by the 
maximum capacities of their back-end disk arrays and the storage network 
connectivity of their component servers. Moreover, CNFS storage 
configurations are completely flexible—any Fibre Channel, iSCSI, or SAS (for 
smaller clusters) storage systems can be configured, using any required 
combination of solid state, high-performance, and high-capacity disk drives. 
CFS Dynamic Storage Tiering (see Chapter 10 on page 171) automates the 
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relocation of files between different types of storage as their states and the 
requirements on them change over time. 

CNFS availability 

Based on a combination of Storage Foundation availability technology and 
hardware configuration flexibility, CNFS clusters can be configured for end-to-
end high availability of data and file services: 

■ Disk arrays. Most CNFS clusters use enterprise-class disk arrays for back-
end storage. To protect against data loss due to disk failure, disk arrays are 
typically configured to present LUNs based on mirrored or RAID disk sets. 
Some even offer protection against double disk failures. Typically, arrays can 
present LUNs on two or more storage network interfaces, to protect against 
loss of access to storage if a storage network link fails 

■ CVM aggregation. To enhance data availability even further, CVM can mirror 
two or more LUNs, thus protecting against total failure of a disk array. CVM 
dynamic multipathing complements disk arrays that support multi-path 
access, providing simultaneous LUN access on multiple storage network 
paths for arrays that support that feature, and “active-passive” failover 
access for less capable arrays 

■ Automatic recovery. All CNFS components, including the NFS cluster 
service, the Network Lock Manager (NLM), CFS, and CVM, are designed to 
recover from cluster node failures, and provide continuous service to clients 
by restarting the necessary services on alternate nodes. 

CNFS high availability is essentially transparent to applications. If a cluster 
node fails, pending requests time out. NFS client software retries timed out 
requests continuously until IP address failover is complete. If NLM is in use, 
client and server jointly recover outstanding locks.

Because CNFS mounts all NFS-shared file systems on all cluster nodes, any 
NFS server instance can present any file system to clients. CNFS typically 
recovers from node failures faster than alternative architectures, because nei-
ther volume importing, full file system checking, or file system remounting is 
typically required, if the Network Lock Manager is in use, the client lock state 
must be recovered 

■ Aggregated network links. CNFS clusters use their host operating system 
network stacks to communicate with clients. The number of links, and the 
ability to aggregate two or more into a single high-bandwidth data path are 
therefore limited only by the ability of cluster nodes’ operating systems and 
the network infrastructure to support network link aggregation 
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CNFS load balancing 

All nodes in a CNFS cluster actively serve clients at all times. Typically, a data 
center network administrator registers the CNFS cluster’s name with DNS, 
along with all IP addresses that are bound to NFS server instances in round-
robin mode. 

Clients query DNS to obtain an IP address for connecting to a CNFS cluster. DNS 
responds to each request with the complete list of CNFS server IP addresses in 
rotating order. Because clients typically connect to the first IP address in a DNS 
list, connections, and therefore I/O load, tend to distribute uniformly among 
cluster nodes. If administrator-controlled load balancing is desirable, client 
administrators can specify IP addresses in NFS mount commands. 

Configuring CNFS for file system sharing 

CNFS automates most of NFS file service configuration. A single console 
command configures CNFS by creating the VCS cluster service group frame 
work, and specifying a shared file system for use by the Network Lock Manager 
(NLM) and its CVM volume. Thereafter, administrators can either share existing 
CFS file systems, or can create, mount, and share a new file system with a single 
command. 

Sharing CNFS file systems with clients 

A CNFS cluster administrator 
uses the cfsshare share console 
command to make an already-
configured file system accessible 
to NFS clients. The command 
causes VCS to issue commands 
the NFS server to initiate sharing 
of the indicated file system. NFS 
servers have several administrator-specifiable options that govern the behavior 
of shared file system. Because the NFS servers in a CNFS cluster are operating 
system components, the syntax for specifying these options is platform 
dependent. The cfsshare share command accepts a character string in which 
NFS mount options are specified in the form required by the platform. It passes 
the string to the NFS server without verification or modification. 

While the syntax and semantics of supported platforms’ NFS mount commands 
vary slightly, the commands and options generally represent common 
properties of NFS-mounted file systems. Administrators should ensure that the 

Administrative hint 10

Administrators use the cfsshare 
command with different sub-commands 
for configuring, sharing, and unsharing 
CNFS file systems. 
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following options are specified appropriately for the platform’s NFS server: 

■ Access mode. File systems can be NFS-mounted for either read-only or read-
write access by clients. Sharing a file system in read-only mode overrides 
individual client computer and user write permissions 

■ Synchronicity. NFS servers can be configured to report write completion to 
clients while data is still in page cache (asynchronous) or to withhold 
notification until data has been written persistently (synchronous) 

■ Security restrictions. Clients can be permitted to connect to an NFS-shared 
file system via any TCP port (by UNIX convention, TCP ports below 1024 are 
assumed to be restricted to root users, and therefore secure, whereas 
connections on higher-numbered ports can requested by any user 

■ “Root squashing”. NFS-shared file systems can be configured to grant or 
deny (“squash”) root users of authorized client computers root access to file 
systems. If root squashing is specified, CNFS replaces root users’ file system 
access permissions with the permissions of an account on the server (usually 
called nobody or nfsnobody by default, but alterable to meet data center 
standards) 

■ Write delay. NFS-shared file systems can be configured to hold data written 
by clients in cache for a time in the expectation that it will be able to coalesce 
it with data from subsequent write requests. Delayed writing improves disk 
I/O efficiency, particularly for file systems whose I/O loads are 
predominantly sequential 

■ Authorizations. NFS-shared file systems can be made accessible by any 
client computer, or restricted to specific client computers or client netgroups 
maintained by external NIS or LDAP directory servers. Typically, NFS servers 
must be configured to use NIS or LDAP, and must be supplied with the IP 
address of the NIS or LDAP server, or with a server name that it can use to 
perform a DNS IP address lookup 

■ Network transfer size. NFS servers can be configured to support maximum 
network data transfer sizes (usually called rsize and wsize). Clients negotiate 
network data transfer sizes when they NFS mount file systems. The largest 
values supported by both client and server become the maximum size for all 
network transfers 

In addition to server mount options, client administrators may either soft 
mount or hard mount NFS file systems. Typically, hard-mounting is the default. 
Timed-out requests to soft mounted file systems cause NFS clients to report 
errors to applications. With hard-mounted file systems, clients continually retry 
timed-out requests until they succeed. Applications and users cannot interrupt 
retries, and so may hang indefinitely, for example if the server has failed. 
Specifying the intr NFS client mount option makes it possible for a user to 
interrupt retries (for example, by typing CTRL-C), and thus release an 
application hang 
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CNFS protocols 

CNFS supports Version 3 of the 

NFS protocol8 (commonly called 
NFSv3). NFSv3 incorporates the 
eXternal Data Representation 

(XDR) standard9 for platform-
independent data representation, 
so NFS client and server 
implementations are 
interoperable regardless of 
platform type. NFSv3 messages are contained in standard Remote Procedure 
Call (RPC) protocol messages and transported by either UDP or TCP. In general, 
TCP is preferable, particularly in WANs and chronically congested networks, 
because of its flow control and dropped packet handling. 

By itself, NFSv3 is stateless; servers do not retain information about clients 
between successive NFS operations. All NFSv3 operations are independent of 
any previous ones. Statelessness simplifies recovery from server failures 
compared to other (“stateful”) protocols. An NFS server recovering from a fault 
need not “remember” previous interactions with clients. Clients repeatedly 
reissue requests that time out because of server failures. 

CNFS includes two additional protocols used by many NFS-based applications: 

■ Mount. Clients use the mount protocol to determine which file systems are 
being shared by an NFS server, and to obtain served file systems’ file IDs for 
use in subsequent NFS calls 

■ Lock. The lock protocol, implemented in CNFS by a cluster-wide Network 
Lock Manager (NLM), enables clients to place advisory locks on entire files 
and ranges of bytes within files 

The CNFS implementation of NLM is a cluster-wide highly available distributed 
lock manager. Each NLM instance manages the advisory locks for NFS clients 
connected to its node. If a node fails, the NLM instance on the node that assumes 
control of its virtual IP addresses interacts with clients to recover their NLM 
locks. Both failover and NLM lock recovery are functionally transparent to client 
applications. Typically, when a cluster node fails, its clients retry timed-out NFS 
requests until IP address failover and NLM lock recovery are complete, at which 
time they succeed. Client applications that use NLM advisory locking run 
unaltered when their file systems are served by a CNFS cluster.

8. Defined in RFC 1813. An NFSv4.1 has been published, but is not yet widely implemented or 
deployed. 

9. Defined in RFC 1014.

 Administrative hint 11

For most UNIX and Linux platforms, 
UDP is the default mount option for 
NFS-served file systems. Therefore, 
client administrators must explicitly 
specify TCP in NFS mount commands.   
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Network Lock Manager (NLM) advisory file locking 

Some UNIX and Linux applications use NLM to synchronize shared access to 
NFS-served files. NLM locking is advisory; that is, applications adhere to it 
voluntarily. If all applications that access a given file system follow the NLM 
protocol, simultaneous accesses by multiple clients do not return out-of-date 
data or cause data corruption. NLM does not protect against applications that 
access data for which they have been denied locks, or against applications that 
simply ignore the protocol. 

Client computers running applications that use NLM become stateful—each 
NLM server instance maintains a directory in a shared file system. The directory 
contains a file for each client with outstanding locks. The server holds the actual 
locks in memory, however. 

When a client requests an NLM lock on a file, the NLM instance that handles the 
request uses CFS’s Global Lock Manager (GLM, discussed in Chapter 8 on 
page 147) to gain control over NLM lock grants to the file. It then queries other 
instances to determine whether there are conflicting NLM locks, and if there are 
none, grants the client’s request. This guarantees that different NLM instances 
do not grant conflicting locks to different clients. 

CNFS NLM instances are structured as parallel VCS service groups upon which 
the NFS server virtual IP address (VIP) service groups depend. If a cluster node 
fails, its VIP service groups fail over to pre-designated failover nodes. Prior to 
coming online, the failed over VIP service group instructs all NLM instances to 
enter grace mode, in which they only accept lock reclamation requests from 
clients. While in grace mode, the failed over NLM instance re-masters (recreates) 
the failed node’s in-memory lock database by dropping its own locks, merging 
the failed node’s client list with its own, and instructing all clients in the merged 
list to reclaim their locks. When re-mastering is complete, all NLM instances 
revert to normal operation. 

Since the failed node’s virtual IP address is now served by the failover node, 
which has full access to CFS shared file systems, failover is functionally 
transparent to clients. Clients access the same file systems via the same IP 
addresses both before and after failover. 

CNFS in a nutshell

The CNFS value proposition of scalability, availability, performance, and 
flexibility make it an ideal NFS file serving solution in virtually any 
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environment. Table 3-1 summarizes the what and why of the “CNFS advantage.”

Table 3-1 Why CNFS for NFS file sharing 

CFS cluster
feature

Comments

High availability CNFS builds on the time-proven VCS-CVM-CFS stack to 
deliver highly available NFS file access that scales to 
thousands of clients

Load balancing With CNFS round-robin connection management client 
connections and the I/O load they generate are distrib-
uted throughout the cluster. Clients can also connect to 
specific nodes if that is desirable 

Multi-dimensional scaling Users can grow CNFS clusters independently in the stor-
age capacity (add disk arrays), I/O performance (add stor-
age network or Ethernet interfaces), or processing power 
(add cluster nodes) dimensions 

Stretch clusters With extended Fibre Channel or iSCSI, cluster nodes can 
be separated by distances of up to 100 kilometers for 
disaster protection 

Advanced CFS features Advanced CFS features, notable Dynamic Storage Tier-
ing, Dynamic Multi-Pathing for storage devices, and Rec-
lamation of thinly-provisioned storage are all available in 
CNFS clusters 

Platform flexibility CNFS clusters can be configured using Solaris (SPARC 
and x86), AIX, and Linux platforms. They fit nicely into 
data center vendor management strategies, and are ideal 
for repurposing replaced equipment 

Price/performance Because users can shop for the most cost-effective com-
puting, storage, and network components, CNFS clusters 
provide the best user control over the cost of meeting 
their NFS file serving needs 
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Chapter 4

The VCS cluster framework 

This chapter includes the following topics:

■ VCS components

■ The VCS service group structure for applications

■ VCS resources

■ VCS service groups

CFS and CVM are both closely integrated with the Veritas Cluster Server (VCS) 
cluster framework. In conjunction with CVM and VCS, CFS unifies as many as 32 
interconnected nodes and their data storage resources into a single system that 
is: 

■ Robust. VCS automatically detects both application and cluster node failures 
and restarts (“fails over”) applications to pre-designated alternate nodes. 
Applications configured to fail over are called failover or high availability 
applications 

■ Scalable. With VCS, it is possible to run multiple instances of applications 
concurrently on different cluster nodes. Applications configured for 
concurrent execution of multiple instances are called parallel applications 

In the VCS context, CFS instances are a parallel application. As a layer in the 
application I/O stack (Figure Intro-1 on page 8), CFS instances cooperate to make 
it possible for business logic and database management system applications to 
access data in shared file systems, no matter which cluster nodes they are 
running on. This chapter describes the VCS framework and how CFS fits into it 
as background for the more detailed descriptions of CFS architecture in 
subsequent chapters. 
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VCS components 

The main components of the VCS framework are:

■ had. A high availability daemon that runs on each cluster node. had monitors 
cluster node state, and implements pre-defined cluster policies when events 
require it 

■ Communication protocols. VCS includes two specialized protocols, called 
LLT and GAB that CFS instances use to intercommunicate on a cluster’s 
private network 

■ Agents. Scripts or executable modules that control the operation and 
monitor cluster resources (including applications) 

■ Configuration files. Files that define the computer systems, resources, 
applications, and policies that make up a cluster 

The high availability daemon 

The VCS high availability daemon (had) is the cluster “engine.” An instance of 
had runs on each cluster node and dynamically maintains a replicated state 
machine that provides all nodes with the same view of cluster state at all times. 

In addition, each had instance monitors the resources connected to its node, and 
takes appropriate action (for example, initiates application failover) if it detects 
a critical resource failure. 

All had instances obtain cluster configuration and policy information from a 
single cluster configuration file normally called main.cf. The configuration file 
specifies cluster resources and their organization into service groups. 
Optionally, it may also define interdependencies among service groups. 

VCS private network protocols 

A VCS cluster requires a non-routed Ethernet private network on which its 
nodes can intercommunicate using a two-layer protocol stack: 

■ Low-Level Transport (LLT). LLT is a high-performing, low-latency 
replacement for the standard IP stack, used by VCS for all cluster 
communications. LLT distributes traffic across the cluster nodes performs 
heartbeating to ensure that all nodes are functioning properly and 
responsive 

■ Group Atomic Broadcast (GAB). GAB uses LLT as its underlying protocol by 
which it manages cluster membership and provides reliable communication 
among nodes. CFS instances use GAB to communicate with each other
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Using GAB and LLT, had instances maintain a cluster-wide up-to-date view of 
the state of all cluster nodes and the applications running on them. CFS 
instances also use GAB (which in turn uses LLT) to exchange messages, for 
example, to request delegation of allocation units (Chapter 6). Finally, the Global 
Lock Manager through which CFS coordinates access to shared file system 
resources uses GAB as its mechanism for communicating among instances. 

The LLT module on each cluster node uses the private network to transmit 
heartbeat messages that help to detect node failures. LLT makes heartbeat 
information available to GAB, from which nodes’ responsiveness or non-
responsiveness becomes visible to had. had uses this information to make 
various policy decisions, including whether it should reconfigure the cluster by 
adding or removing nodes. During reconfiguration, VCS momentarily freezes 
any application I/O activity to shared CFS file systems to maintain data 
consistency. 

The VCS service group structure for applications 

VCS encapsulates applications and the resources they require to run (disk 
groups, CVM volumes, CFS file system mounts, network interfaces and IP 
addresses, and so forth) within logical entities called service groups. The VCS 
framework manages service groups by monitoring their resources while they 
are operating, and by starting and stopping them in response to changes in 
cluster state as well as to administrative commands. Figure 4-1 illustrates VCS 
resource and service groups and dependencies among them. 
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Figure 4-1 VCS service groups and dependencies

VCS resources 

VCS treats everything required for an application to function—disk groups, CVM 
volumes, CFS file system mounts, IP addresses, network interfaces, databases, 
and application executable images themselves—as resources. Each resource is of 
a type known to VCS through three components: 

■ A name. Designers use resource type names to declare the types of the 
resource instances they create 

■ Attributes. Some resource attributes are used by VCS; others are supplied as 
parameters to the resources’ own agents 

■ An agent. Agents are executable modules that do what is necessary to 
monitor and control the operation of resource instances. Each resource 
type’s agent is unique 

The agent for a resource type contains four methods, either as entry points in its 
executable image or as scripts: 

■ Online. Executes the actions required to make the resource operational. For 
example, the online method for the CFS file system mount resource type 
invokes the operating system mount command using as parameters a CVM 
volume name and a mount option string specified in the resource instance 
definition 
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■ Offline. Executes the actions required to bring the resource to an orderly 
shutdown. For example, the offline method for CFS file system mounts 
invokes the operating system umount command 

■ Monitor. Executes actions that determine whether the resource is 
functioning properly. For example, the monitor method for CFS file system 
mounts calls an API that checks file system status 

■ Clean. Executes the actions required to bring a resource to a known state 
prior to restarting it after a failure. The clean method for CFS file system 
mounts performs a forced unmount operation if one is required 

Storage Foundation products that contain CFS include VCS agents for file 
system mounts and other types of resources required for CFS to function. 

Resource type definitions 

VCS resource types are defined in type definition files that contain templates for 
the resources in text form. By default, a VCS cluster includes a general type 
definition file called types.cf in the directory /etc/VRTSvcs/conf/config. The 
types.cf file contains templates for the standard VCS resource types. When a 
product that contains CVM and CFS is installed, the Common Product Installer 
adds CFSTypes.cf and CVMTypes.cf to the /etc/VRTSvcs/conf/config directory. 
If SFRAC is installed, the installer adds OracleTypes.cf, and so forth. Resource 
type definition files are included by reference in a cluster’s main.cf 
configuration file, much in the way that C programs often include header files 
that contain data structure type definitions. 

A resource type definition names the resource type and specifies its parameters, 
including any argument list passed to its agent entry points. For example, 
Fragment 4-1 illustrates the type definition for the CFSMount resource type. 

Fragment 4-1 Type definition for the CFSMount resource type 

Resource type definitions include specifications for the parameter values 
supplied when resource instances are created. In the case of the CFSMount 
resource type in Fragment 4-1, these include parameters related to clustering 
(RestartLimit, LogLevel), parameters used by the mount agent, and a template 
for the argument list that VCS passes to the resource type’s online method each 

type CFSMount ( [01]
static int RestartLimit = 2 [02]
static str LogLevel [03]
static str ArgList[] = {MountPoint,BlockDevice,MountOpt} [04]
NameRule = resource.MountPoint [05]
str MountPoint [06]
str BlockDevice [07]
str MountOpt [08]
) [09]
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time it starts an instance of the type (in this case, mounts a file system). 

Resource instances 

To configure an application as a 
VCS service group, a designer 
specifies its resources in the 
main.cf file by referring to their 
type definitions. For example, 
Fragment 4-2 illustrates the 
specification of a CFSMount 
resource named filesystem01. 

Fragment 4-2 Specification of a CFSMount resource 

The resource specification attributes identify: 

■ Volume. the CVM volume on which the file system resides 
(/dev/vx/dsk/dg01/disk01)

■ Mount point. The file system mount point in the hosting node’s name space 
(/mnt01)

■ Mount options. The mount options (blkclear, mincache=closesync) used by 
the CFSMount online method, which is an operating system mount command

The attributes are specified using names in the CFSMount resource type 
definition. 

Organizing and managing resources 

VCS manages resources by organizing them into service groups. A VCS service 
group can contain both critical and non-critical resources. Critical resources 
must be operational in order for the group to function; non-critical resources 
need not. For example, CFS can manage many cluster file systems 
simultaneously. No particular file system (CFSMount resource) such as the one 
specified in Fragment 4-2 is required for the CFS service to operate. CFSMount 
resources are therefore non-critical from the point of view of the CFS service 
group. 

Administrative hint 12

Administrators do not usually code 
CFSMount resource definitions directly. 
They use the cfsmntadm console 
command to add and remove CFS file 
systems in a VCS cluster configuration. 

CFSMount filesystem01 ( [01]
Critical = 0 [02]
MountPoint = "/mnt01" [03]
BlockDevice = "/dev/vx/dsk/dg01/disk01" [04]
MountOpt = "blkclear,mincache=closesync" [05]
) [06]
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While a service group is online, VCS invokes the monitor methods of each of its 
resources periodically to verify that they are functioning properly. If a resource 
designated as critical to a failover service group fails, VCS stops the service 
group and restarts it on an alternate node in the cluster. Similarly, if a node 
running one or more failover service groups fails to issue heartbeat messages on 
schedule, VCS ejects it from the cluster, causing a reconfiguration. After the 
reconfiguration, VCS restarts the failover service groups on alternate nodes. 

Some of the resources in a service group may depend on other resources. For 
example, a CFSMount resource depends on the CVM disk group in which the 
volume that holds the file system is contained. Others are independent. For 
example, the IP address that an NFS server uses to export a file system has no 
dependency relationship with the file system. (An NFS share resource, however, 
depends on both file system and IP address.) 

VCS starts and stops a service group by invoking the online and offline methods 
of its resources in a sequence that is determined by their dependency 
relationships. Dependent resources are started after the resources on which 
they depend. 

VCS service groups 

An application designer can structure a VCS application service group either as: 

■ High availability. (also called failover service groups). VCS automatically 
restarts high availability service groups on pre-designated alternate nodes if 
they or the nodes on which they are running fail 

■ Parallel. VCS starts and monitors multiple concurrent instances of parallel 
service groups on different cluster nodes. VCS does not perform failover of 
parallel service groups 

Both types of service group consist of: 

■ Resources. A dependency tree of the resources that make up the service 
group 

■ Node list. An ordered list of cluster nodes on which the service is eligible to 
run 

■ Service group interdependencies. A dependency tree of other service groups 
on which the service group depends 

When starting a failover service, the had instance on whichever active cluster 
node appears first in its node list starts it on that node. had starts an instance of 
a parallel service group simultaneously on every node in the group’s eligibility 
list. 



90 The VCS cluster framework
VCS service groups

Service group resources 

Figure 4-2 represents a simple service group. In this example, an application 
(app.exe) requires a file system mount (/appdata), which in turn requires the 
CVM volume (appvol) that holds the file system’s data and metadata.

Figure 4-2 Sample VCS service group

Fragment 4-3 defines: is a definition for this service group as it might appear in 
a cluster’s main.cf file. 
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Fragment 4-3 A simple VCS service group definition 

Fragment 4-3 defines: 

■ Name and type. The service group name (app_group) and type (parallel) 

■ Run location. The nodes on which the service is eligible to run (node0 and 
node1), and on which VCS is to start it automatically (in the specified order) 

■ Resources. The resources that make up the service group (all of which must 
be accessible to both nodes), including: 

- The application executable image (appresource, which specifies the image 
app.exe)

- The CFS file system mount (app_mntresource, which specifies the /app-
data mount point and the /dev/vx/dsk/appdg/appvol CVM volume that 
contains the file system)

- The CVM disk group containing the file system’s volume 
(app_voldgresource, which specifies the volume appvol) 

■ Resource dependencies. The dependencies among the service group’s 
resources: 

group app_group ( [01]
SystemList = { node0 = 0, node1 = 1 } [02]
AutoFailOver = 0 [03]
Parallel = 1 [04]
AutoStartList = { node0, node1 } [05]
) [06]
AppType appresource ( [07]

Critical = 0 [08]
Sid @node0 = vrts1 [09]
Sid @node1 = vrts2 [10]
Owner = appowner [11]
Home = "/apps/app" [12]
Pfile @node0 = "/apps/app/images/app.exe" [13]
Pfile @node1 = "/apps/app/images/app.exe" [14]
) [15]

CFSMount app_mntresource ( [16]
Critical = 0 [17]
MountPoint = "/appdata" [18]
BlockDevice = "/dev/vx/dsk/appdg/appvol" [19]
) [20]

CVMVolDg app_voldgresource ( [21]
CVMDiskGroup = appdg [22]
CVMVolume = { appvol } [23]
CVMActivation = sw [24]
) [25]

requires group cvm online local firm [26]
appresource requires app_mntresource [27]
app_mntresource requires app_voldgresource [28]
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- appresource (the executable image) requires app_mntresource (the file 
system mount)

- app_mntresource requires app_voldgresource (the CVM disk group con-
taining the file system’s volume) 

■ Service group dependency. The other service group (cvm, the group 
containing the CVM and CFS underlying support framework) on which this 
group depends 

To start this parallel service group, either automatically when the cluster starts 
up, or upon administrator command, VCS had instances on node0 and node1 
call the online entry points of the CVMVolDg, CFSMount, and AppType agents. 
Because resource dependencies are specified, the agents are called in sequence. 

To stop the group, VCS executes the corresponding offline methods in reverse 
order.

Service groups in operation 

While a service group is online, VCS continually monitors each of its resources. 
As long as all resources’ monitor methods report operational status, VCS takes 
no action. If a critical resource fails, VCS makes a designated number of 
attempts to restart it, and, failing to do so, stops the service group as described 
in the preceding paragraph. 

Thus, VCS monitors state on two levels: 

■ Cluster. The LLT module on each node monitors heartbeat messages from 
other nodes. If a node’s heartbeats from a node cease to arrive, the remaining 
nodes use GAB protocol services to eject it from the cluster and fail over its 
high availability service groups according to the policy specified in main.cf 

■ Service group. Each node monitors the resources of the service groups it 
manages. If a critical resource in a service group fails and cannot be 
restarted, had stops the group. had restarts high availability service groups 
on alternate nodes as indicated in the cluster’s main.cf file. It does not restart 
parallel service groups, since they are presumed to be running on all eligible 
nodes 

Under most circumstances, service group starting, stopping, and failover are 
completely automatic. Administrative intervention is only necessary in 
exceptional cases, such as removal of a node for maintenance. In local and 
“metropolitan” clusters, VCS completely automates the restoration of service 

after application, critical resource, or node failure.10 

10.Through its Global Cluster Option (GCO), VCS supports pairs of widely separated clusters. 
Global clusters can be configured to require administrative involvement in failover, but for 
local and metropolitan clusters, automation is the rule. 
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Service group dependencies 

Service groups may depend on each other. For example, the service group 
specified in Fragment 4-3 depends upon the cvm service group (line 26 in the 
fragment). The service group definitions and interdependencies specified in a 
cluster’s main.cf file are effectively the cluster’s policy. had instances respond 
to events such as node or application failure by enforcing the resource criticality 
policy provisions specified in main.cf. 

Virtual IP addresses for parallel service groups 

VCS starts a parallel service group on all cluster nodes that are eligible to run it. 
For scale-out applications in which each client connects to one of several 
application instances on different nodes, designers typically balance the load 
among nodes by designating a separate IP address for each application instance, 
and registering all of them with DNS in “round-robin” mode, so that DNS rotates 
the order of the list when responding to successive lookup requests 

Designers frequently make parallel applications highly available as well by 
encapsulating the IP addresses that clients use to connect to them in VCS high-
availability service groups for which they specify the application instance’s 
service group as a critical dependency. This is called virtualizing IP addresses, 
and the IP addresses are called virtual IP addresses (VIPs). 

If an application instance or its server fails, VCS restarts the service group 
containing the VIP on its failover node. When clients reconnect or retry 
requests using the VIP, they communicate with the failover server, which is 
running an instance of the parallel application. The client’s messages are 
directed to that instance, which re-establishes connection and services requests 
according to its own application-level protocols.
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Chapter 5

CVM and CFS in the VCS 
framework 

This chapter includes the following topics:

■ Virtual volumes and volume managers

■ CVM-CFS synergies

■ Putting it all together: CVM and CFS in the VCS environment

■ The value of CVM as a CFS underpinning
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Today, almost all data center storage is virtualized. 
Disk arrays, intelligent storage network switches, and 
host-based volume managers that run in application 
and database servers all coordinate access to groups of 

rotating and solid-state disks11 and present clients 
with disk-like virtual devices with some combination 
of capacity, resiliency, I/O performance, and flexibility 
that is superior to that of the component devices. 
Virtual devices may be partitions, concatenations, 
mirrors, or stripe or RAID groups of underlying 
devices. They may be “thinly provisioned,” in that 
physical storage capacity is allocated to them only 
when clients access the corresponding virtual storage 
capacity. 

Virtual devices may themselves be virtualized. For 
example, a host-based volume manager can mirror 
data on two virtual devices that are actually RAID 
groups presented by different disk arrays; the 
resulting mirrored virtual device can survive even the 
failure of an entire disk array. CFS file systems store 
data in virtual devices called volumes that are 
instantiated by the host-based Cluster Volume 
Manager (CVM). CVM volumes enable all nodes in a 
cluster to access their underlying storage devices 
concurrently. 

Virtual volumes and volume managers 

Whether it is disk array, network, or host-based, a storage virtualizer has two 
primary functions: 

■ Mapping. Volume managers maintain persistent maps that relate volumes’ 
block addresses to block addresses on underlying storage devices. For 
example, volume managers keep track of sets of mirrored disks, and the 
stripe order and parity locations of disks in a RAID group. Some volume 
manager maps are algorithms that relate physical and virtual device block 
locations. Others, such as maps for thinly provisioned volumes, are 

11. In practice, most enterprise storage devices are actually logical units (LUNs) presented by 
disk arrays, which virtualize the storage capacity of the disk drives they contain. Storage 
Foundation documentation and this book both refer to disk array LUNs and directly 
connected disk drives interchangeably as disks, except where the context requires more 
specific reference. 
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correspondence tables that relate device and volume block numbers to each 
other 

■ I/O request translation. Volume managers use their disk block maps to 
translate client I/O requests that refer to volume block addresses into 
requests to underlying storage devices. For example, for each client write 
request to a mirrored volume, a volume manager issues write commands 
addressed to corresponding blocks on each of the volume’s mirrored devices 

Virtualizers that run in application servers, usually called host-based volume 
managers, have two properties that make them especially useful in mission-
critical cluster environments: 

■ Extreme resiliency. Volume managers can create volumes from physical or 
virtual devices presented by different disk arrays. This enables them to keep 
data available to applications even if, for example, a disk array suffers a total 
meltdown 

■ Multi-path access. Volume managers can improve I/O performance and data 
availability by transparently managing application access to storage devices 
connected by two or more network paths 

The conventional shared storage device paradigm does not guarantee the 
execution order of concurrent I/O commands to overlapping disk blocks. For 
example, if two clients write data to the same disk block at approximately the 
same time, either request may be executed first. File systems and database 
management systems enforce ordering requirements among disk reads and 
writes by regulating access to their own critical data structures. 

CVM transforms the read and write requests that CFS addresses to volume 
blocks into I/O commands that it issues to the underlying disks. CFS preserves 
file data and metadata integrity by using the Global Lock Manager (GLM, 
Chapter 8 on page 147) to serialize accesses that might conflict with each other. 

CVM volume sharing 

CVM presents consistent volume state across a VCS cluster as nodes import and 
access volumes concurrently. CVM volumes may be private (accessible by one 
node) or cluster-wide (accessible by all nodes, also called shared). CFS file 
systems must occupy CVM shared volumes; they cannot use CVM private 
volumes or raw disks for storage. A CFS file system that occupies shared CVM 
volumes may be mounted on a single node, a subset of the cluster’s nodes, or on 
all nodes. Table 5-1 summarizes the CFS file system mounting rules.
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CVM in the VCS environment 

Figure 5-1 illustrates how CVM fits into the VCS environment. As the figure 
suggests, CVM instances are structured as VCS parallel service groups, with an 
instance running on each cluster node. All instances access storage devices 
directly through a storage network using Fibre Channel, iSCSI, or SAS 
technology. Each CVM instance transforms CFS read and write requests to 
volumes into I/O operations on the underlying devices, and executes the 
corresponding commands. 

Table 5-1 CFS-CVM mounting rules

CVM volume
type ↓

Single-host
(Vxfs) mount

Single-node
CFS mount

Multi-node
CFS mount

Cluster-wide
CFS mount

Private Yes No No No

Cluster-wide Yes Yes Yes Yes
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Figure 5-1 Cluster Volume Manager software topology 

One CVM instance in a cluster serves as the Master instance; others instances 
are its slaves. The CVM Master instance manages disk group and volume 
configuration, which includes device membership, access paths, and node 
accessibility. The Master coordinates volume configuration changes, both those 
directed by administrative command and those resulting from disk or node 
failure, so that all CVM instances’ views of volume state are identical at all 
times. 

Cluster-wide consistent view of virtual volumes 

CVM organizes disks into disk groups whose membership administrators 
specify. The disk group is the atomic unit in which CVM instances import (gain 
access to), deport (relinquish access to), activate (present to CFS) and deactivate 
(withdraw accessibility to) disks. CVM maintains a redundant, persistent record 
of each disk group’s membership, volumes and other underlying structures in 
dedicated private regions of storage on the disks in a disk group. 

All CVM instances in a cluster must present the same view of disk group and 
volume configuration at all times, even in the event of: 
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■ Storage device failure. For example, if a disk is added to or removed from a 
mirrored volume, all CVM instances must effect the change and adjust their 
I/O algorithms at the same logical instant 

■ Cluster node failure. If a cluster node fails while it is updating one or more 
mirrored volumes, CVM instances on the surviving nodes must become aware 
of the failure promptly, so that they can cooperate to restore volume 
integrity 

CVM guarantees that all of its instances in a cluster have the same view of 
shared volumes at all times, including their names, capacities, access paths and 
“geometries,” and most importantly, states (for example, whether the volume is 
online, the number of operational mirrors, whether mirror resynchronization is 
in progress, and so forth). A volume’s state may change for one of three reasons: 

■ Device failure. A disk that is part of a volume may fail or become unreachable 
on the network. When this occurs, simple, striped and concatenated volumes 
fail, and mirrored volumes are at risk 

■ Cluster node failure. If a cluster node fails, the remaining nodes cannot 
readily determine the state of shared volumes to which the failed node may 
have been doing I/O 

■ Administrative command. Administrators may disable volumes, add or 
remove mirrors, increase or decrease capacity, add disks to or remove them 
from a disk group, and so forth 

Whatever the reason for a volume state change, all nodes in the cluster must 
perceive the change at the same logical instant. When a CVM Master detects or 
is informed by a slave that a volume’s state has changed, it initiates a cluster-
wide transaction to process the change. It stores the new volume state 
persistently in the private regions of the disks that contain the disk group’s 
CVM metadata, marked as a pending change. It then communicates the pending 
change to slave instances, causing them to initiate a coordinated volume state 
change transaction. All instances block further I/O to the affected volumes and 
allow outstanding I/O operations to complete. When all I/O is complete, the 
Master completes the transaction, making the pending state change the current 
volume state. Once the transaction is complete, all instances resume I/O to the 
disk group, adjusting their I/O algorithms as required.

For example, during a cluster reconfiguration that follows a node failure, CVM 
puts mirrored volumes into a read-writeback mode in which every client read is 
satisfied by reading data from one mirror and writing it to corresponding blocks 
of all other mirrors. This ensures that the same data is returned, no matter 
which mirror is used to satisfy a client read request. CVM volumes can be 
configured with dirty region logs (DRLs) that keep track of outstanding writes so 
that during recovery, only block regions flagged as potentially at risk need to be 
copied in read-writeback mode. For volumes configured without DRLs, a CVM 
background thread traverses the entire block spaces in read-writeback mode. 
CVM distributes responsibility for recovering mirrored volumes after a node 
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failure among the remaining cluster nodes on a volume-by-volume basis. 

If the cluster node on which a CVM Master instance is running fails, the cluster 
reconfigures. As part of the reconfiguration, a new CVM Master instance is 
selected and volume states are adjusted as described above. Any IO that requires 
Master involvement is delayed until the new master has been selected. 

CVM-CFS synergies 

Several of CVM’s advanced features interact synergistically with CFS. The 
sections that follow list the most important of these features alphabetically and 
describe how CFS exploits them to enhance file system performance and 
robustness. 

Automatic sparing, disk synchronization, and intelligent copying 

When a disk in a mirrored volume 
fails, the risk of data loss from 
subsequent disk failures 
increases. Consequently, it is 
desirable to replace the failed disk 
and restore its content as quickly 
as possible. CVM’s automatic 
sparing feature allows 
administrators to pre-designate 
disks as spares to be used as replacements for failed disks in the same disk 
group. When CVM detects a disk failure, it automatically removes the failed disk 
from its volume and replaces it with a designated spare from its disk group if a 
suitable one is available, thus eliminating the human intervention time element 
from the repair process. 

When new or replaced disks are added to a mirrored volume, the new disk must 
be synchronized with (made identical to) the volume by copying volume 
contents to corresponding blocks on the new device. In most cases, CVM 
synchronizes volumes while they are “live”—being used by applications. Until a 
new disk is fully synchronized, CVM cannot use it to satisfy read requests. Write 
requests must update all disks, however, including the one being synchronized. 
CVM Master instances guarantee that slave instances perceive the addition of 
disks to volumes at the same instant, and adjust their read and write access 
control accordingly. Similarly, when synchronization is complete, a CVM Master 
coordinates a cluster-wide resumption of normal access control. 

Finally, CFS-CVM SmartMove technology minimizes the time and resources 
required to migrate data between disks. When using SmartMove to copy the 

Administrative hint 13

Administrators use the vxedit command 
with the set spare=on option to 
designate a disk as a spare for its disk 
group.
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contents of one volume to another, CVM queries CFS to determine which volume 
blocks are in use, and copies only those blocks. SmartMove obviously saves time 
whenever data is copied between volumes, but is particularly advantageous 
when the “disks” underlying the target volume are LUNs in a disk array that 
supports thin provisioning. Because CVM only writes actual data, the disk array 
only allocates space for actual data; no physical storage is allocated for unusef 
file system blocks. 

Coordinated volume and file system resizing

Most UNIX file systems are expandable—if a file system requires more space, an 
administrator can increase the size of the underlying volume, and “grow” the 
file system to utilize the enlarged capacity. CFS file systems are both expandable 
and shrinkable, for example, to reclaim storage that is no longer required so it 
can be redeployed. CFS’s ability to reduce the size of a file system, is relatively 
uncommon, as is its two-dimensional expansion capability: 

■ Volume expansion. An administrator can increase the size of one or more of 
the CVM volumes a file system occupies, and then grow the file system to 
utilize the increased space

■ Volume addition. Alternatively, an administrator can add volumes to a file 
system’s volume set, tagging the added volumes so that they become part of a 
storage tier (Chapter 10)

When reducing the size of a file system, CFS first relocates files from volume 
block locations that lie beyond the reduced size, freeing the storage space to be 
removed, and then adjusts file system metadata to reflect the reduced capacity. 
Once a file system’s size has been reduced, the administrator can reduce the size 
of the underlying volume, and reuse the space freed thereby. 

Database management system I/O accelerations

Compared to so-called “raw” block storage devices, CFS files used as storage 
containers for relational databases offer several advantages, particularly in 
cluster environments: 

■ Administrative simplicity. Database administrators can easily resize 
database container files dynamically, while the database manager is using 
them to satisfy client requests. In contrast to virtual volume resizing, file 
resizing typically does not require coordination with a storage or system 
administrator 

■ Error-proofing. When a database uses CFS files as storage containers, the 
underlying disks are not visible to database administrators and can therefore 
not be compromised by accident 
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■ Storage cost-effectiveness. CFS’s Dynamic Storage Tiering feature 
(Chapter 10 on page 171) can automatically place database container files on 
the most cost, performance and resiliency-appropriate storage tiers (groups 
of CVM volumes) for each type of data. For example, active tables can be 
placed on high-performance storage, while archive logs can be relocated to 
lower-performing, but reliable storage as they age 

■ Data protection flexibility. Using CFS files as database storage containers 
allows administrators to employ techniques like space-optimized snapshots 
of CVM volumes, and file-oriented backup software like Symantec’s 
NetBackup to protect database data 

Historically, the main disadvantage to using files as database storage containers 
has been the impact on performance. In order to isolate clients from each other, 
most UNIX file systems move data between operating system page cache and 
application buffers and lock access to files while they are being written. These 
functions impede database management system performance, and moreover are 
not necessary, because database management systems carefully synchronize 
their own I/O requests to avoid potential conflicts. 

CFS includes database I/O acceleration mechanisms that overcome these 
obstacles, so that database management systems can use CFS files as storage 
containers without incurring performance penalties relative to raw storage 
devices. 

For Oracle, CFS includes a library that implements the Oracle Disk Manager 
(ODM) API specification. With ODM, the Oracle database management system 
can perform asynchronous I/O to CFS files and transfer data directly to and 
from its own buffers. To Oracle database administrators, the advantage of ODM 
is consistent, predictable, portable database behavior that makes optimal use of 
the underlying storage infrastructure’s capabilities. 

For database management systems that do not offer similar APIs, CFS offers a 
concurrent I/O (CIO) facility. CIO can be activated as a file system mount option. 
It behaves similarly to ODM in that it enables asynchronous I/O directly to and 
from a database manager’s own buffers. Any application that synchronizes its 
own I/O requests and manages its own buffers to avoid premature reuse can 
make use of CIO without modification. Alternatively, applications can activate 
CIO for specific files by specifying advisories. 

Using the CFS database acceleration mechanisms, relational database 
management systems and other applications that coordinate their own I/O 
internally can simultaneously achieve both raw device I/O performance and file 
system ease of administration. CFS database accelerators, enhance database 
management system I/O performance in three ways: 

■ Asynchronous I/O. Database manager execution threads are able to issue I/O 
requests and continue executing without waiting for them to complete 

■ Direct I/O. Database manager I/O requests cause data to be transferred 
directly to and from its own buffers. When a database manager accelerator is 
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active, CFS does not copy data to or from operating system page cache on its 
way between database manager and disk storage 

■ Write lock avoidance. Database management system write requests bypass 
operating systems’ file write locking mechanisms, allowing the operating 
system to pass multiple write requests to a single file through to the I/O stack 
in parallel 

The CFS data caching and file I/O serialization protections are unnecessary with 
database managers, because they themselves guarantee that they do not issue 
potentially conflicting I/O commands concurrently, or reuse buffers before I/O 
is complete. 

CFS database accelerators are cluster-aware. Their instances communicate with 
each other to maintain the structural integrity of database container files and to 
keep administration simple. 

Because CFS is frequently the basis for Oracle database infrastructures, the CFS 
ODM library includes features that implement other ODM APIs. Three such 
features are: 

■ File descriptor virtualization. The CFS ODM library saves memory by 
mapping Oracle’s file descriptors to file handles so that each database 
requires one handle per file shared among all Oracle processes, rather than 
one per file per Oracle process 

■ I/O request consolidation. ODM “bundles” Oracle’s I/O requests and delivers 
them to the operating system kernel in groups. This minimizes context 
switches between the Oracle database manager and the operating system 
that hosts it 

■ File management. The ODM library supports the Oracle Managed File 
capability, which among other features, automatically generates names for 
the files that Oracle creates, ensuring that they are unique across a cluster 

One final feature of the CFS ODM library that is especially significant is that it 

enables Oracle to resilver12 a mirrored volume after system crash. 

When a system with CVM-mirrored volumes fails, it is possible that writes to a 
volume may have been in progress at the time of the failure. The contents of the 
disks that make up mirrored volumes may be inconsistent for either of two 
reasons: 

■ Incomplete writes. A multi-sector write may have been interrupted while in 
progress. Disks (and disk array LUNs) generally finish writing the last sector 
sent to them, but not all sectors of a multi-sector write may have been sent. 
After the failure, a multi-sector Oracle database block may be “torn”—
containing partly old and partly new content 

12.The resilvering metaphor is apt. After a failure that may leave a mirror tarnished, resilvering 
restores its perfectly reflective quality. 
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■ Unprocessed writes. Writes to some of the disks of a mirrored volume may 
not have been executed at all at the instant of failure. After the failure, all 
mirrors will contain syntactically valid Oracle blocks, but some mirrors’ 
block contents may be out of date 

Oracle maintains leading and trailing checksums on its data blocks to enable it 
to detect incomplete writes after recovery from a failure. For unprocessed 
writes, it uses an I/O sequence number called the system control number (SCN) 
that is stored in multiple locations to detect out-of-date blocks. When Oracle 
detects either of these conditions in a database block, it uses the ODM APIs to 
request a re-read of the block from a different mirror of the volume. If the re-
read content is verifiable, Oracle uses the ODM API to overwrite the incomplete 
or out-of-date content in the original mirror, making the block consistent across 
the volume. 

CVM volume snapshots 

A CVM snapshot of a live volume captures a virtual image of the volume’s 
contents at an instant of time. The image may be a physical block-for-block copy 
(“full-size”), or it may contain only the pre-snapshot contents of blocks updated 
since snapshot initiation and a table that relates their locations to their volume 
block addresses. CVM documentation refers to the latter as “space-optimized” 
snapshots. Figure 5-2 contrasts full-size and space-optimized snapshots. 
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Figure 5-2 Full-size and space-optimized snapshots of CVM volumes 

Full-size snapshots have certain advantages: 

■ Flexibility. Because they are full images of volumes and the file systems on 
them, full-size snapshots can be split from their disk groups and taken off-
host for processing 

■ Performance. Because a full-size snapshot occupies completely separate 
storage devices from its parent data set, processing the snapshot has little 
impact on I/O to the parent data set 

■ Failure tolerance. A full-size snapshot made for data analysis, for example, 
does double duty in that it can be a recovery mechanism if the parent data set 
fails 

The advantages of full-size snapshots notwithstanding, space-optimized 
snapshots are attractive because they minimize storage consumption, and 
because snapshot initiation is nearly instantaneous. The storage space occupied 
by a space-optimized snapshot is related to the amount of live volume data that 
changes during the snapshot’s lifetime rather than to the size of the live volume.

The first change to any given volume block after a space-optimized snapshot is 
initiated results in the block’s original contents being preserved (“snapped”). 
Thus, the first write to a block after snapshot initiation consumes more time and 
I/O resources than subsequent writes. 

Full-size snapshots consume more storage space, and take longer to initiate 
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(because the complete contents of the snapped volume must be copied to the 
snapshot), but they have the advantage of being complete volume images that 
can be deported for use by other systems, either in or outside of a cluster. 

In a conventional full-size snapshot implementation, a volume manager cannot 
determine which volume blocks are used by the file system and which are free, 
so it copies all volume blocks when creating a full-size volume snapshot. (This is 
also true of adding or restoring a disk to a mirrored volume.) Thus, creating a 
full-size snapshot of a volume that contains a lightly populated file system 
results in a good deal of useless copying of the contents of unallocated volume 
blocks. 

SmartSync for full-size snapshots of CVM volumes 

The Storage Foundation SmartSync feature eliminates the copying of 
meaningless blocks during full-size volume snapshot creation and mirrored 
volume disk resynchronization. When creating a snapshot or adding a disk to a 
mirrored volume, CVM makes a SmartSync query to CFS requesting a list of 
volume block ranges that contain file system data and metadata, and copies only 
those block ranges, bypassing blocks that CFS regards as unused space. Thus, 
with SmartSync, the time to create a full-size snapshot or add a disk to a 
mirrored volume is related to the amount of data that the volume contains, and 
not to the volume’s size. 

Figure 5-3 Full-size snapshot creation and mirrored volume 
synchronization with SmartSync 
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SmartSync is also useful when migrating from conventional (“thick”) disk array 
LUNs to thinly provisioned ones. Because SmartSync only copies blocks that are 
actually in use, only those blocks are written to a target LUN, and therefore only 
those blocks are allocated physical storage capacity (“provisioned”) by the disk 
array. 

Volume geometry-based I/O optimization 

CVM reports the geometry of volumes used by CFS. The most relevant volume 
geometry parameters are: 

■ Mirrored volumes. The number of disks across which data is mirrored 

■ Striped volumes. The number of columns (disks) and stripe unit size 

For volumes that are both striped and mirrored, both parameters are relevant. 

CFS uses CVM geometry information to optimize space allocation and I/O 
algorithms. Two important examples of how CFS uses CVM geometry 
information are: 

■ Allocation for small file performance optimization. If the volume blocks 
allocated to a small file are split between two columns of a striped volume, an 
I/O request to the file may result in two I/O commands to two disks. This uses 
more system resources and takes longer to execute than a single command. 
To minimize this possibility, CFS uses the volume stripe unit size that CVM 
reports as one of the inputs to space allocation for small files. If possible, it 
allocates space for small files at volume block locations that fall into a single 
column of a striped volume. 

■ Sequential read-ahead. When 
CFS detects that a file is being 
read sequentially, it 
automatically enters read-
ahead mode in which it pre-
reads a certain amount of data 
in anticipation of upcoming 
application read requests. 
When determining how much 
data to read ahead, CFS takes 
volume geometry into account. 
In particular, CFS uses the 
number of disks in a volume 
(and for striped volumes, the 
stripe unit size) to determine the number of concurrent anticipatory reads to 
schedule. Since each read request results in read commands directed to 
different disks, the commands can transfer data concurrently, effectively 
increasing aggregate read-ahead bandwidth. 

 Administrative hint 14

CFS is aware of CVM volume geometry, 
but not that of disk arrays. If a disk 
array LUN is already striped, the 
incremental benefit of extensive CVM-
level read-ahead is likely to be minimal. 
Administrators can use the 
read_pref_io and read_nstream file 
system tunables to conserve buffers by 
minimizing read-ahead for such 
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Putting it all together: CVM and CFS in the VCS 

environment

As parallel VCS service groups, CFS and CVM are configured similarly, but not 
identically in the VCS environment. Both are based on “engines,” called vxfsckd 
and vxconfigd respectively, that provide their core functionality. Instances of 
the engines run in all cluster nodes structured as VCS resources.

Each CFS file system is 
represented as a VCS CFSMount 
resource on each node that 
mounts the file system. The disk 
groups that contain the CVM 
volume(s) on which a file system 
resides are represented as 
CVMVolDg resources.

Each file system resource has a 
VCS dependency on the disk 
group resource that contains its 
volumes. At least one disk group 
must depend on the CVMCluster 
executable resource to manage 
CVM membership and cluster-
wide volume state reconfigurations. Figure 5-4 illustrates a typical CVM-CFS 
resource configuration—an application that serves clients over a network by 
accessing data in a database. Both application and database failover service 
groups use CFS file systems based on CVM volumes.

 Administrative hint 15

CFS and CVM resource type definitions 
are contained in the CFSTypes.cf and 
CVMTypes.cf files respectively. The 
Storage Foundation common product 
installer automatically installs them in 
directories that allow them to be 
included by reference in the main.cf file. 

The Common Product Installer also 
creates the CVMcluster resource 
representation in main.cf automatically. 
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Figure 5-4 Typical service group configuration (database application) 

Figure 5-4 represents two service groups: one consisting of the resources 
required to run the database management system, and the other, the resources 
that the application requires to interact with clients and make database 
requests. The database management system service group has a group 
dependency on the application group, because it requires the CVMCluster 
resource in that group in order to make the volumes that contain the database 
accessible throughout the cluster. 

The database management system service group is structurally similar to the 
group illustrated in Fragment 4-3 on page 91. The group’s application (the 
database management system executable image) resource depends on the 
CFSMount resource that represents the file system in which the database is 
stored. The file system resource in turn depends on the CVMVolDg resource the 
represents the disk group containing the volumes used by the file system for 
storage. 
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The value of CVM as a CFS underpinning 

CFS requires CVM volumes for its storage, even when physical storage is 
provided by LUNs presented by disk arrays that themselves stripe and mirror 
data across disks. CVM guarantees CFS a consistent view of its underlying disks 
and LUNs at all times, including during volume state changes and cluster 
reconfigurations. Moreover, as the preceding sections illustrate, CVM interacts 
with CFS to enhance performance, robustness, and administrative simplicity. 
Finally, with the ODM library included in all CFS product versions, CVM and CFS 
integrate closely with Oracle database management systems to provide the I/O 
performance of raw disks along with the robustness and administrative 
convenience of files. 
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Chapter 6

Inside CFS: disk layout and 
space allocation

This chapter includes the following topics:

■ UNIX file system disk layout

■ The basic CFS disk layout

■ Filesets

■ CFS space allocation

■ Cluster-specific aspects of the CFS data layout

Fundamentally, any UNIX file system13 manages: 

■ A name space. The names of all data files in the file system and the data and 
attributes associated with them 

■ A pool of storage space. A set of blocks of storage capacity located on one or 
more disks. Blocks of storage are constantly being freed or allocated to hold 
file data or metadata 

Figure 6-1 represents the file system abstraction from a UNIX application and 
user perspective. As the figure suggests, a file system provides applications with 
the appearance of a dynamic hierarchical tree structure in which files and 
directories are constantly being created, extended, truncated, and deleted. To do 

this, the file system uses the much simpler “flat” block address spaces14 of disk-
like logical units (LUNs) as persistent storage. 

13. The term file system is commonly used to refer to both (a) the body of software that 
manages one of more block storage spaces and presents the file abstraction to clients, 
and (b) a block storage space managed by such software and the files it contains. The 
intended meaning is usually clear from the context.
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Figure 6-1 The UNIX file system abstraction 

At the enterprise data center level, a file system must be able to execute requests 
from multiple client concurrently in order to provide acceptable performance. 
Moreover, it must do this in such a way that each file appears to be:

■ Isolated. Completely separate from other files so that clients perceive a file 
independently of any other files in the file system 

■ Correct. Even when multiple clients are accessing, and even updating a file, it 
appears to be a single ordered stream of bytes 

Maintaining a correct mapping between a complex hierarchy of directories and 
files and one or more flat disk block address spaces becomes even more 
challenging in a cluster, where the clients manipulating files and directories 
may be running on different cluster nodes. 

A file system manages the pool of disk blocks assigned to it. At any time, some 
blocks are allocated, holding file data or metadata, and the remainder are free, 
available for allocation as needed. The file system must manage its storage 
correctly and efficiently, even as competing applications request free space for 
new and extended files and return space to the free pool by deleting files. Again, 
in a cluster, delivering correct operation and adequate performance are even 
more challenging, because cooperating file system instances running on 
multiple nodes must be capable of executing concurrent application requests 
against the file system. The reliability and high performance of CFS in complex 
cluster environments stem primarily from two sources: 

14. The address space of a logical unit is “flat” in the sense that each block in it is 
addressed by a single unique number. The block numbers are sequential, starting 
with 0. 

http://www.symantec.com/yellowbooks
http://www.symantec.com/yellowbooks
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■ Data layout. CFS has an extremely flexible and robust on-disk layout for data 
and metadata 

■ Transactions. CFS uses a distributed transaction architecture that allows all 
cluster nodes on which a file system is mounted to perform transactional 
metadata operations concurrently 

Chapter 7 describes the CFS distributed transaction architecture. This chapter 
provides the background for that material by describing how CFS lays out file 
system metadata and data on the virtual disks it manages. 

UNIX file system disk layout 
All UNIX file system on-disk data layouts have a few common components: 

■ Starting point. A well-known address containing the superblock that serves 
as a starting point for locating metadata structures 

■ Storage space descriptors. Persistent metadata that describes the state of 
the storage space managed by the file system 

■ File and file system metadata. Persistent metadata, including both 
structures that describe the file system itself, and structures that contain file 
attributes and locations of the disk blocks that contain file data. In UNIX file 
systems, the latter structures are usually referred to as inodes 

■ Directories. Correspondence tables that relate user-friendly file names to the 
locations of the inodes that contain the files’ metadata and data locations 

In addition, server-class file systems require persistent data structures, usually 
in the form of logs or journals, that track the status of file system metadata 
operations. If a server fails while file system metadata operations are in 
progress, the on-disk representation of metadata may be inconsistent. These 
structures make it possible to restore a file system’s structural integrity. 

Each type of file system has rigidly defined rules for laying out data and 
metadata on disk storage. Strict adherence to data layout rules is important 
because it makes it possible to disconnect a disk containing a file system (data) 
from one computer and connect it to another that is running the same type of 
file system (code) supporting the same data layout, and read and write file data 
correctly. Perhaps more importantly, if one upgrades or even changes an 
operating system, as long as the new operating system runs a file system (code) 
that supports the same on-disk data layout as the old one, data in old file 
systems (data) can be read and written correctly. 

Common features of UNIX file system on-disk data layout 

Figure 6-2 is a simple representation of on-disk data layout that is typical of 
UNIX file systems. A file system’s superblock, the starting point for locating 
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metadata structures, is found at a fixed location in the file system’s disk block 
address space (for example, block 000 in Figure 6-2). In most file systems, the 
superblock is replicated at one or more additional well-known locations so that 
if the disk block containing the original superblock becomes unreadable, critical 
file system data structures can still be located. A file system’s superblock 
usually contains the disk block addresses of other key data structures, plus some 
metadata items that pertain to the entire file system, such as mount status and 
on-disk data layout version. 

Figure 6-2 Typical UNIX file system disk layout15 

File system disk space management 

One of a file system’s most important functions is to manage the constantly 
changing states of the disk block address space of storage assigned to it. As 
clients create, extend, truncate, and delete files, a file system is constantly 
allocating blocks to files and freeing them for other use. A file system’s 
superblock typically contains the location of a disk space map, in which the file 
system records the current status of the disk blocks assigned to it. 

Different file systems manage disk space in different ways. One common 

mechanism is a bit map, in which the Nth bit represents state of the Nth disk 
block of the file system’s overall storage pool. For example, a bit value of ‘1’ 
might indicate that the corresponding block is available for allocation, while 
value of ‘0’ would indicate that the block is allocated to a file. With this scheme, 

15. Figure 6-2 is a simplified example to illustrate general principles. It is not intended to 
represent any actual UNIX file system disk layout accurately. 
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whenever the file system allocated disk blocks to a file, it would clear the 
corresponding bits in the disk space map. Similarly, whenever it deallocated 
blocks (for example, executing a client request to delete a file), it would set the 
corresponding bits in the map. 

In practice, file systems use more elaborate techniques to manage the disk space 
assigned to them. However it is managed, a file system’s disk space map must be 
persistent—its state must be preserved across file system shutdowns, power 
failures, and system crashes, even if they occur while the map is being updated. 
Moreover, access to the disk space map must be strictly serialized, so that, for 
example, two concurrent file system execution threads do not allocate the same 
block to different files. 

Identifying and locating files 

The superblock is also the starting point for locating the data structure that 
identifies and locates files and directories in the file system. In UNIX file 
systems, this structure is called the index node list, or ilist, and individual files 
are described by the index nodes, or inodes,) that make up the list. In most file 
systems, all inodes are of a single fixed size, and are located via information in 
the superblock. 

At any point in time, each inode in the ilist is either allocated (in use describing a 
file) or free (available to be used to describe a new file). As Figure 6-2 suggests, 
each active inode contains: 

■ Metadata. Common information about the file, such as owner, creation time, 
time of last update, access permissions for other users, and so forth

■ File data location(s). One or more descriptors that identify the disk blocks 
that hold the file’s data 

The format of disk block descriptors differs from file system to file system. In 
some, each descriptor represents a fixed number of contiguous disk blocks by 
pointing to the first of them. Others, including CFS, use richer structures that 
describe data extents, ranges of consecutively numbered file system blocks of 
varying length. Variable-length extents make it possible to describe large files 
very concisely, leading to more efficient space allocation and better application 
I/O performance. 

Write caching and file system logs 

UNIX file systems improve their performance by holding data and metadata 
updated by clients in a volatile (non-persistent) main memory cache for some 
time after signaling to clients that their updates have been completed. They 
write updates to persistent disk storage either on application command (for 
example, the POSIX fsync() API), or “lazily,” either as I/O resources become 
available, at regular intervals, or a combination of the two. Write caching 

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/index.jsp
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improves application performance, because applications do not wait for disk 
writes to complete before progressing. But there is an undesirable side effect: if 
a system crashes before the file system persists a metadata update that the 
application perceives as complete, and may therefore have acted upon, the 
update is “lost”—not reflected anywhere in the file system when the system 
restarts. 

Some file systems, including CFS, adopt a compromise strategy to guard against 
lost updates by persistently logging their intent to update data and metadata 
before actually doing so. File system logs are typically small (proportional to the 
number of operations likely to be in progress at a time rather than to the size of 
the file system); and if stored on high-performance devices such as high-RPM or 
solid-state disks, can be updated much faster than file data and metadata. 
Typically, file system logs are stored in the file system’s own disk block address 
space; their locations are found either directly or indirectly by referring to the 
superblock. 

File data storage 

The majority of the storage capacity managed by a file system is used to hold file 
data. UNIX file systems manage this storage in fixed-size blocks that are an 
integer multiple of disk sector sizes. Blocks of storage in this part of the space 
are constantly changing status from free space to being assigned to files and the 
reverse. A file system’s single most important function is maintaining the 
integrity and consistency of the data structures that describe the files it 
contains. 

The basic CFS disk layout

The CFS disk layout16 includes all of the major elements of file system metadata 

described in the preceding section. It is unique, however, in one key respect:

The concept of organizing file system metadata as files is an extremely powerful 
one, leading directly to much of CFS’s flexibility and extensibility. For example, 
one way for an administrator to increase or decrease a CFS file system’s storage 
space is to add CVM volumes to or remove them from its assigned storage 
complement. This is possible because the volumes that a CFS file system 
manages are described in a file, which is extended when a volume is added, and 

16. The disk layout of CFS, and of the single-host VxFS file system on which it is based, has 
undergone significant evolution since the file system was first shipped in 1992. This 
section describes the current disk layout, some of whose features are not present in ear-
lier versions, particularly those that preceded disk layout version 4. 

All metadata structures in a CFS file system are stored in files.



Inside CFS: disk layout and space allocation 119
Filesets

contracted when one is removed. 

Filesets 
The metadata and data in a CFS file system are organized as filesets, that can be 
regarded as “file systems within a file system.” The fileset concept allows 
disjoint groups of files used by different entities to share the storage capacity of 
a volume or VSET. At a minimum, each CFS file system contains two filesets: 

■ The structural fileset. Files that contain file system metadata. CFS does not 
expose the structural fileset to administrators or users, although 
administrators can examine and manipulate some of its contents indirectly 

■ The primary fileset. Files that contain user data and the metadata that 
describes them. The primary fileset is the user’s view of a CFS file system 

A CFS file system may contain additional filesets. Each Storage Checkpoint 
(snapshot or clone) of a file system is represented by a fileset. Figure 6-3 
illustrates the CFS fileset concept. 

Figure 6-3 CFS filesets 

The CFS structural fileset 

The starting point for navigation of a CFS file system is its superblock. The 
superblock of a CFS file system consists of a single disk sector divided into read-
only and read-write areas. The read-only portion holds invariant information 
defined when the file system is created. Because the superblock is so 
fundamental to a file system’s structure, CFS replicates it multiple times during 
the life of a file system so that if a main superblock becomes corrupted or 
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unreadable, the file system checking utility (fsck) can locate a replica and use it 
during the course of restoring file system structural integrity. 

One important item in the read-only area of superblock is a pointer to a 
replicated structure called the Object Location Table (OLT). The OLT is the 
master list of locations of structural files that contain CFS metadata. Some 
structural files are instance-specific—each CFS instance has a private version of 
the file. A per-node object location table (PNOLT) structural file has a record for 
each node in the cluster that contains the locations of the node’s instance-
specific structural files. Per-node structural files and their advantages are 
discussed on page 135.

CFS replicates the inodes of several especially critical structural file types. For 
example: 

■ Inode list17. The primary fileset’s inode list 

■ Extent bitmaps. The storage space bit map files (one per device managed by 
the file system) 

■ Intent log. The file system instance’s intent log. 

CFS stores replicated inodes in different disk sectors so that an unreadable disk 
sector does not result in loss of critical file system structural data. During 
updates, it keeps these files’ replicated inodes in synchronization with each 
other. 

Using files to hold metadata makes CFS flexible and space-efficient, and at the 
same time enhances the performance of certain operations. For example, when a 
conventional UNIX file system is created, it typically reserves an inode list 
consisting of a sequential array of disk blocks whose size is proportional to the 
file system’s size. Once reserved, the inode list’s size cannot be changed. This is 
undesirable for two reasons: 

■ Inflexibility. It places a fixed limit on the number of files a file system may 
contain

■ Waste. If a file system contains only a few large files, most of the space 
reserved for inodes is wasted 

In contrast, the inode lists for both structural and primary filesets in a CFS file 
system are themselves files. When an administrator creates a file system, CFS 
initially allocates inode lists with default sizes. CFS automatically increases the 
size of inode list files as necessary when adding files and extents to the file 
system. Thus, the limit of one billion files in a CFS file system is based on the 
maximum practical time for full file system checking (fsck), and not on the 
amount of space assigned to it. 

A CFS structural fileset contains about 20 types of files that hold various types 

17. CFS structural file types are identified by acronymic names beginning with the letters 
“IF.” 
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of metadata. Table 6-1 lists the subset of structural file types that relate to the 
most user-visible aspects of a CFS file system, and the advantages of using 
structural files for metadata as compared to more conventional file system 
designs. 

Structural files for space management 

In addition to the structural files listed in Table 6-1, CFS uses three structural 
files to manage allocation units, the structures it uses to manage the storage 
space assigned to a file system. Table 6-2 lists the three structural files, all of 
which have replicated metadata. Collectively, the three describe the state of a 

Table 6-1 CFS structural files (representative sample)  

Structural 
file type

Contents
Advantages over conventional file 
system structures

Label file Locations of OLT and 
superblock replicas 

OLT allows for flexible metadata 
expansion
Replicated superblocks are resilient to 
disk failure 

Intent log
(replicated 
inodes)

Circular log of file sys-
tem transactions in 
progress

Enables administrator to control intent 
log size as file system size or transaction 
intensity increases 

Device file 
(replicated 
inodes)

Identities and storage 
tiers of file system vol-
umes 

Makes it possible to add and remove stor-
age volumes 
Enables Dynamic Storage Tiering 
(Chapter 10 on page 171) 

inode list 
(replicated 
inodes)

List of inodes that con-
tain metadata and on-
disk locations for user 
files 

Decouples the maximum number of files 
in a file system from file system storage 
capacity 

Attribute inode 
list (replicated 
inodes)

List of inodes hold 
hold extended file 
attributes 

Matches space occupied by extended attri-
bute inodes to actual number of extended 
attributes in a file system 
Conserves space occupied by extended 
attributes 

User quota List of limits on users’ 
storage consumption 

Minimizes storage space consumed by 
quota structures 
Enables cluster-wide quota enforcement 
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file system’s allocation units and the file system blocks they contain. 

Using structural files to hold space management metadata structures has two 
main advantages: 

■ Compactness. CFS can describe very large contiguous block ranges allocated 

to files very concisely (in principle, up to 256 file system blocks with a single 
extent descriptor) 

■ Locality. It localizes information about free space, thereby minimizing disk 
seeking when CFS allocates space for new or extended files 

CFS space allocation
Ideally, file system space allocation should be efficient in three dimensions: 

■ Computation. Allocating and freeing storage space should require the least 
possible amount of computation and I/O 

■ Data structures. The data structures used to track allocated and free space 
should be robust and rapidly searchable 

■ Utilization. Available space should be allocated optimally, with minimal 
fragmentation 

CFS space allocation incorporates two concepts that make it particularly 
efficient, both for file systems containing large numbers of files and file systems 
that host a few very large files: 

■ Allocation units. The space occupied by a CFS file system is divided into a 
number of allocation units, each containing 32,768 of file system blocks. The 
Extent Map structural file represents the state of the file system blocks in 
each allocation unit using a multi-level bitmap that makes searching fast and 

Table 6-2 CFS structural files for managing free space

Structural 
file type

Contents
Advantages over conventional file 
system structures

Allocation unit 
state
(IFEAU)

Overall allocation unit 
state

Instantly determine whether an alloca-
tion unit is completely free, completely 
allocated, or partially allocated 

Allocation unit 
summary
(IFAUS)

Number of extents of 
various sizes available 
in each allocation unit

Quickly determine whether an extent of a 
given size can be allocated from a given 
allocation unit

Extent map
(IFEMP)

Detailed map of avail-
able storage in each 
allocation unit

Fast allocation of optimal size extents
(Usually referred to as “EMAP”)
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efficient when CFS is allocating space for files. To further speed searching, 
each allocation unit’s record in the Allocation Unit Summary structural file 
lists the number of free extents of various sizes it contains. Finally, the 
Extent Allocation Unit Summary file expresses the overall state of each 
allocation unit (completely free, completely allocated, or partly allocated). 

■ Variable-size extents. The 
addresses of file system blocks 
allocated to files are contained 
in extent descriptors stored in 
the files’ inodes. In principle, a 
single extent descriptor can 
describe a range of as many as 

256 consecutively located file 
system blocks. Thus, as long as 
contiguous free space is 
available to a file system, even multi-gigabyte files can be represented very 
compactly 

File system blocks and extents 

CFS treats the disk storage space 
on each volume assigned to it as a 
consecutively numbered set of file 
system blocks. Each file system 
block consists of a fixed number of 
consecutively numbered disk 
sectors of 512 bytes. When 
creating a file system, an 
administrator specifies its file 
system block size, which remains 
fixed throughout the file system’s 
life. CFS supports file system 
block sizes of 1,024, 2,048, 4,096, 
of 8,192 bytes (2, 4, 8, and 16 512 
byte disk sectors respectively).

The file system block is the 
smallest unit in which CFS 
allocates disk space to files. Thus, 
a one-byte file occupies one file system block of disk space. Smaller file system 
block sizes are therefore generally more suitable for file systems that are 
expected to contain smaller files because they “waste” less space (space 
allocated to a file, but not containing file data). Conversely, larger file system 
block sizes are more appropriate for file systems that are expected to contain 
larger files because they describe large files more concisely. 

CFS refers to a range of consecutively numbered file system blocks described by 

Administrative hint 16

Smaller file system block sizes are 
generally preferable for file systems 
that will contain smaller files. Larger 
file system block sizes reduce the 
number of extents required to map large 
files.

Figure 6-4 CFS file system blocks and 
extents stack
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a single descriptor as an extent. Space and file management data structures 
describe the locations and sizes of extents of free and allocated storage space. 

Allocation units 

To manage free storage space efficiently, CFS organizes the space on each 
volume assigned to a file system into allocation units. Each allocation unit 

contains 32,768 consecutively numbered file system blocks.18 CFS tracks the 
space on each device managed by a file system using three structural files listed 
in Table 6-2 and represented in Figure 6-5. Because these structural files are 
typically cached, allocating and freeing space is fast and efficient. 

Figure 6-5 CFS free space management 

Extent Allocation Unit structural files 

For each storage device that it manages, a CFS file system maintains an 
Allocation Unit State structural file that indicates one of four states for each of 
the device’s allocation units: 

■ Completely unallocated. All file system blocks in the allocation unit are free 

■ Completely allocated. The entire allocation unit is allocated to a single 
extent 

■ Expanded. Blocks in the allocation unit have been allocated to multiple 
extents (some blocks may be free) 

18. If the size of a volume assigned to a file system is not a multiple of 32,768 file system 
blocks, its last (highest numbered) allocation unit contains fewer file system blocks. 
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■ “Dirty”. The allocation unit has been subject to recent changes that may not 
yet be reflected in the Allocation Unit Summary structural file (the Extent 
Map file and its cached image are always accurate) 

Thus for example, when attempting to allocate 32,768 file system blocks or more 
in a single operation, CFS can determine immediately from Extent Allocation 
Unit files which, if any, allocation units can be allocated in their entirety. 

Allocation Unit Summary structural files 

Allocation Unit Summary structural files give a more detailed picture of 
allocation unit state. For each allocation unit on a device, this file includes a 
record that indicates how many free extents of 1, 2, 4, 8,…16,384 file system 
blocks the allocation unit contains. When allocating space, CFS attempts to use 
an extent whose size is the smallest power of two larger than the required 
amount (for example, 1,000 file system blocks can be allocated from a 1,024-
block free extent). Cached Allocation Unit Summary records allow CFS to 
quickly determine whether an extent of a given size can be allocated from a 
particular allocation unit. 

When CFS allocates storage space, or frees space by deleting or truncating a file, 
it marks the affected allocation unit’s state “dirty” in the Extent Allocation Unit 
file. CFS disregards Allocation Unit Summary information for dirty allocation 
units, and refers directly to extent maps. A background execution thread 
updates Allocation Unit Summary files to reflect the actual number of free 
extents of various sizes in each allocation unit. 

Extent MAP structural files 

Each Extent Map structural file contains a record corresponding to each 
allocation unit on the device it represents. An allocation unit’s Extent Map 
record contains a set of bit maps that enable CFS to quickly determine which 
sequences of 1, 2, 4,…2,048 file system blocks within the allocation unit are free. 
Extent maps allows CFS to quickly locate the largest available extent that can 
contain the amount of space it is attempting to allocate. 

Extent maps also make de-allocation of storage space fast and efficient. To free 
an extent, CFS updates the Extent Map for its allocation unit. In addition, it 
marks the allocation unit “dirty” in its Extent Allocation Unit file so that 
subsequent allocations will ignore its Allocation Unit Summary records. A CFS 
background thread eventually updates Allocation Unit Summary records for 
“dirty” allocation units to reflect the correct number of free extents of each size. 

Because CFS can extend the size of its space management metadata files as 
necessary, it is easy to add storage to a CFS file system, either by increasing the 
size of its volumes to add more allocation units or by assigning additional 
volumes to it. Moreover, because a CFS file system’s volumes retain their 
individual identities, it is possible to relocate files between storage tiers 
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transparently, as described in Chapter 10 on page 171. 

CFS storage allocation algorithms are “thin-friendly” in that they tend to favor 
reuse of storage blocks over previously unused blocks when allocating storage 
for new and appended files. With CFS, thin provisioning disk arrays that allocate 
physical storage blocks to LUNs only when data is written to the blocks, need 
not allocate additional storage capacity because previously allocated capacity 
can be reused. 

Inside CFS Extents 

A set of consecutively numbered CFS file system blocks is called an extent. 
Three pieces of information describe the range of file system blocks that make 
up a CFS extent: 

■ Volume identifier. An index to the volume that contains the extent 

■ Starting location. The starting file system block number within the volume 

■ Size. The number of file system blocks in the extent 

An extent may be free (not allocated to a file), or it may be allocated (part of a 
file’s block address space). Free extents are identified by the structures listed in 
Table 6-2 on page 122. 

Using extents to describe file data locations 

Extents allocated to files are described by extent descriptors that are either 
located in or pointed to by the files’ inodes. CFS inodes for files in the primary 
fileset are located in a structural file called an Inode List File. Figure 6-6 
illustrates the structure of CFS inodes. 

Figure 6-6 CFS primary fileset inode list 
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When it creates a file, CFS assigns 
an inode to it. File system inodes 
are 256 bytes in size by default. 
An administrator can specify a 
512-byte inode size when creating 
a file system; this may be useful 
for file systems in which a large 
percentage of the files have non-
inherited access control lists. (If 
two or more files inherit an ACL 
from the directory in which they 
reside, CFS links their inodes to a 
single copy of the ACL contents, 
which it stores in blocks allocated 
from an Attribute Inode List 
structural file). Whichever inode size is selected at file system creation time, 
inodes are numbered according to their positions in the inode list. A file in the 
primary fileset is associated with the same inode number throughout its 
lifetime. When a file is deleted, CFS marks its inode as available for reuse unless 
it qualifies for aging (see page 221).

Each active inode contains a file’s attributes—file-related metadata items, some 
defined by the POSIX standard, and others specific to CFS. These include the 
file’s name, size, owner, access permissions, reserved space, and so forth. In 
addition, an inode may contain extended attributes assigned by CFS. CFS stores 
access control list (ACL) entries that specify individual users’ file access rights 
as extended attributes. If a file’s ACL is too large to fit in its inode, CFS stores 
additional entries in one or more inodes which it allocates from the Attribute 
Inode List structural file (separate from the inode list), and links to the file’s 
primary inode.

Finally, each file’s inode contains a block map (BMAP) that specifies the 
locations of the file system blocks that contain the file’s data. Data locations are 
specified by a series of extent descriptors, each of which describes a single range 
of consecutively numbered file system blocks. CFS includes two types of extent 
descriptors:

■ Direct extent descriptor. Direct extent descriptors point directly to the 
locations of file system blocks that contain file data 

■ Indirect extent map pointer. Indirect extent map pointers point to blocks of 
storage that contain additional direct extent descriptors and, if required, 
further indirect extent map pointers. CFS allocates space and creates an 
indirect extent map when a file is extended and there is insufficient space for 
more direct extent descriptors in its primary inode or in an already-existing 
indirect extent map 

Figure 6-7 illustrates the structure of CFS inodes containing both direct and 
indirect extent descriptors. 

 Administrative hint 17

CFS holds inodes for active files in a 
dedicated inode cache in main memory. 
It computes the size of the cache based 
on system memory size. The VeritasTM 
File System Administrator’s Guide for 
each supported platform describes how 
administrators can adjust a tunable to 
force a larger or smaller inode cache 
size. number of extents required to map 
large files.
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Figure 6-7 Structure of a CFS inode 

When the number of extents allocated to a file exceeds the number of 
descriptors that fit in an inode, CFS moves the file’s direct extent descriptors to 
an indirect extent descriptor and uses the indirect descriptor structure for 
further allocations. 

File block addresses and file system block addresses

The space that CFS allocates to a file may consist of a single extent or of multiple 
non-contiguous extents. Non-contiguous extents occur for two primary reasons:

■ File system occupancy. When a file is pre-allocated or first written, the file 
system may not have a single extent or contiguous group of extents large 
enough to contain the entire file 

■ Appending. When data is appended to a file, or adjacent file blocks are added 
to a sparse file, the space adjacent to the file’s original file system blocks may 
no longer be available 

Like all UNIX file systems, CFS represents each file to applications as a single 
stream of consecutively numbered bytes. The bytes are stored in (possibly non-
contiguous) extents of file system blocks allocated to the file. Collectively, the 
file system blocks allocated to a file constitute an ordered file block address 
space. 

In order to represent the file block address space, each extent allocated to a file 
has one additional property: the starting file block number represented by the 
starting file system block number of the extent’s location. CFS maintains the 
correspondence, or mapping, between consecutively numbered file blocks and 
extents of file system blocks. Figure 6-8 illustrates CFS file data mapping for a 
file mapped entirely by direct extent descriptors. 
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Figure 6-8 CFS file data mapping 

Figure 6-8 represents a file whose data is stored in four non-contiguous extents 
on two volumes of the file’s volume set, and in addition, which contains a hole 
(file block addresses 100-199) to which no storage is allocated. Table 6-3 
summarizes the mapping of the 450 file blocks containing the file’s data to file 
system blocks. 

This simple example illustrates three key points about CFS file data mapping:

■ Multi-volume storage. The extents that hold a file’s data can be located on 
different CVM volumes. Collectively, the volumes assigned to a file system 
are called its volume set (VSET) 

Table 6-3 Mapping file blocks to file system blocks

File blocks
Volume containing 
extent

Starting file system block of extent 

0-99 Volume 01 File system block 1,000 of Volume 01

100-199 None No storage allocated (hole indicated by 
first file block of second extent) 

200-299 Volume 01 File system block 4,500 

300-349 Volume 02 File system block 1,500 

350-449 Volume 02 File system block 3,600 
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■ Variable-size extents. File data extents can be of any size. (They are limited 

only by the 256 file system block maximum imposed by the size of the largest 
extent descriptor length field) 

■ Unlimited number of extents. There is no limit to the number of extents in 
which a file’s data is stored (although fewer extents results in better data 
access performance). A CFS inode has space for up to ten extent descriptors 
depending on its format. When these have been used, CFS allocates an 8 
kilobyte block (or smaller, if no 8-kilobyte block is available) in which it 
creates an indirect extent map, moves the file’s extent descriptors to it, and 
links it to the file’s inode. Indirect extent map structures can be cascaded as 
long as there is space in the file system 

Cluster-specific aspects of the CFS data layout 
CFS instances running on multiple cluster nodes execute multiple client 
requests concurrently, some of which require modification of structural file 
contents. Access to the data structures that CFS uses to manage a file system 
must be strictly serialized, for example, so that file system blocks do not become 
“lost” (neither free nor allocated to a file), or worse, allocated to two or more 
files at the same time. If one CFS instance is updating a Free Extent Map record 
because it is allocating or freeing file system blocks, other instances must not 
access the map until it has been completely updated. 

File system resource control 

Computer systems typically use some sort of locking mechanism to serialize 
access to resources. A program locks access to a resource by making a request to 
a central authority called a lock manager that grants or withholds control 
resource based on the state of other petitioners’ requests. For example, a file 
system execution thread that is allocating space for a file must obtain exclusive 
access to the data structures affected by the allocation so that other threads’ 
actions do not result in lost or multiply-allocated blocks. A lock manager denies 
a request for exclusive access if the data structures are already locked by other 
threads, and grants it otherwise. Once a lock manager has granted exclusive 
access to a resource, it denies all other requests until the grantee relinquishes 
its exclusive access permission. 

CFS resource management 

Within a single computer, the ‘messages’ that flow between programs 
requesting access to resources and a lock manager are API calls that typically 
execute no more than a few hundred instructions. The CFS cluster environment 
is more complicated, however, for two reasons: 
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■ Distributed authority. There is no single locking authority, because such an 
authority would be a ‘single point of failure,’ whose failure would 
incapacitate the cluster. Requests to access resources in a CFS file system can 
originate with any CFS instance running on any node in the cluster and be 
directed to any instance 

■ Message latency. Within a single node, CFS lock manager overhead is 
comparable to that of conventional lock managers. When messages must 
flow between nodes, however, the time to request and grant a lock rises by 
two or more orders of magnitude 

CFS mitigates inter-node messaging frequency by implementing a few simple, 
but effective rules for controlling file system resources that can be manipulated 
by multiple instances at the same time: 

■ Per-instance resources. Some file system resources, such as intent and file 
change logs, are instance-specific; for these, CFS creates a separate instance 
for each node in a cluster 

■ Resource partitioning and 
delegation. Some resources, 
such as allocation unit maps, 
are inherently partitionable. 
For these, the CFS primary 
instance delegates control of 
parts of the resource to 
instances. For example, when 
an instance requires storage 
space, CFS delegates control of an allocation unit to it. The delegation 
remains with the instance until another instance requires control of it, for 
example, to free previously allocated space 

■ Local allocation. Each CFS instance attempts to allocate resources from 
pools that it controls. An instance requests control of other instances’ 
resources only when it cannot satisfy its requirements from its own. For 
example, CFS instances try to allocate storage from allocation units that have 
been delegated to them. Only when an instance cannot satisfy a requirement 
from allocation units it controls does it request delegation of additional 
allocation units 

■ Deferred updates. For some types of resources, such as quotas, CFS updates 
master (cluster-wide) records when events in the file system require it or 
when a file system is unmounted 

For purposes of managing per-instance resources, the first CFS instance to 
mount a file system becomes the file system’s primary instance. The primary 
instance delegates control of partitionable resources to other instances. 

 Administrative hint 18

In clusters that host multiple CFS file 
systems, a best practice is to distribute 
file system mounting among nodes so 
that primary file system instances are 
distributed throughout the cluster.
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Instance-specific resources 

Some CFS resources are inherently instance-specific. For example, CFS 
transactions are designed so that each instance’s intent log is independent of 
other instances’ intent logs for the same file system. If a cluster node running a 
CFS instance fails, a cluster reconfiguration occurs, during which CFS freezes 
file I/O. After reconfiguration, the primary CFS instance replays the failed 
instance’s intent log to complete any file system transactions that were 
unfinished at the time of the failure. 

Similarly, each CFS instance maintains a separate file change log (FCL) for each 
file system it mounts, in which it records information about file data and 
metadata updates. CFS time-stamps all FCL records, and, for records from 
different instances that refer to the same file system object, sequence numbers 
them using a cluster-wide Lamport timestamp. Every few minutes, the primary 
instance merges all instances’ private FCLs into a master FCL so that when 
applications retrieve FCL records, records from different nodes that refer to the 
same object are in the correct order. 

Delegated resources 

Access to other file system resources, for example allocation units and inodes, is 
inherently required by all CFS instances because, for example, any instance can 
create a file and allocate space to it. From a resource standpoint, this means: 

■ File creation. To create a file, a CFS instance must locate a free inode in the 
ilist, mark it as allocated, and populate it with file metadata 

■ Space allocation. To allocate space to a file, a CFS instance must control one 
or more allocation units, adjust the Free Extent Map(s) to indicate the 
allocated space, and record the location(s) the allocated space in the file’s 
inode 

In both cases, the CFS instance performing the action must control access to the 
affected metadata structures while it identifies free resources and allocates 
them. If a required resource is controlled by another CFS instance, there is 
necessarily at least one private network message exchange between the 
requesting and controlling instances, for example a message requesting 
allocation of space and a response indicating which space was allocated. Using 
inter-node message exchanges to manage resources for which CFS instances 
contend frequently limits performance in two ways: 

■ Bottlenecking. A node that manages resources that are frequently accessed 
by instances on other nodes can become a performance bottleneck. Cluster 
performance can become bounded by the speed with which one node can 
respond to requests from several others 
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■ Latency. The latency, or time required for a CFS instance to allocate a 
resource controlled by another instance, necessarily includes the private 
network “round trip time” for one or more message exchanges 

CFS minimizes these limitations by delegating control of sub-pools of file 
system resources that are both partitionable and likely to be manipulated by all 
instances, among the instances. 

The first CFS instance to mount a file system becomes its primary instance. A 
file system’s primary instance controls the delegation of certain resources, chief 
among them, allocation units for data and structural files (including the file 
system’s inode list). The primary instance delegates control of these resources 
to other CFS instances as they are required. 

Thus, for example, when a CFS instance must allocate storage space to satisfy an 
application request to append data to a file, it first searches the allocation units 
that are delegated to it for a suitable extent. If it cannot allocate space from an 
allocation unit it controls, it requests delegation of a suitable allocation unit 
from the file system’s primary instance. The primary delegates an additional 
allocation unit to the requester, retrieving it from another instance if necessary. 
Once an allocation unit has been delegated to a CFS instance, it remains under 
control of the instance until the primary instance withdraws its delegation. 

Freeing storage space or inodes is slightly different, because specific file system 
blocks or specific inodes must be freed. If the allocation unit containing the 
space to be freed is delegated to the CFS instance freeing the space, the 
operation is local to the instance. If, however, CFS instance A wishes to free 
space in an allocation unit delegated to instance B, instance A requests that the 
primary instance delegate the allocation unit containing the space to it. The 
primary instance withdraws delegation of the allocation unit from instance B 
and delegates it to instance A, which manipulates structural file records to free 
the space. Delegation remains with instance A thereafter. The change in 
delegation is necessary because freeing space requires both an inode update (to 
indicate that the extent descriptors that map the space are no longer in use) and 
an update to the structural files that describe the state of the allocation unit. 
Both of these must be part of the same transaction, represented by the same 
intent log entry; therefore both must be performed by the same CFS instance. 

A CFS file system’s primary instance maintains an in-memory table of allocation 
unit delegations. Other instances are aware only that they do or do not control 
given allocation units. If the node hosting a file system’s primary CFS instance 
fails, the new primary instance selected during cluster reconfiguration polls 
other instances to ascertain their allocation unit delegations, and uses their 
responses to build a new delegation table. 

Because a CFS file system’s primary instance is a focal point for delegated 
resources, a best practice in clusters that support multiple file systems is to 
distribute file system primary instances among the cluster’s nodes using either 
the fsclustadm setprimary command (to change the primary node while the file 
system is mounted) or the cfsmntadm setprimary command (to change the 
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primary node permanently). This enhances operations in two ways: 

■ Load balancing. Resource delegation-related traffic is distributed among the 
cluster’s nodes 

■ Limited impact of failure. If a cluster node fails, only file systems for which 
the failed node’s CFS instance was the primary instance require re-delegation 

Asynchronously updated resources 

The third type of per-instance resource that CFS controls is that whose per-
instance control structures can be updated asynchronously with the events that 
change their states. Structural files that describe resources in this category 
include: 

■ User quota files. During operation, the CFS instance that controls the master 
quota file delegates the right to allocate quota-controlled space to other 
instances on request. Each CFS instance uses its own quota file to record 
changes in space consumption as it allocates and frees space. The primary 
CFS instance reconciles per-instance quota file contents with the master each 
time a file system is mounted or unmounted, each time quota enforcement is 
enabled or disabled, and whenever the instance that owns the master quota 
file cannot delegate quota-controlled space without exceeding the user or 
group quota. Immediately after reconciliation, all per-instance quota file 
records contain zeros 

■ Current usage tables. These files track the space occupied by filesets. As it 
does with quota files, CFS reconciles them when a file system is mounted or 
unmounted. When an instance increases or decreases the amount of storage 
used by a fileset, it adjusts its own current usage table to reflect the increase 
or decrease in space used by the fileset and triggers background 
reconciliation of the current usage table files with the master 

■ Link count tables. CFS instances use these files to record changes in the 
number of file inodes linked to an extended attribute inode. Each time an 
instance creates or removes a link, it increments or decrements the extended 
attribute inode’s link count in its link count table. A file system’s primary 
instance reconciles per-instance link count table contents with the master 
file whenever the file system is mounted or unmounted, when a snapshot is 
created, and in addition, periodically (approximately every second). When 
reconciliation results in an attribute inode having zero links, CFS marks it for 
removal. Immediately after reconciliation, all per-instance link count tables 
contain zeros 

Administrators can query CFS for information about current space usage 
against quotas, as well as usage of clone space. In the course of responding to 
these queries, CFS reconciles the per-node structural files that contain the 
requested information. 

Reconciling per-node resource control structures removes the compute, I/O, and 
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message passing time from client response latency, while at the same time 
maintaining a cluster-wide view of file system resource consumption that is as 
timely as it needs to be for correct operation. 

Per-instance resource management data structure layout 

CFS organizes per-instance file system metadata as collections of files in a file 
system’s structural fileset. As nodes are added to a cluster and shared file 
systems are mounted on them for the first time, CFS creates the required per-
instance structural files. Figure 6-9 is a slightly more detailed representation of 
the file system structural overview presented in Figure 6-3 on page 119, 
illustrating the Per-Node Object Location Table (PNOLT) structural file that 
contains an object location table for each CFS instance’s per-node structural 
files. Each of these object location tables contains pointers to per-node 
structural files for the CFS instance it represents. 

Figure 6-9 CFS per-instance structural files
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Chapter 7

Inside CFS: transactions 

This chapter includes the following topics:

■ Transactions in information technology

■ Protecting file system metadata integrity against system crashes

■ CFS transactional principles

■ CFS transaction flow

■ CFS transactions and user data

■ CFS intent logs

■ “Crash-proofing” CFS intent logs

An important reason for CFS’s high level of file system integrity is its 
transactional nature. CFS groups all operations that affect a file system’s 
structural integrity, both those resulting from client requests and those 
required for its own internal “housekeeping,” into transactions that are 
guaranteed to leave file system metadata intact, and file system structure 
recoverable if a failure occurs in the midst of execution. Before executing a 
transaction, a CFS instance logs its intent to do so in its intent log structural file 
by recording the metadata changes that make up the transaction in their 
entirety. 

A cluster node may crash with one or more CFS transactions partially complete, 
causing a cluster reconfiguration. If the failed node had been host to a file 
system’s primary CFS instance, another instance assumes the primary role. The 
new primary instance recovers from the failure by replaying the failed 
instance’s intent log, completing any outstanding transactions. 
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Transactions in information technology 
In digital information technology, the term “transaction” describes any set of 
operations that must be performed either in its entirety or not at all. Computer 
system transactions are sometimes described as having ACID properties, 
meaning that they are:

■ Atomic. All operations in a transaction execute to completion, or the net 
effect is that none of them execute at all 

■ Consistent. Data on which a transaction operates is consistent after the 
transaction executes, whether execution is successful (committed) or 
unsuccessful (aborted) 

■ Isolated. The only system states that are observable from outside the 
transaction’s context are the before and after states; intermediate stages in 
its execution are not visible 

■ Durable. Once completion of a transaction has been signaled to its initiator, 
the results persist, even if, for example, the system executing it fails 
immediately afterwards 

The transaction metaphor is apt. In business, a seller delivers something of 
value (goods or services) as does the buyer (money). Unless both deliveries 
occur, the transaction is incomplete (and the consequences are undesirable). 

The same is true for a file system. For example, removing file system blocks 
from the free space pool and linking them to a file’s inode must be performed as 
a transaction. If both operations complete, the transaction is satisfied and the 
file system’s structure is intact. If blocks are removed from the free pool, but not 
linked to a file, they are effectively “lost” (an undesirable consequence). If they 
are not successfully removed from the free space pool, but are linked to a file, 
they may later be removed again, and doubly allocated to another file (a really 
undesirable consequence). 

Ideally, all transactions would complete—sellers would deliver products or 
services, and buyers would pay for and be satisfied with them. But the 
unanticipated happens. Goods are out of stock. Shipments are lost. Services are 
unsatisfactory. In such cases, the outcome is not ideal, but can be satisfactory as 
long as the transaction can be recovered (completed, as for example, goods 
restocked and delivered, lost shipments found, or unsatisfactory services 
performed again correctly) from the event that disturbed it. 
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Again, the same is true of file 
systems. If a transaction cannot 
be completed, for example 
because the computer crashes 
while executing it, the only 
acceptable outcome is to complete 
it eventually. For example, if file 
system blocks are removed from a 
file system’s free space pool but 
the computer crashes before they 
have been linked to a file, the 
blocks should not be lost. When 
the computer restarts, the file 
system should “remember” that 
the blocks were removed from the 
free space pool, and link them to the file. 

As the example suggests, the most frequent cause of file system transaction 
failure to complete (and the greatest challenge to file system designers) is a 
crash of the computer that hosts the file system at an instant when one or more 
transactions are partially complete. 

Protecting file system metadata integrity against 
system crashes 

File system transactions are essentially sequences of I/O operations that modify 
structural metadata. File systems must protect against the possible 
consequences of system crashes that occur during these sequences of 
operations. They do this in a variety of ways. One of the most common, which is 
used by CFS, is to maintain a persistent journal or log, that records the file 
system’s intent to perform the operations that make up a transaction before it 
executes them. 

CFS logs are aptly called intent logs, since they record CFS instances’ intentions 
to execute transactions. A CFS instance records a log entry that describes an 
entire transaction before executing any of the metadata updates that make up 
the transaction. 

Each CFS instance maintains an independent intent log in a structural file for 
each file system that it mounts. A file system’s primary CFS instance allocates 
an intent log file when it mounts the file system for the first time. CFS 
determines the size of this intent log based on file system size. As other nodes 
mount the file system for the first time, CFS creates intent logs for them, with a 
size equal to that of the current size of the primary instance’s log. 

Administrators can adjust the sizes of individual intent logs in the range of 16-
256 megabytes. When an intent log fills with uncompleted transactions, file 

Administrative hint 19

To improve performance, an 
administrator can delay the logging of 
metadata updates briefly by mounting a 
file system in delaylog mode. The 
delaylog mode is the default CFS 
mounting mode. To force immediate 
logging of every metadata update as 
described in this section, an 
administrator specifies the log option 
when mounting a file system. 
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system operations stall until some transactions complete and log space can be 
freed. For this reason, larger intent logs are recommended for cluster nodes in 
which metadata activity (file creations, appends, renames, moves, and deletions) 
is frequent; nodes whose predominant file I/O activity is reading existing files 
can usually make do with smaller logs. 

CFS transactional principles 
CFS performs all operations that alter a file system’s structural metadata as 
transactions. The design of its data structures and algorithms follows three 
principles that facilitate the structuring of file system updates as transactions, 
and make CFS file systems particularly resilient to the complex failure scenarios 
that can occur in clusters: 

■ Resource control. CFS instances only execute transactions that affect 
resources that they control. They gain control of resources either by locking 
them, as with file inodes, or by delegation from the primary instance, as with 
allocation units. This principle makes CFS instances’ intent logs independent 
of each other, which in turn makes it possible to recover from the failure of 
an instance solely by replaying its intent log

For each type of transaction, a CFS instance either requests control of the 
required resources from other instances, or requests that the instance that 
controls the required resources execute the transaction on its behalf. 
For example, the first time a CFS instance writes data to a newly-created file, 
it locks the file’s inode and executes the transaction itself. Later, if another 
instance appends data to the file, it may request that the instance controlling 
the file’s inode perform the append on its behalf.

CFS instances gain control of some resources, such as inodes, by means of 
GLM APIs (Global Lock Manager, discussed in Chapter 8 on page 147); others, 
such as allocation units, they control by requesting delegation from the pri-
mary instance as described on page 133

■ Idempotency. CFS metadata structures are designed so that every operation 
that can be part of a file system transaction is idempotent, meaning that the 
result is the same if it is executed twice (or more). This principle allows CFS to 
recover after a node crash by re-executing in their entirety all transactions in 
the failed cluster node’s intent log that are not marked as complete, even 
though some of the operations within them may have been executed prior to 
the crash 

■ Robust log format. Storage devices generally do not guarantee to complete 
multi-sector write operations that are in progress when a power failure 
occurs. CFS therefore identifies every intent log sector it writes with a 
monotonically increasing sector sequence number. During recovery, it uses 
the sequence number to identify the newest transaction in the intent log file. 
In addition, every transaction record includes both a transaction sequence 
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number and information that describes the totality of the transaction. During 
recovery, CFS uses this information to replay transactions in proper 
sequence and to avoid replaying partially recorded transactions 

CFS transaction flow
CFS transactions are logged and executed in an order that guarantees file 
system metadata recoverability if a crash occurs during transaction execution. 
Unless explicitly specified by the file system’s mount mode, or in an 
application’s I/O request, completion of a CFS transaction does not imply that 
application data has been written persistently. For example, when an 
application requests that data be appended to a file, the typical sequence of CFS 

operations is:19 

1) Resource reservation. The CFS instance identifies free space in an alloca-
tion unit delegated to it (or if necessary, requests delegation of an additional 
allocation unit from the primary instance). In addition, it locks access to the 
file’s inode to prevent other instances from executing transactions that 
involve it 

2) Block allocation. The CFS instance identifies the required number of free 
file system blocks from allocation units delegated to it and updates in-mem-
ory allocation unit metadata to indicate that the blocks are no longer free, 
preserving enough information to undo the operation if necessary 

3) Block assignment. The CFS instance updates the cached image of the file’s 
inode by linking the newly-allocated blocks to an extent descriptor, again 
preserving enough information to restore the inode’s prior state if the trans-
action must be undone. (The file’s time of last modification are updated in 
the cached inode image as well.) If no suitable extent descriptor is available, 
the instance allocates an indirect extent map for this purpose and links it to 
the inode 

4) Intent log write. The CFS instance constructs an intent log record, assigns a 
transaction number, and records the metadata update operations that make 
up the transaction in its intent log. At this point, the transaction is said to be 
committed, and can no longer be undone 

5) CFS transaction completion. Once its record has been recorded in the intent 
log, the CFS transaction is complete. At this point, neither the metadata 
updates that make up the transaction nor the user data is guaranteed to 
have been written persistently 

6) Data movement. The CFS instance allocates pages from the operating sys-
tem page cache and copies the appended data from the application’s buffer 

19. This simplified description represents CFS operation when the log mount option is in 
effect and when the application I/O request does not specify that data be written 
directly from its buffer. Direct I/O, the delaylog (default) and tmplog mount options, 
and the sync and dsync write options result in slightly different behavior. 
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into them. Once this is done, the application may reuse its buffer for other 
purposes 

7) Completion signal and data flush. Once the CFS instance has transferred 
the application’s data to page buffers, further behavior depends on whether 
the application request specified that data was to be written synchronously. 
If it did, the instance schedules the data to be written to disk and waits for 
the write to complete before signaling request completion to the application. 
If synchronous writing was not specified, the instance signals completion 
immediately, and writes the application data “lazily” at a later time 

8) Metadata update completion. When the metadata updates that make up 
the transaction have been written to disk, the CFS instance writes a “trans-
action done” record containing the transaction’s sequence number in the 
intent log. It uses this record during recovery to help determine which trans-
action log records need to be replayed 

The cluster node hosting a CFS instance may crash at any point in this sequence 
of operations. If a crash occurs prior to step 4 of this procedure, there is no 
transaction, because nothing has been written in the intent log, nor have any 
persistent metadata structures or user data been modified. If a crash occurs at 
any time between steps 4 and 7, CFS recovers by reading the transaction record 
from the intent log and repeating the operations it contains. 

If the application specified a synchronous append, and had received notification 
that its request was complete before the crash, the appended data is on disk. 
Otherwise, CFS blocks applications from reading the contents of the newly 
allocated blocks until they have been successfully written by an application. 

If crash occurs after step 8, the entire transaction is reflected in the file system’s 
on-disk metadata. If metadata updates from prior transactions had not been 
written to disk at the time of the crash, the transaction must still be replayed 
during recovery, because restoring a CFS file system to a consistent state after a 
crash requires that transactions be replayed in the order of their original 
occurrence. 

CFS transactions and user data 
CFS transactions are designed to preserve the structure of a file system; in 
essence to maintain the correctness of file system metadata. Completion of a 
CFS transaction does not necessarily guarantee that when CFS signals an 
application that its write request is complete, metadata and file data updates 
have been written to disk. Moreover, the default file system mount option for 
logging permits CFS to delay logging for a few seconds in order to coalesce 
multiple intent log writes. 

Administrators and application programs can employ a combination of CFS 
mount options and POSIX caching advisories to specify file data and metadata 
persistence guarantees. Table 7-1 summarizes the effect of the CFS delaylog and 
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log mount options and the POSIX O_SYNC and O_DSYNC caching advisories on 
data and metadata persistence.

By default, CFS caches both file data and metadata and intent log records to 
optimize performance, and writes them to disk “lazily,” after it has signaled 
write completion to applications. It flushes metadata updates to its intent log 
every few seconds, but in general, if default mount and write options are in 
effect, file data, metadata, and the intent log record that describes the write may 
still be in cache when an application receives notification that its write request 
is complete. 

This behavior allows CFS to 
schedule disk writes optimally, 
and is suitable for many 
applications. For some, however, 
guaranteeing that intent log 
records have been written and 
that on-disk metadata and/or file 
data are up to date have higher 
priority than file I/O 
performance. If for whatever 
reason, application code cannot 
be modified, for example, by adding fsync() calls at critical points, an 
administrator can guarantee that log records are persistent before applications 
progress specifying the log option when mounting a file system. 

Table 7-1 CFS Intent log, metadata, and data persistence at the time of 
request completion

If the mount 
option is →
…and the file 
cache advisory 
option is ↓

delaylog (default) or tmplog 
mount option

log mount option

Asynchronous 
(default)

Log record: may still be in 
cache
Metadata: may still be in cache 
File data: may still be in cache 

Log record: on disk
Metadata: may still be in 
cache
File data: may still be in cache 

O_SYNC Log record: on disk
Metadata: on disk 
File data: on disk

Log record: on disk
Metadata: on disk
File data: on disk

O_DSYNC Log record: on disk
Metadata: may still be in cache 
(non-critical metadata only) 
File data: written to disk

Log record: on disk
Metadata: on disk
File data: on disk

 Administrative hint 20

An administrator can specify the mount 
option convosync=delay to override 
application programs O_SYNC and 
O_DSYNC cache advisories. This may 
improve performance, but at the risk of 
data loss in the event of a system crash.
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Some applications make synchronous file I/O requests. For those that do not, if 
source code is available for modification, the POSIX file control function can be 
inserted to set the write mode for critical files to either: 

■ Synchronous (O_SYNC). With this option, both metadata and file data disk 
writes are complete when CFS signals completion of the application request 

■ Data synchronous (O_DSYNC). With this option, file data disk writes are 
complete, but metadata may still be in cache when CFS signals completion of 
the application request 

Applications can use either or both of these options selectively to ensure that 
updates to critical files are written synchronously, and allow less critical 
updates that can be recovered at application level to be written asynchronously 
for improved application performance. 

Alternatively, applications can use explicit POSIX fdatasync() or fsync() system 
calls to cause CFS to flush file data only or both file data and metadata to disk at 
key points during execution. When a CFS instance signals completion of 
fdatasync() and fsync() system calls, all file and/or metadata has been written to 
disk. 

CFS intent logs
Each CFS file system contains an intent log structural file for each instance that 
mounts it. Intent logs are contiguous, and are written circularly—a CFS instance 
records transactions sequentially until the end of the log is reached, and then 
continues recording from the beginning. When a file system’s I/O load includes 
frequent metadata updates, an intent log may fill. Continued recording would 
overwrite transaction records for which some metadata updates were not yet 
written to disk. When this occurs, CFS delays further recording (and 
consequently, delays signaling completion to applications) until sufficient 
intent log space has been ‘freed’ by writing older transaction records to disk. 
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Figure 7-1 CFS intent log structure

If the performance of an update-
intensive application becomes 
sluggish, an administrator can 
increase the size of the intent log 
to enable more transaction 
records to be buffered. Different 
CFS instances’ intent logs may be 
of different sizes. For example, if 
an application on one node is 
adding files to a file system 
frequently (transaction-intensive) 
and another is reading the files to 
report on their contents (largely 
non-transactional), an 
administrator might increase the 
intent log size for the former instance and leave the latter at its default value. 

CFS intent logs are contiguous, that is, they occupy consecutively numbered file 
system blocks, so with rare exceptions, each write to an intent log results in a 
single disk write. This minimizes the impact of intent log writes on application 
performance. In multi-volume file systems, administrators can place intent logs 
on separate volumes from user data; by reducing seeking, this further minimizes 
the impact of intent log writes on application I/O performance. Flash-based 
solid state disks might seem a good choice for intent log volumes, but because 
the number of writes they can sustain before wearing out is limited, the high 
write frequency of intent logs may make them less than optimal for this 
purpose. 

 Administrative hint 21

An administrator uses the logsize 
option of the fsadm console command 
to alter the size of a CFS instance’s 
intent log. Larger intent logs take longer 
to replay, and can therefore elongate 
crash recovery times. 

The logvol option of the fsadm 
command can be used to place the 
intent log on a specific volume in the 
file system’s VSET.
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“Crash-proofing” CFS intent logs 
The basic purpose of CFS intent logs is to enable rapid recovery from crashes, so 
intent logs themselves must be “crash-proof.” In particular, during recovery, 
CFS must be able to identify unambiguously: 

■ Log boundaries. The logical beginning and end of a circular intent log 

■ Transaction status. For each logged transaction, whether the transaction is 
“done” (that is, whether all metadata updates have been written to persistent 
disk storage) 

■ Transaction content. The complete set of metadata operations that make up 
each logged transaction 

■ Transaction order. The order in which logged transactions were originally 
executed

These must all be unambiguously identifiable from an intent log, no matter what 
was occurring at the instant of a crash. Four structural features of CFS intent 
logs make this possible: 

■ Disk sector sequence. Each sector of a CFS intent log includes a 
monotonically increasing sector sequence number. Sector sequence numbers 
enable CFS recovery to determine the most recently written intent log sector, 
even if a system crash results in a disk write failure 

■ Transaction sequence. Each logged transaction includes a monotonically 
increasing transaction sequence number. These numbers enable CFS 
recovery to replay transactions in order of their original execution 

■ Transaction content. Each intent log disk sector contains information about 
only one transaction. Information in each sector of a transaction record 
enables CFS recovery to determine whether the log contains the complete 
transaction record, or was truncated, for example because it was being 
written at the instant of the crash. CFS does not recover incompletely logged 
transactions 

■ Transaction state. When a transaction’s metadata updates have been 
completely written to disk, CFS writes a “transaction done” intent log entry 
signifying that the transaction’s metadata updates are persistent. CFS 
recovery uses these records to identify the oldest logged transaction whose 
metadata updates may not be completely persistent. During recovery, it 
replays that and all newer transaction records

Thus, as long as the volume containing an intent log structural file survives a 
system crash intact, CFS recovery can interpret the log’s contents and 
reconstruct transactions that may have been “in flight” at the time of the crash. 
Replaying the idempotent operations that make up these transactions 
guarantees the structural integrity of the recovered file system. 



Chapter 8

Inside CFS: the Global Lock 
Manager (GLM)

This chapter includes the following topics:

■ General requirements for a lock manager

■ GLM architecture

■ GLM operation

Any modern file system must coordinate multiple applications’ concurrent 
attempts to access key resources, in order to prevent the applications, or indeed, 
the file system itself, from corrupting data or delivering incorrect responses to 
application requests. For example, if Application A writes data to multiple file 
blocks with a single request and Application B reads the same file blocks with a 
single request at around the same time, Application B may retrieve either the 
pre-write or post-write contents of the blocks, but should not ever see part of the 
data written by Application A and part of the blocks’ prior contents. 

Correct behavior in the presence of multiple applications is particularly 
important for CFS, which is highly likely to be employed in environments in 
which multiple applications are active on multiple cluster nodes. All CFS 
instances on all cluster nodes must respect file system resources that are locked 
to prevent concurrent access. 

Like most file systems, CFS uses “locks”—in-memory data structures—to 
coordinate access to resources. A lock indicates that a resource is in use by a file 
system execution thread, and places restrictions on whether or how other 
threads may use it. CFS locks must be visible and respected throughout the 
cluster. The CFS component that manages resource locking across a cluster is 
called the Global Lock Manager (GLM). 
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General requirements for a lock manager 
Controlling access to file system resources is simple to describe, but complex to 
implement. Within CFS, for example, execution threads must observe a protocol 
when they contend for shared or exclusive access to a file system’s resources. 
The protocol is a “gentlemen’s agreement” among trusted entities, in the sense 
that it is not enforced by an external agency. If all CFS threads do not strictly 
adhere to the protocol, orderly control over resources breaks down. 

The basic requirements for any file system locking protocol are: 

■ Unambiguous resource identification. The resources to be controlled must 
have unique names. To control access to a directory, a file’s inode, or a range 
of byte addresses within a file, a file system must be able to identify the 
resources uniquely 

■ Deadlock prevention. Deadlocks occur when two or more execution threads 
wait indefinitely for events that will never happen. One simple form of 
deadlock, illustrated in Figure 8-1, occurs when a thread (Thread 1) controls 
one resource (Resource A) and attempts to gain control of a second resource 
(Resource B), which another thread (Thread 2) already controls. Meanwhile, 
Thread 2 is attempting to gain control of Resource A. The result is that both 
threads wait indefinitely. Several solutions to the deadlock problem are 
known; a lock management protocol must adopt one of them 

Figure 8-1 Classic deadlock scenario

■ Range locking. In some cases, for example updating file metadata, blocking 
access to the entire file by locking its inode is appropriate. In others, 
particularly those in which many application threads update small amounts 
of data within large files, locking entire files would serialize application 
execution to an intolerable degree. Lock managers should include 
mechanisms for locking a range of bytes within a file rather than the entire 
file 
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■ Locking levels. In some cases, as for example when it is updating inode 
metadata, a thread requires exclusive access to a resource. In others, 
however, exclusive access is unnecessarily restrictive and the serialization it 
causes can impact performance adversely. For example, a CFS execution 
thread that is listing directory contents can share access to directories with 
other threads as long as the directories’ contents do not change. Thus, lock 
managers must generally include both exclusive and shared locking 
capabilities or levels 

Cluster lock manager requirements 

GLM must present the same view of lock state to all of a cluster’s CFS instances 
at all times. Whenever a CFS execution thread gains or relinquishes control of a 
resource, its action must be reflected in all CFS instances’ subsequent attempts 
to gain or relinquish control of that and other related resources. This inherently 
requires that GLM instances communicate some amount of state change 
information with each other. Thus, in addition to the basic requirements for any 
lock manager, CFS has three additional ones: 

■ Message overhead sensitivity. In single-host file systems, resource locking 
imposes relatively little overhead because lock request “messages” amount to 
at most a few hundred processor instructions. In a cluster, however, a 
message exchange between nodes can take hundreds of microseconds. 
Minimizing a lock management protocol’s inter-node message overhead is 
therefore an important requirement 

■ Recoverability. A key part of the CFS value proposition is resiliency—
continued accessibility to file data when, for example, a cluster node fails. 
From a resource locking point of view, if a node fails, CFS instances on other 
nodes must dispose of the failed instance’s locks appropriately, and adjust 
the cluster-wide view of resource lock state so that applications can continue 
to access file systems with no loss of data or file system structural integrity 

■ Load balancing. Ideally, the messaging, processing, and memory burden of 
managing locks should be distributed across a cluster, partly so that ability to 
manage locks scales along with other file system properties, but also to 
facilitate recovery from node failure by minimizing the complexity of lock 
recovery 

GLM architecture 
The Global Lock Manager (GLM) cooperates with other CFS components to 
present a consistent view of the lock state throughout a cluster, even when 
member nodes are added or removed. Figure 8-2 illustrates the overall GLM 
architecture. As the figure suggests, the GLM service is distributed—an instance 
runs on each cluster node. Collectively, the instances provide a distributed 
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master locking service—each cluster node is responsible for mastering locks for 
a unique part of the system’s lock name space (the set of all possible lockable 
resource names). 

Figure 8-2 Global Lock Manager (GLM) architecture

As Figure 8-2 suggests, each GLM instance has two executable components: 

■ Master. An instance’s master component manages an in-memory database of 
existing locks for which the instance is the master. A GLM master component 
grants locks to its own proxy component and to other nodes that request 
control over resources for which it is responsible 

■ Proxy. When a CFS execution thread first requests control of a resource, GLM 
forwards the request to the resource’s master. In return it receives a 
delegation that allows it to act as the master’s proxy, and grant locks of equal 
or less-restrictive level to other threads 

The GLM name space and distributed lock mastering 

When a CFS execution thread requests a lock on a resource, GLM computes the 
resource’s 32-byte lock name using an algorithm guaranteed to produce a 
unique name for each possible file system resource. It hashes the resulting lock 
name to produce an index into a table of node ID numbers. The node ID in the 
indexed table cell designates the GLM master for the resource.
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Figure 8-3 Determining the master node for a GLM lock

When it begins to execute, GLM builds a lock name hash table based on cluster 
membership. The table is typically between 100 and 1,000 times larger than the 
number of nodes in a cluster, so each node ID appears multiple times in the 
table. 

The GLM locking hierarchy 

Cluster-wide resource locking inherently requires that messages be passed 
among nodes, increasing latency, or time required to grant and release locks. 
One objective of any distributed lock manager design must therefore be to 
minimize the number of messages passed among nodes. In furtherance of this 
objective, GLM uses a two-level locking hierarchy consisting of: 

■ Node grants. When a CFS execution thread requests a shared or exclusive 
lock on a resource, its local GLM instance requests that the resource’s master 
issue a node grant for the resource. If there no conflicts, the GLM master 
issues the node grant, making the requesting node’s GLM instance a proxy 
for the resource. The proxy is empowered to grant non-conflicting locks to 
CFS execution threads on its node 

■ Thread grants. A GLM instance acting as proxy for a resource can issue non-
conflicting thread grants for locks of equal or less-restrictive level than its 
node grant to CFS execution threads on its node without exchanging 
messages with other nodes 
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Figure 8-4 illustrates the steps in issuing node and thread lock grants. 

Figure 8-4 Node and thread lock grants

1) A CFS execution thread requests a lock from its local GLM instance 
2) The local GLM instance computes the master node ID for the resource and 

requests a node grant from its GLM instance 

3) The master GLM instance for the resource issues a node grant to the 
requesting instance 

4) The requesting GLM instance issues a thread grant to the requesting CFS 
execution thread 

5) Another CFS thread on the same cluster node requests a non-conflicting 
lock on the resource 

6) The local GLM instance grants the lock without referring to the resource’s 
master GLM instance 

A node grant on a resource effectively delegates proxy authority to grant locks 
requested by CFS execution threads to the GLM instance on the node where the 
requests are made. As long as a node holds a node grant, its GLM instance 
manages local lock requests that are consistent with the node grant without 
communicating with other nodes. When a different node requests a conflicting 
lock from the resource’s master node, the resource master’s GLM sends revoke 
messages to all proxies that hold conflicting node grants on the resource. The 
proxies block further lock requests and wait for threads that hold thread grants 
on the resource to release them. When all thread grants have been released, the 
proxy sends a release message to the resource’s master, which can then grant 
the requested new lock. 
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GLM lock levels 

CFS execution threads request control of resources at one of three levels: 

■ Shared. The requesting thread requires that the resource remain stable (not 
change), but is content to share access to it with other threads that also do 
not change it. GLM permits any number of concurrent shared locks on a 
resource 

■ Upgradable. The requesting thread can share access to the resource, but 
reserves the right to request exclusive access at a later time. GLM permits 
any number of concurrent shared locks plus one upgradable lock on a 
resource. The upgradable lock level permits a thread to prevent a resource 
from being modified, while deferring prevention of other threads from 
reading the resource until it actually requires exclusive access 

■ Exclusive. The requesting thread requires exclusive access to the resource, 
usually to update it, for example, to modify file metadata in an inode or to 
write a range of file blocks. As the name implies, an exclusive lock cannot co-
exist with any other locks 

GLM-CFS execution thread collaboration 

Like any lock management scheme, GLM must avoid “deadlocks”—situations 
such as that illustrated in Figure 8-1 on page 148, in which two or more 
execution threads vie for control of resources held by other threads. Several 
techniques for avoiding deadlocks are known, including lock timeouts and 
analysis of lock requests against existing locks. One of the most straightforward 
techniques, which is used by CFS, is the cooperative client. CFS execution 
threads are designed to order their lock requests so as to avoid most situations 
that might result in deadlocks. For situations in which deadlocks would be 
possible, GLM includes a trylock mechanism that allows an execution thread to 
test whether a lock can be granted and request the grant in a single operation. 

Most requests to GLM are synchronous; GLM blocks execution of the requesting 
thread until it has satisfied the request. In the scenario depicted in Figure 8-1, 
this would cause both CFS execution threads to wait indefinitely for the release 
of resources locked by the other thread. CFS execution threads use the trylock 
mechanism to avoid situations like this. 

A GLM trylock is a conditional request for a thread grant on a resource. If no 
existing locks conflict with the request, the proxy grants the lock. If the request 
does conflict with an existing lock, the proxy responds to the calling thread that 
the resource is “busy,” rather than forcing the caller to wait for the lock to 
become grantable, as would be the case with a normal lock request. 

Thus, referring to the example of Figure 8-1, Thread 1 might use a trylock to 
request control of Resource B. On discovering that its request had failed 
because Resource B is already locked by Thread 2, Thread 1 might release its 
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lock on Resource A, which would free Thread 2 to obtain the lock and continue 
executing to completion. 

CFS execution threads request trylocks in one of three “strengths:” 

■ Weak. The proxy grants the lock if it can do so without exchanging messages 
with the resource master, otherwise it responds to the requester that the 
resource is busy. Weak trylocks are sometimes used by CFS internal 
background threads operating asynchronously with threads that execute 
application requests 

■ Semi-strong. The proxy exchanges messages with the resource master if 
necessary. The master grants the lock if it can do so without revoking locks 
held by other nodes; otherwise it responds that the resource is busy 

■ Strong. The proxy exchanges messages with the resource master if 
necessary. The master revokes conflicting locks if possible, and grants the 
lock as long as no conflicting locks remain in effect. CFS typically uses strong 
trylocks when executing application requests 

GLM trylocks are a simple and useful method for avoiding deadlocks, but they 
depend on proper behavior by CFS execution threads. GLM is thus not a general-
purpose distributed lock manager that could be used by arbitrary applications 
whose proper behavior cannot be guaranteed. Largely for this reason, the GLM 
API is not exposed outside of CFS. 

Minimizing GLM message traffic 

GLM includes several mechanisms that minimize lock-related message traffic 
among cluster nodes. Two of these—node grants and trylocks—have already 
been discussed. Node grants effectively delegate locking authority within a 
single node to the GLM instance on the node. Trylocks, particularly weak 
trylocks, enhance the delegation mechanism by making it possible for execution 
threads to avoid intra-node deadlocks without inter-node message exchanges. 
GLM masterless locks are a third mechanism for minimizing lock-related inter-
node message traffic. 

A CFS instance requesting a lock on a resource can specify that the lock be 
masterless as long as it can guarantee that it will be the only instance to request 
locks on the resource. When it holds a masterless lock on a resource, a GLM 
proxy may grant on its own authority locks for which it would ordinarily have to 
consult the resource master. 

For example, a CFS instance must hold at least a shared hlock (hold lock) on a 
file’s inode before it is permitted to request an rwlock (read-write lock) on the 
inode. A CFS instance that holds an exclusive hlock on an node can request 
thread grants for masterless rwlocks. There is no need to communicate with the 
resource’s GLM master because no other node can request an rwlock unless it 
holds an hlock, which cannot be the case, because the local node’s hlock is 
exclusive. 
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A lock can remain masterless as long as no threads on other nodes request 
access to the resource. When this is no longer the case (for example, if the CFS 
instance holding an exclusive hlock downgrades it to shared), threads that hold 
masterless locks affected by the downgrade must request that GLM normalize 
them, allowing other nodes to access to the resources. 

Masterless locks are another example of cooperative client behavior. CFS 
execution threads only request masterless locks on resources that they “know” 
other nodes will attempt to access. Moreover, threads that hold masterless locks 
must normalize them when the conditions that make them masterless are no 
longer in effect; otherwise, resources could remain inaccessible to other threads 
indefinitely. 

Block locks 

For certain types of resources, it is highly probable that a single CFS instance 
will attempt to lock several of them. For example, when creating new files, an 
instance often allocates (and locks) consecutively numbered inodes from a block 
delegated to it by the file system’s primary instance. 

The GLM block lock is a mechanism for making locks on similar resources such 
as inodes masterless. When an instance expects to be the exclusive user of 
multiple resources of similar type, such as consecutively numbered inodes, it 
creates a block name that uniquely identifies the resources, and includes it in 
each of its requests for locks on them. Internally, GLM attempts to obtain an 
exclusive lock on the block name when it first encounters it. If it succeeds, each 
lock request that contains the block name can be masterless, eliminating the 
need for GLM to communicate with other instances before granting it. For 
example, as an instance allocates free inodes when creating files, it includes the 
block name that identifies the block of consecutive inode numbers delegated to 
it within its lock request. If the first block lock request succeeds, CFS can make 
all inode locks from this block masterless. 

Range locks 

The primary CFS resource to which GLM locks apply is the file inode. Before 
performing any operation that affects a file’s inode, a CFS execution thread 
secures a hold lock (h-lock) on the inode. Threads secure additional locks in 
order to read or write file data. 

For single-writer applications, such as those that write files sequentially, 
locking an entire file while data is written to it is adequate. Some applications, 
however, such as multi-threaded business transaction processors, manipulate 
relatively small records within a few large CFS files concurrently. Locking an 
entire file each time one of these applications updated a record would serialize 
their execution to an unacceptable degree. 

For the most part, multi-threaded applications’ threads do not interfere with 
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each other—two threads that update non-overlapping records in a file 
simultaneously can execute concurrently without corrupting data. But it is 
possible for two or more threads of such an application to attempt to update 
records in the same file block at the same time. To prevent data corruption (for 
example, wrong record written last, or part of one update and part of another in 
the resulting record) when this happens, a thread must have exclusive access to 
a record for the duration of its update. 

GLM range locks allow multiple execution threads to access a file concurrently, 
but they limit access to specific file blocks while threads update or read them. 
Range locks control access to specific ranges of file block addresses. As with all 
locks, CFS instances compute range lock names using an algorithm that 
guarantees uniqueness. Range locks are somewhat more complicated than 
ordinary locks, however, in that ranges of file blocks can overlap; for example, it 
is possible for one CFS execution thread to request a lock on file blocks 1-10, and 
another to request a lock on blocks 6-15 of the same file. Depending on the lock 
level requested, the two may be incompatible. 

In most respects, range locks behave identically to ordinary locks—they can be 
taken at node or thread level, they are subject to the same revocation rules, and 
trylocks for ranges of file blocks are supported. When a thread requests a 
“greedy” range lock, however, GLM enlarges the range to a maximum value if 
possible. This gives the thread control of a large range of the file unless another 
thread requests it. 

GLM operation 
When a cluster node boots, GLM starts executing before CFS. Upon starting, CFS 
instances register with GLM. GLM instances use a shared port within the VCS 
Group Atomic Broadcast (GAB) protocol to communicate with each other. 

To lock a resource, a CFS execution thread first creates, or initializes, the lock. 
Next, it typically requests a thread grant. GLM always grants thread locks and 
upgrade requests for existing locks as long as they do not create conflicts. 
Typically, GLM calls are thread-synchronous—a CFS execution thread 
requesting a GLM service (upgrade, downgrade, and unlock) waits for GLM to 
perform the service before continuing to execute. GLM does support 
asynchronous grant requests, which CFS uses, for example, to request multiple 
grants concurrently. GLM assumes, however, that its CFS clients are well-
behaved in the sense that they request lock services in the proper order—
initialize, grant, upgrade or downgrade, and release. 

A GLM node grant for a resource remains in effect until both of the following 
occur: 

■ Revocation. GLM requests revocation of the grant because a CFS execution 
thread on another node has requested a conflicting thread grant on the 
resource 
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■ Release. All CFS execution threads holding thread grants on the resource 
release them 

In this respect as well, GLM assumes that its clients are well-behaved—that they 
do not hold thread grants indefinitely, but release them when they no longer 
need to control the resources. 

GLM locks occupy memory; once a CFS execution thread no longer requires a 
resource, and has released all data memory associated with the lock, it usually 
deletes, or deinitializes the lock. This minimizes the amount of memory 
consumed by GLM instances’ lock databases, as well as the amount of lock 
database searching required when a CFS execution thread requests a grant. 

GLM and cluster membership changes 

Because GLM distributes lock mastership among all cluster nodes, changes in 
cluster membership may require that some locks be remastered. Cluster 
membership may change because of: 

■ Node failure. Because each GLM instance keeps its database of lock 
information in local memory, failure of a node causes its lock information to 
be lost. In particular, node locks granted to other nodes by a failed node must 
be recovered and a new master assigned 

■ Node addition. No lock information is lost in this case, but because lock 
mastership is a function of lock name and cluster membership, changes in 
cluster membership may result in changes in mastership for locks that exist 
at the time of membership change 

A GLM instance’s lock database contains two types of information related to 
instances on other nodes: 

■ Mastership. Locks for which the instance is the master, and which have been 
granted to instances on other nodes 

■ Proxy. Node grants that have been issued to the instance for resources 
mastered by other instances 

When a cluster node fails, GLM must properly reconstruct its GLM information. 

Node grants for which the failed node itself is master only affect execution 
threads on the failed node. GLM does not recover locks contained completely 
within a failed node; they are lost, along with the execution threads that created 
them. 

A node failure causes a cluster reconfiguration, during which VCS suspends 
interactions between nodes briefly while the remaining nodes construct a new 
cluster. When reconfiguration is complete, each node’s GAB instance sends a 
message to its local CFS instance containing the new cluster membership and an 
instruction to restart. During its restart processing, CFS invokes GLM’s restart 
API. 
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GLM must recover relevant lock information lost from the failed node’s 
memory. Each instance enters a recovery phase during which it blocks incoming 
lock requests. All instances send their hash tables to a designated recovery 
manager instance. The recovery manager computes a new hash table for the 
cluster and returns it to other instances. 

Each GLM instance compares its original (pre-failure) hash table with the new 
(post-failure) table sent by the recovery manager to determine which of its locks 
must be remastered. Locks must be remastered if the new hash table maps their 
names to different masters. For each such lock, GLM requests a grant from the 
new master. Each GLM instance informs the recovery manager when it 
completes remastering. When all instances have reported, the recovery 
manager directs them to resume normal operation. 

GLM recovery after a cluster reconfiguration is functionally transparent to CFS 
execution threads, but lock requests made during recovery do not complete until 
recovery is finished. 

Clusters also reconfigure when nodes are added. Adding a node causes a cluster 
reconfiguration during which locking is inhibited while all nodes converge on a 
common view of the enlarged cluster. When the reconfiguration completes, the 
CFS instance on the new node starts and mounts file systems, and GLM 
instances on all nodes reinitialize themselves, using the new node population to 
create new hash tables for remastering and subsequent use. From that point on, 
GLM operates as it did prior to the reconfiguration, including the new node in its 
lock mastership calculations. 

Ghost locks 

CFS instances sometimes request that other instances perform tasks on their 
behalf. For example, an instance (the updater instance) may have to update the 
access time of a file that is owned by another instance (the file owner instance). 
Rather than taking ownership of the inode, the updater instance requests that 
the file owner instance update the file’s metadata on its behalf. 

The updater instance locks the file’s inode before making its request. If the 
updater instance’s node fails before the file owner instance has completed the 
metadata update, the file owner instance requests a ghost lock on the inode, so 
that during recovery GLM will transfer the lock held by the failed updater 
instance to the file owner instance. 

A ghost lock request made by a CFS instance informs GLM that the instance is 
using a resource on which a failed instance had held the regular lock. The 
request causes GLM recovery to transfer ownership of the regular lock so that 
the node using the resource can complete its task. 

In the example of the preceding paragraph, if the updater instance’s node fails 
before the file owner instance has finished updating file metadata, the cluster 
reconfigures, and the file owner instance makes a ghost lock request for the 
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file’s inode. During recovery, the GLM instance fires the ghost lock (converts it 
to regular lock held by the file owner instance). No new lock is created. 



160 Inside CFS: the Global Lock Manager (GLM)
GLM operation



Chapter 9

Inside CFS: I/O request flow

This chapter includes the following topics:

■ Creating a CFS file

■ Appending data to a CFS file

■ Deleting a CFS file

■ CFS Storage Checkpoint structure

■ Creating a CFS Storage Checkpoint

■ Writing data while a Storage Checkpoint is active

■ Deleting a CFS Storage Checkpoint

While outwardly presenting a relatively simple POSIX interface to applications, 
CFS is internally complex, because it must maintain POSIX semantics with an 
arbitrarily large number of clients on multiple cluster nodes. This section 
presents examples of how CFS performs some basic I/O operations to illustrate 
CFS’s internal complexity. The examples are simplified, particularly in that they 
do not show GLM lock requests and grants, only the operations enabled by 
successful GLM lock grants. 
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Creating a CFS file 
Figure 9-1 shows a simplified timeline for the CFS create file operation. The 
horizontal lines in the figure represent activities that can occur asynchronously. 
The arrows connecting the boxes represent dependencies on preceding events. 

Figure 9-1 Creating a CFS file 

The first step in creating a new file is to verify that its name is unique in the file 
system name space. CFS traverses the directory hierarchy until it locates the 
directory that would contain the file’s name if it existed. If the name is indeed 
unique (does not already exist), CFS creates a transaction record in memory. 
Next, it allocates an unused inode and populates it with information about the 
file, such as its owner and group, and timestamps, then CFS creates an in-
memory directory entry for the new file. 

CFS then commits the transaction. (If the node crashes and its intent log is 
replayed during recovery, only transactions marked as ‘committed’ are re-
executed). 

If the file system is mounted with the log mount option, CFS delays signaling 
completion to the application until it has written the transaction record to disk. 
If either of the delaylog or tmplog mount options are in effect, however, the 
intent log disk write may be deferred. CFS then signals the application that its 
request is complete. Once the intent log record has been written to disk, CFS 
performs two additional actions asynchronously to complete the file creation: 

■ Directory write. CFS writes the directory file containing the name and inode 
number of the newly created file 

■ inode update. CFS writes the newly created file’s inode to disk storage 
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Appending data to a CFS file 
Figure 9-2 represents the simplest sequence of actions in executing an 
application’s request to append data to the end of a file. A CFS instance begins 
an append operation by acquiring ownership of an allocation unit with 
sufficient space if it does not already own one, and creating a transaction to 
allocate storage for the appended data. Once storage is allocated, the instance 
commits the transaction. 

Figure 9-2 Appending data to a CFS file 

Once the storage allocation transaction has been committed, data can be 
transferred. If no advisories are in effect, the instance allocates pages from the 
operating system page cache, moves the data to them, and schedules a write to 
the CVM volume. If a VX_DIRECT or VX_UNBUFFERED advisory is in effect, or 
if the amount of data being appended is larger than discovered_direct_iosz 
(page 219), the instance schedules the write directly from the application’s 
buffers. (When writing directly from application buffers, the CFS instance must 
also invalidate any cached pages left over from earlier buffered writes that 
overlap with the file blocks being written.) 

The instance then creates a second transaction to update the file’s inode with 
the larger file size and the modification time. Once that transaction has been 
committed (and written, if the log mount option is in effect), the instance signals 
the application that its request is complete, provided that no advisories are in 
effect. Otherwise, it must wait for: 

■ Data write. If either of the O_DSYNC or VX_UNBUFFERED advisories is in 
effect for the request, CFS does signal completion until the data has been 
written 

■ inode write. If the O_SYNC or VX_DIRECT advisories is in effect for the 
request, the CFS instance does not signal completion until both data and 
updated inode have been written 

Figure 9-2 illustrates the simplest case of an appending write. If the size of the 
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appended data is larger than max_direct_iosz, or if CFS has detected sequential 
writing, the operation is more complex. 

Deleting a CFS file 
Figure 9-3 illustrates the CFS sequence of actions for a simple file deletion. It 
assumes that no other applications have locks on the file, and that no hard links 
point to it. (If the “file” being deleted is actually a hard link, CFS deletes the 
directory entry and decrements the link count, but leaves the file inode and data 
in place.) 

CFS starts by verifying that the file exists. It then creates a transaction for the 
deletion, and locks the file’s directory entry. It next reads the file’s inode if it is 
not cached (for example, if the file has not been opened recently), locks it, and 
uses information in it to obtain any necessary delegations for allocation unit(s) 
in which the file’s data resides. Once it has ownership of the necessary 
allocation units, it updates their metadata to reflect the space freed by deleting 
the file. 

Figure 9-3 Deleting a CFS file 

CFS then commits and writes the intent log transaction. Committing the delete 
transaction enables the three actions illustrated in Figure 9-3 to be performed 
asynchronously: 

■ Directory update. CFS overwrites the directory block with the file’s entry 
marked “deleted” 

■ inode status update. CFS updates the inode’s disk image to indicate that it is 
not in use, and flags the inode as unused in the inode table 
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■ Allocation unit metadata update. CFS updates the metadata for allocation 
units in which file system blocks were freed by the deletion 

These operations occur asynchronously with each other, but they must all 
complete before CFS signals completion to the application, no matter which 
logging mount option is in effect for the file system. 

CFS Storage Checkpoint structure 
An important feature of CFS is its ability to create Storage Checkpoints—point-
in-time space-optimized snapshots of file system contents that can be mounted 
and accessed as if they were file systems, including being updated by 
applications. Storage Checkpoints are useful as source data for backups and data 
analysis, for development and testing, and so forth. 

With any copy-on-write snapshot technology, snapshot metadata and data are 
necessarily bound to that of the primary fileset, and they therefore have an 
impact on primary fileset I/O. The three examples that follow illustrate three 
important Storage Checkpoint operations—creation, deletion, and writing to the 
primary fileset when one or more Storage Checkpoints are active. As a preamble 
to the discussions of I/O operation flow in the presence of Storage Checkpoints, 
Figure 9-4 illustrates the main principle of Storage Checkpoint metadata 
organization. 

Figure 9-4 Storage Checkpoint metadata linkage 

As Figure 9-4 suggests, the metadata structures that describe Storage 
Checkpoints form a time-ordered chain with the file system’s primary fileset at 
the head. Each time a new checkpoint is created, it is inserted into the chain 
between the primary fileset and the prior newest link. 

Storage Checkpoints are described by two types of metadata: 
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■ Overlay descriptors. These describe data and metadata that have not 
changed since the checkpoint was created. They point to corresponding 
metadata (for example, extent descriptors) in the next (newer) element in the 
chain 

■ Live descriptors. These describe data and metadata that have altered since 
the creation of the checkpoint. These point to file system blocks in which the 
prior state of the altered data and metadata are stored. A file system’s 
primary fileset only contains live metadata descriptors 

With this structure, the actual storage consumed by any given checkpoint 
amounts to primary fileset data and metadata that changed while the 
checkpoint was the newest active one. As soon as a newer checkpoint is taken, 
the contents of the older one are effectively frozen; prior contents of any 
primary fileset blocks that change thereafter are linked to the newer Storage 
Checkpoint’s metadata. Thus, ignoring the per-Storage Checkpoint metadata 
itself, the total amount of storage consumed by all of a file system’s active 
checkpoints is equal to the amount of change in the primary fileset during the 
lifetime of the oldest active checkpoint. (The situation is slightly different for 
writable clones, which are based on the Storage Checkpoint technology, but 
which can be updated independently of their primary filesets. The Symantec 
Yellow Book Using Local Copy Services, available at no cost on the Symantec 

web site,20 gives an exhaustive description of the data structures that support 
Storage Checkpoints and file system clones.) 

Creating a CFS Storage Checkpoint 
Storage Checkpoints are copy-on-write snapshots. They consume storage only 
in proportion to the amount of primary fileset data that is modified while they 
are active. For unmodified data, they point to primary fileset extent contents. 
Storage Checkpoints occupy storage in a file system’s space pool. Figure 9-5 
illustrates a (necessarily compressed) Storage Checkpoint creation timeline. 

20. http://eval.symantec.com/mktginfo/enterprise/yellowbooks/
using_local_copy_services_03_2006.en-us.pdf 

http://eval.symantec.com/mktginfo/enterprise/yellowbooks/using_local_copy_services_03_2006.en-us.pdf
http://eval.symantec.com/mktginfo/enterprise/yellowbooks/using_local_copy_services_03_2006.en-us.pdf
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Figure 9-5 Creating a Storage Checkpoint 

A CFS instance begins Storage Checkpoint creation creating the metadata files 
for the checkpoint and temporarily marking them for removal. It then “freezes” 
the file system, blocking incoming I/O requests and requesting that other 
instances do the same. It waits until all I/O operations in progress on all 
instances have completed. 

When the file system is frozen, CFS populates the new checkpoint’s fileset with 
metadata and inserts the fileset into an age-ordered chain headed by the 
primary fileset and having a link for each active Storage Checkpoint. When a 
new Storage Checkpoint is created, old data resulting from subsequent 
modifications to the primary fileset are recorded in it. all older checkpoints refer 
forward to it if necessary when applications access data in them. Thus, the 
amount of storage consumed by all Storage Checkpoints is approximately the 
number of file system blocks occupied by all primary fileset data modified since 
creation of the oldest Storage Checkpoint. 

Storage Checkpoints contain two types of metadata—pointers to file system 
blocks and so-called “overlay” metadata that points to the next newer 
checkpoint in the chain (or, for the newest Storage Checkpoint, the primary 
fileset). When CFS uses Storage Checkpoint metadata to locate data, items 
flagged as overlays cause it to refer to the next newer checkpoint in the chain. If 
the corresponding metadata in that checkpoint is also an overlay, CFS refers to 
the next newer one, until it reaches the primary fileset (indicating that the data 
item was unmodified since the creation of the oldest checkpoint). CFS accesses 
such data items from the file system’s primary fileset (live data) when they are 
read in the context of a Storage Checkpoint. 

When one or more Storage Checkpoints are active, application writes to a file 
system’s primary fileset are performed as outlined in the following section. 
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Writing data while a Storage Checkpoint is active 
CFS Storage Checkpoints are space-optimized—the only storage space they 
consume is that used to save the prior contents of primary fileset blocks that 
applications modify while they are active. The technique is called “copy-on-
write”—upon an application request that modifies file system data or metadata, 
CFS allocates file system blocks from the file system’s space pool, copies the 
data or metadata to be overwritten into them, and links them to the Storage 
Checkpoint’s metadata structures. Figure 9-6 presents a condensed timeline for 
an application write to a file system with an active Storage Checkpoint. 

Figure 9-6 Writing data while a Storage Checkpoint is active 

In order to focus on the main points of writing to a CFS file system in the 
presence of one or more Storage Checkpoint, Figure 9-6 omits the detail related 
to allocation unit delegation, mount options, and cache advisories that is shown 
in Figure 9-2. Essentially the same operations occur when Storage Checkpoints 
are active, however. 

The first write to a given range of file system blocks after a given Storage 
Checkpoint is taken results in copy-on-write. Subsequent updates to the same 
file system block range are executed identically, whether Storage Checkpoints 
are active or not. 

CFS first executes a transaction to allocate storage for the prior contents of the 
blocks to be updated. It then reads the data to be overwritten and copies it to the 
allocated blocks. Its third step is to copy the new data from application buffers 
to pages that it allocates from operating system page cache. (It bypasses this 
step and writes directly from application buffers if the VX_DIRECT or 
VX_UNBUFFERED cache advisory or the corresponding convosync or 
mincache mount option (Table 13-2 on page 216) is in effect.) When the prior 
contents have been safely preserved on disk, it overwrites the vacated file 
system blocks with the new application data. 
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CFS then updates Storage Checkpoint metadata to point to the newly allocated 
file system blocks that contain the prior contents of the overwritten ones in the 
primary fileset. Because copy-on-write occurs upon the first modification of the 
affected file system blocks, CFS must convert the Storage Checkpoint’s overlay 
extent descriptors (and possibly other metadata) that refer forward to primary 
fileset data into live extent descriptors that point to the newly-allocated file 
system blocks that now contain the prior contents of the updated blocks. 

Finally, CFS completes the operation by executing an intent log transaction that 
captures the primary fileset inode update (change in modification and access 
times) and the update to the Storage Checkpoint inode (extent descriptor 
change, but no access time changes). 

Similar scenarios occur when CFS truncates files and so forth. 

Deleting a CFS Storage Checkpoint 
When CFS deletes a Storage Checkpoint, the file system blocks it occupies must 
either be freed or linked to more recent Storage Checkpoints that remain active, 
and its inodes must be disposed of properly. Figure 9-7 illustrates the sequence 
of events in the deletion of a Storage Checkpoint. 

Figure 9-7 Deleting a CFS Storage Checkpoint 

A CFS instance that receives a command to delete a Storage Checkpoint sends a 
message to the file system’s primary instance, which performs all deletions. The 
primary instance creates and commits an intent log transaction in which it 
marks the checkpoint deleted. Once this transaction is committed, the primary 
instance starts a background thread to dispose of the checkpoint’s file data 
extents and inodes. 

Extents containing data from files that were modified, truncated, or deleted are 
transferred to the next newer checkpoint in the chain. Extents that contain data 
written to this checkpoint are released to the free space pool. As the background 
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thread processes inodes, it marks them as “pass-through” so that other threads 
ignore them when locating data to satisfy user requests made against Storage 
Checkpoints. 

When the background thread has processed all of the Storage Checkpoint’s 
inodes, it freezes the file system momentarily, and creates an intent log 
transaction that removes the checkpoint from the file system’s checkpoint 
chain and frees the space occupied by its structural files. When this transaction 
is committed, the thread unfreezes the file system, and application activity 
against it resumes.



Chapter 10

CFS Differentiator: multi-volume
file systems and dynamic
storage tiering

This chapter includes the following topics:

■ Lower blended storage cost through multi-tiering

■ CFS Dynamic Storage Tiering (DST)

Most enterprise data has a natural lifecycle with periods of high and low activity 
and criticality. Recognizing that there can be a substantial differential in cost 
per terabyte (4:1 or more) between enterprise-class high-performance disk array 
storage and high-capacity storage of lesser performance, some data centers 
adopt multi-tier strategies to lower the average cost of keeping data online by 
moving data sets between storage tiers at different points in their life cycles. 

Lower blended storage cost through multi-tiering
Typically, a relatively small percentage of a mature application’s data is active. 
Current business transactions, designs, documents, media clips and so forth are 
all likely to be accessed frequently. As a business or project activity diminishes, 
its data is accessed less frequently, but remains valuable to keep online. As 
applications age, it is fair to say that the majority of their data is seldom 
accessed. An enterprise can reduce its average storage cost by relocating its 
inactive data to less expensive bulk storage devices without losing the 
advantages of having it online and readily accessible. Since the relocated data is 
accessed infrequently, the lesser performance of the bulk storage devices has 
little or no impact on overall application performance. 

As an example, Table 10-1 presents a pro forma cost savings calculation for an 
application with 100 terabytes of data, 20% of which is active, and 80% of which 
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is idle and could be moved to low-cost bulk storage without significantly 
impacting overall application performance. 

It is clear from this admittedly simplistic example that the cost savings from a 
two-tier storage strategy can be substantial. For small active data sets with very 
high performance requirements, a solid state primary tier would show even 
greater savings and better quality of service. 

Barriers to storage cost savings 

But there is a significant barrier to actually realizing the potential cost savings 
from multi-tier storage. For a multi-tier storage strategy to be practical, it must 
not impact application performance negatively; data must reside on the high-
performance primary tier while it is actually active, and migrate to lower-cost 
tiers when it becomes idle. 

Keeping a few files on the most appropriate storage tier based on I/O activity is 
easy enough. An administrator can monitor I/O activity, and move files and 
adjust application procedures as necessary to optimize storage and I/O 
resources. The complication arises in data centers with millions of files that 
fluctuate between high and low I/O activity and greater and lesser criticality. It 
is impossible for humans to track I/O activity on this scale, let alone relocate 
files and adjust applications and scripts accordingly. When solid state storage is 
present, the need to use it appropriately is even more pronounced. Not only 
must important, active files be placed on it, but as files become activity, they 
must be relocated away from it to free the high-cost space for other, more active 
files. The difficulty and expense of matching large numbers of files with 
changing activity levels leads some data centers to adopt inflexible placement 
policies (for example, “if it’s 90 days old, relocate it to tier 2, period”), and others 
to forego multi-tier storage entirely. 

CFS Dynamic Storage Tiering (DST) 
The Dynamic Storage Tiering (DST) feature of CFS solves the problem of 
matching large numbers of files to appropriate storage tiers without 

Table 10-1 Pro forma example of cost savings with a two-tier storage strategy (100 terabytes

Storage cost per 
terabyte

Cost of 
storage

Storage cost per 
terabyte

Savings

Single-tier strategy Tier 1: $7,500 Tier 1: $750,000 Tier 1: $7,500 

Two-tier strategy Tier1: $7,500
Tier 2: $2,000

Tier1: $150,000
Tier 2: $160,000
Total: $310,000

Tier1: $7,500
Tier 2: $2,000

$440,000
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administrative intervention. DST completely automates the relocation of any or 
all of the files in a file system between storage tiers according to a flexible range 
of administrator-defined policies. DST is a “set and forget” facility. Once an 
administrator has defined a file system’s placement parameters and a relocation 
schedule, file movement is both automatic and transparent to applications. 

When creating a CFS file system, an administrator specifies: 

■ Storage. The CVM volumes that make up each of the file system’s storage 
tiers 

■ Tiering policy. Optional specification of placement and relocation rules for 
classes of files 

From that point on, DST automatically manages file locations based on I/O 
activity levels or other criteria specified in the placement rules, making proper 
file placement completely transparent to applications and administrators. 

A DST Example

Figure 10-1 illustrates the action of a simple DST placement and relocation 
policy. 

Figure 10-1 Typical DST relocation policy actions 

According to the file placement policy illustrated in Figure 10-1, files in the /cur 
directory are created on tier1 volumes, while those created in the /past 
directory are created on tier2 volumes. Regardless of where they were created, 
DST relocates files from tier1 volumes to tier2 volumes if they are not accessed 
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for 30 days (according to the atime POSIX metadata). Similarly, if files on tier2 
volumes are accessed more than twice over a two-day period, DST relocates 
them to tier1 volumes, regardless of where they were created. 

Thus, with no action on the administrator’s part, “busy” files automatically 
move to high-performance storage, and inactive files gradually migrate to 
inexpensive storage. As migration occurs, files’ extent descriptors change to 
reflect their new locations, but the files’ positions in the directory hierarchy 
does not change, so relocations are completely transparent to applications that 
access files by path name. 

DST advantages 

While other technologies for automating data movement between storage tiers 
exist, DST is unique in four respects: 

■ Configuration flexibility. DST storage tier definitions are completely at the 
discretion of the administrator. There is no artificial limit to the number of 
tiers that may be defined, nor to the number or type of CVM volumes that 
may be assigned to a tier 

■ Managed objects. DST operates at the file level. DST policies act on files 
rather than volumes, placing the entities that correspond most closely to 
business objects on whichever type of storage is deemed most appropriate by 
the administrator 

■ Policy flexibility. DST includes a wide range of file placement and relocation 
options. While the most frequent application of DST is I/O activity-based 
relocation, file placement policies can be based on other criteria, such as 
location in the name space, size, or ownership 

■ Application transparency. DST file relocation is transparent to users and 
applications. DST moves files between storage tiers as indicated by the policy 
in effect, but leaves them at their original logical positions in the file system’s 
name space. No adjustment of applications or scripts is necessary 

Enabling DST: CFS multi-volume file systems 

A CFS file system’s VSET may consist of as many as 8,192 CVM volumes. The 
volumes can be of any type that CVM supports (simple, concatenated, striped, or 

mirrored) and of any practical capacity.21 An administrator organizes a file 
system’s volumes into tiers by affixing tags to them. The composition of a tier is 
completely at administrator discretion, but an obvious best practice is for each 

21. The theoretical maximum volume size possible with CVM data structures is 

18,446,744,073,709,551,104 bytes (264-512, or 18.5 exabytes). Practical considerations 
impose significantly smaller limits. CFS limits maximum file system size to 256 tera-
bytes. 
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tier to consist of identical, or at least similar, volumes. For example, an 
administrator might assign volumes that consist of LUNs based on Fibre 
Channel disks mirrored by a disk array to a tier called tier1, and volumes 
consisting of high-capacity SATA disks mirrored by CVM to a tier called tier2. 
Tier names are completely at the discretion of the administrator. For this 
example, tiers called gold and silver would serve equally well. 

DST policies specify file 
placement and relocation at the 
tier rather than the volume level. 
This gives the administrator the 
flexibility of expanding or 
reducing the amount of storage in 
each file system tier 
independently. 

File-level placement and relocation 

DST acts on the files in a CFS file system at two points in their life cycles: 

■ Creation. When a file is created, DST places its data on a volume chosen by 
DST that is part of a storage tier specified in an administrator-defined 
placement policy statement 

■ State changes. When the state of a file changes (for example, the file grows 
beyond a size threshold, is renamed, is not accessed for some period of time), 
DST automatically relocates it to a volume (chosen by DST) in another tier as 
specified in an administrator-defined relocation policy statement 

Each CFS file system may have a single DST policy associated with it at any 
point in time. A policy consists of an unlimited number of policy rules. Each rule 
specifies: 

■ Applicability. The files to which it applies 

■ Initial placement. The storage tier in which space for files to which the rule 
applies is to be allocated when the files are first written 

■ Relocation criteria. Criteria for relocating the files to which the rule applies 
to other tiers 

Continuing with the two-tier example of the preceding section, an administrator 
might define a DST policy with two rules, one pertaining to jpg and png files and 
the other to all other files in the file system’s name space. The rules might 
specify placement for new files as: 

■ Rule 1. Space for new jpg and png graphic images is to be allocated on tier2 
volumes 

■ Rule 2. Space for new doc files is to be allocated on tier1 volumes 

■ Rule 3. Space for all other new files is to be allocated on a tier2 volume 

Administrative hint 22

An administrator can use the fsmap 
console command to determine the 
volume(s) on which a particular file 
resides.
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In addition to initial file placement, DST policy rules specify criteria for 
automatic file relocation. For example, the two-tier file system might specify the 
following relocations: 

■ Rule 1. Never relocate jpg and png graphic files to tier1 volumes (implicitly 
specified by the absence of relocation statements in Rule 1) 

■ Rule 2a. Relocate doc files on tier1 volumes that are not accessed for 10 days 
to tier2 volumes 

■ Rule 2b. Relocate doc files on tier2 volumes that are accessed more than five 
times in one day to tier1 volumes 

■ Rule 3a. Relocate all other files on tier1 volumes that are not accessed for 30 
days tier2 volumes 

■ Rule 3b. Relocate all files other than doc, jpg, and png on tier2 volumes that 
are accessed more than 10 times in one day to tier1 volumes 

An administrator can schedule the DST sweeper to scan an entire file system 
name space periodically (for example, on a daily basis), or execute it on demand. 
The sweeper relocates files that meet the file system’s relocation policy criteria 
to volumes in the specified tiers. Because solid state device-based volumes are 
typically much smaller than disk-based ones, DST can scan them selectively on a 
more frequent basis (e.g., hourly) to identify and relocate inactive files on them, 
which it then replaces by more active ones. 

An administrator can specify a DST policy in either of two ways: 

■ Graphically. The Veritas Enterprise Administrator (VEA) includes a graphical 
interface for specifying the parameters of certain pre-defined DST policy 
types. VEA automatically assigns policies to file systems as they are created 
or edited 

■ Direct editing. Administrators 
can extract policy source files 
written in XML and edit them 
to reflect required policy 
changes. This technique makes 
the full generality of the DST 
policy structure available, but 
requires a basic knowledge of 
XML and the DST grammar, 
described in the book Using Dynamic Storage Tiering, which can be 
downloaded at no cost from www.symantec.com/yellowbooks

Administrators can change a file system’s DST policy by dumping its policy file, 
editing it, and reassigning the edited file to the file system. 

 Administrative hint 23

Administrators use the fsppadm 
command to assign, unassign, dump, 
and otherwise manage DST file 
placement and relocation policies.

www.symantec.com/yellowbooks
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DST policy rule ordering 

What sets DST apart from other data placement automation schemes is 
flexibility. DST policies can range from the extremely simple (“create files on 
tier1 volumes; move any that aren’t accessed for 30 days to tier2”) to highly 
sophisticated, including relocation up and down a multi-tier storage hierarchy, 
with policy rule granularity down to the directory, and even file level. 

DST policy rules are specified in an XML file created by the administrator. As 
described in a preceding section, a DST policy rule has three elements: 

■ Applicability. The files to which it applies 

■ Initial placement. The storage tier in which space for files to which the rule 
applies is to be allocated when the files are first written 

■ Relocation criteria. Criteria for relocating the files to which the rule applies 
to other tiers 

The order in which rules are specified in a DST policy file is significant. When 
allocating space for a new file or relocating an existing one, DST scans its policy 
rules in the order in which they occur in the policy source file, and acts in 
accordance with the first rule in the sequence that applies to the file upon which 
it is operating. Thus, if a policy contains more than one rule that applies to a 
given file, only the rule that appears first in the policy source file is effective. For 
example, a DST policy might contain three rules that apply to: 

■ Location in the name space. Files in directory /home/user1

■ File type. Files of type jpg or png 

■ User and/or group. Files owned by userID [100,100] 

With this scenario, jpg and png files in directory /home/user1 would never be 
subjected to the second rule, because DST would always act on them in 
accordance with the first rule. Similarly, jpg and png files owned by userID 
[100,100] would never be subjected to the third rule, because DST would act on 
them in accordance with the second rule. 

If a file’s properties change, for example, if it is extended, renamed, moved to an 
alternate directory, or changes ownership, it may become subject to a different 
DST rule. Changes in the policy rules to which a file is subject take effect only 
during file system relocation scans. 

DST policy rule selection criteria 

As suggested in the preceding section, DST policy rules can be applied to files 
selectively based on: 

■ Location in the name space. The directory subtrees in which files reside 
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■ File name pattern. The pattern of the files’ names (for example, *.jpg or 
*.dat) 

■ File ownership. The file owners userIDs and/or groupIDs 

■ File tags. Administrators and users can “tag” files with arbitrary character 
strings that are visible to DST

DST uses these criteria to select files to which to apply rules. Within each rule 
there are further selection criteria based on files’ states—for example, size, time 
of last access or update, and so forth—that apply specifically to relocation. A 
DST policy rule may contain a relocation clause specifying that files to which 
the rule applies be relocated if they meet certain criteria: 

■ Current location. They are located on a storage tier that requires pruning. 
For example, in a three-tier system, files residing in tier1 may be subject to 
relocation, while those in tier2 are not 

■ Most recent access. They have not been accessed or modified for a specified 
period (based on their POSIX atime or mtime parameters) 

■ Size. They have grown or been truncated beyond a threshold 

■ Activity level. Their I/O temperature, or rate at which they have been read, 
written, or both during a defined interval, has exceeded or dropped below a 
threshold 

Any or all of these selection criteria may be specified in a single policy rule. If a 
file that meets the selection criteria for the rule as a whole also meets one of the 
relocation criteria, DST relocates it to one of the tiers specified in the rule. 

File placement and relocation flexibility 

A potential shortcoming of any multi-tier storage solution is that one tier may 
fill to capacity, causing allocations to fail, while unused space remains in other 
tiers. In some situations, this may be the desired behavior, whereas in others, 
“spilling over” to an adjacent tier would be more appropriate. 

DST places the decision about whether to confine file placement and relocation 
to a single tier or whether to allow placement in other tiers if the preferred one 
is full in the hands of the administrator. An policy rule may specify either a 
single tier or a list of tiers as a file placement or relocation destination. If a 
single tier is specified, DST only attempts initial placement on or relocation to 
volumes in that tier. If multiple tiers are specified, DST attempts to allocate or 
relocate qualifying files in the tiers in the listed order. 

When placing and relocating files, DST works entirely with tiers. It is not 
possible to designate specific volumes directly as sources or destinations for file 
placement and relocation. This allows the administrator to expand the capacity 
of individual storage tiers independently of each other, by adding volumes to 
them. If placement on and relocation to specific volumes is desirable, it can be 
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achieved by making each volume a separate tier. 

For storage tiers that contain multiple volumes, the DST balance size option 
distributes the extents of each qualifying file across the volumes in a tier. When 
a policy rule specifies a balance size for a tier, DST places and relocates files into 
the tier in extents of the balance size, which it distributes randomly among the 
tier’s volumes. Specifying a balance size has an effect similar to striping, except 
that the “stripes” are randomly distributed among the tier’s volumes rather 
than in a regular geometric pattern. Balancing is particularly beneficial for 
transactional workloads that are characterized by a high frequency of relatively 
small reads and writes. 

Application transparency 

Applications express file read and write requests in terms of data addresses in a 
file address space of logically contiguous file blocks. CFS extent descriptors map 
ranges of file blocks to file system block addresses that consist of volume 
indexes and file system block number within the volume. When DST relocates a 
file, it copies the data in each extent to a volume in the destination tier, and 
updates the extent descriptor in the inode with the new volume index and file 
system block number. This design makes it possible for DST to relocate files in a 
way that is transparent to applications that open files by specifying their 
pathnames. No matter which volume(s) a file’s data resides on, its logical 
position in the file system directory hierarchy remains the same. 

Additional capabilities enabled by multi-volume file systems 

In addition to automatic transparent file placement, multi-volume file systems 
and DST provide two other noteworthy capabilities: 

■ Metadata isolation. When 
adding a volume to a CFS file 
system’s VSET an 
administrator can specify that 
it be a data-only volume, on 
which CFS is not to store any 
metadata. The first volume in a 
VSET must be eligible to 
contain metadata, but any 
additional volumes can be 
specified as solely for file data 
storage. 
A multi-volume CFS file 
system can remain mounted as 
long as all of its metadata-
eligible volumes are present; any data-only volumes may be missing (for 
example, failed). I/O to files whose data is on missing data-only volumes will 
fail, but the file system as a whole can function 

 Administrative hint 24

Because CFS forces certain types of 
critical metadata to the first volume in a 
VSET, It is a best practice to specify a 
highly reliable, high-performance 
volume as the first volume, and not 
name it in any DST placement or 
relocation rules. This effectively isolates 
metadata from file data and permits 
business-based storage choices of file 
data storage technology. 
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■ Intent log isolation. Because 
CFS file system performance is 
strongly influenced by intent 
log performance, it can be 
useful to isolate intent logs on 
small, high-performance 
volumes. As with metadata 
isolation, an administrator can 
add volumes to a file system’s 
VSET and not specify it as a 
placement or relocation 
destination in any DST policy 
rule. File system instances’ intent logs can be placed on these volumes, 
keeping them isolated from file data I/O activity 

 Administrative hint 25

The first time a file system is mounted 
on a cluster node, CFS creates its intent 
log structural file. Administrators can 
add dedicated volumes to a file system’s 
VSET, and use the fsadm command with 
the logvol option to move instances’ 
intent log files to the volumes.



Chapter 11

CFS Differentiator: database 
management system 
accelerators

This chapter includes the following topics:

■ The Oracle Disk Manager (ODM)

■ Quick I/O for Databases

■ The CFS Concurrent I/O feature

CFS is used frequently as a storage substrate for relational databases. Database 
management systems manage their own storage at the block-level, and most can 
make direct use of virtual volumes or even disks. When they do use files as data 
storage, they typically treat each file as a disk-like container, and manage its 
contents internally. 

Using files as storage containers has several important advantages for database 
management software and for database administrators: 

■ Allocation flexibility. Files can be created, expanded, truncated, and deleted 
at will, without recourse to a system or storage administrator. Moreover, 
because CFS files can be extended automatically, database administrators 
can allocate small database container files to start with, and let CFS extend 
them as actually required, rather than having to predict storage 
requirements 

■ Administrative flexibility. Files can be copied from one device to another 
much more simply than virtual volumes or disks. Again, database 
administrators can usually manage storage without involving system or 
storage administration 

■ Data protection flexibility. Database management systems generally include 
tools for backing up database objects. Many users find it more convenient to 
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back up the underlying storage, to reduce backup times, or to integrate more 
fully with overall data center practice. Using files as database storage opens 
the possibility of using file-based data protection methods, such as CFS 
Storage Checkpoints coupled with Symantec’s NetBackup, to protect 
database data 

About the only factor that has inhibited database administrators from 
specifying file-level storage for their databases in the past is I/O performance. 
Because file systems are designed for concurrent use by multiple applications 
and users, they necessarily include extensive mechanisms to make it appear to 
each client that it is the file system’s only user. The principal mechanisms are: 

■ Data copying. Most file systems by default execute application read requests 
by reading data into operating system page cache and copying it to 
application buffers. Similarly, they execute write requests by copying data 
from application buffers to operating system page cache and writing it from 
there. This minimizes the constraints placed on application buffers, but 
consumes “extra” memory and processing power compared to transferring 
data directly between application buffers and storage devices 

■ Write serialization. Most UNIX file systems serialize application write 
requests by default. If a write request arrives while a previous one is being 
executed, the second request waits until execution of the first is complete. 
This simple constraint satisfies the POSIX rule of presenting only the results 
of complete writes to subsequent readers, but means that (a) only a single 
write to a file is in progress at any instant, and (b) all reads to the file are 
serialized behind any outstanding write 

Because database management systems tend to be I/O intensive, data copying 
and write serialization can seriously impact the performance they deliver to 
their clients. 

When they use file systems to store data, however, database management 
systems are the only user, so file system mechanisms that make multiple users 
transparent to each other are unnecessary. In recognition of this, CFS includes 
two mechanisms that permit database management systems (and other 
applications that manage their own concurrent I/O operations) to bypass 
unnecessary file system protection mechanisms and take control of their own 
I/O scheduling and buffering, as if they were operating directly on “raw” disks: 

■ Oracle Disk Manager. For Oracle databases, all CFS versions include a run-
time library that implements Oracle’s Oracle Disk Manager (ODM) APIs. For 
legacy applications and databases, CFS also continues to include the native 
Quick I/O for Databases feature from which the ODM library evolved 

■ Concurrent I/O. For database management systems, whose vendors do not 
implement private API specifications like ODM, CFS includes a concurrent 
I/O (CIO) facility that eliminates in-memory data movement and increases 
parallel I/O capability 

In essence, these capabilities allow database management systems to treat CFS 



CFS Differentiator: database management system accelerators 183
The Oracle Disk Manager (ODM)

files as disk-like containers to which they make asynchronous I/O requests. CFS 
bypasses file write locking and transfers data directly to and from database 
management system buffers. Thus, CFS provides database management systems 
with raw disk I/O performance and file system administrative convenience. 

The Oracle Disk Manager (ODM) 
Oracle Corporation publishes an API specification called the Oracle Disk 
Manager (ODM) for its Oracle and Real Application Cluster (RAC) cluster 
database management software. Newer Oracle database management software 
versions invoke ODM APIs to perform storage-related functions. The underlying 
storage infrastructure implements the functionality expressed in the APIs. For 
Oracle developers and database administrators, ODM provides consistent, 
predictable, database behavior that is portable among different storage 
infrastructures. 

CFS includes an ODM library that uses CVM and CFS capabilities to implement 
the ODM API functions. CFS’s ODM library is an evolution of an earlier, and still 
supported, Storage Foundation capability called Quick I/O for databases (QIO), 
discussed in “Quick I/O for Databases” on page 186. 

Using the CFS ODM library enhances Oracle I/O performance in three ways: 

■ Asynchronous I/O. Oracle threads are able to issue I/O requests and continue 
executing without waiting for them to complete 

■ Direct I/O. Data is transferred directly to and from Oracle’s own buffers. 
When ODM is in use, CFS does not copy data to operating system page cache 
before writing it to disk, nor does it execute Oracle’s read requests by reading 
data from disk storage into page cache and copy it to Oracle’s own cache

■ Write lock avoidance. Oracle’s writes bypass operating system file write 
locking mechanisms. This increases parallel execution by allowing multiple 
requests to pass through to CVM and thence to the hardware I/O driver level 

These optimizations are possible with Oracle, because Oracle itself ensures that 
it does not issue potentially conflicting I/O commands concurrently, or reuse 
buffers before I/O is complete. CFS’s GLM locking (Chapter 8) comes into play 
only when file metadata changes, for example when an administrator resizes 
database container files or creates new ones. 

The CFS ODM library is cluster-aware. Instances of it run in all nodes of a VCS 
cluster and communicate with each other to maintain the structural integrity of 
database container files and to keep database storage administration simple. For 
example, before creating a new data file in response to a request from Oracle, an 
ODM instance queries other instances to verify that the file name is unique 
throughout the cluster. 
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Volume resilvering with ODM 

One important feature of the CFS ODM library that is especially significant is 

that it enables Oracle to resilver22 a mirrored volume after system crash. 

It is possible that writes to a volume mirrored by CVM may have been in 
progress at the time of a failure. The contents of the disks that make up 
mirrored volumes may be inconsistent for either of two reasons: 

■ Incomplete writes. A multi-sector write may have been interrupted while in 
progress. Disks (and disk array LUNs) generally finish writing the sector in 
progress when power fails, but do not guarantee to complete a multi-sector 
write. After the failure, a multi-sector Oracle block may be “torn”—containing 
partly old and partly new content 

■ Unprocessed writes. Writes to some of the disks of a mirrored volume may 
not have been executed at all at the instant of failure. After the failure, all 
mirrors will contain syntactically valid Oracle blocks, but some mirrors’ 
block contents may be out of date 

Normally, CVM would alter its read algorithms during recovery to insure that all 
mirrors of a mirrored volume contain identical contents. ODM overrides this 
mode of operation, since it has more precise knowledge of which file blocks 
might be at risk. 

Oracle uses leading and trailing checksums on its data blocks to detect torn 
blocks after recovery from a failure. To detect unprocessed writes to mirrored 
volumes, it uses an I/O sequence number called the system control number 
(SCN) that is stored in multiple locations in a database. When Oracle detects 
either of these conditions in a database block, it uses ODM APIs to request a re-
read of the block from a different mirror of the volume. If the re-read content is 
verifiable, Oracle uses the ODM API to overwrite the incomplete or out-of-date 
content in the original mirror, making the database block consistent across the 
volume. 

ODM advantages 

ODM library instances communicate with each other to coordinate file 
management. This enables Oracle itself to manage the creation and naming of 
data, control, and log files by specifying parameters in a database’s Oracle 
initialization file, a feature referred to as Oracle-Managed Files (OMF). OMF also 
supports automatic deletion of data files when a database administrator 
removes the tablespaces that occupy them. 

CFS adds high availability, scalability, and centralized management to the VxFS 
file system on which it is based. A CFS storage infrastructure enhances Oracle 

22. The resilvering metaphor is apt. After a failure that may leave a mirror tarnished, resil-
vering restores its perfectly reflective quality. 
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storage in the following ways: 

■ Superior manageability. Without a file system, Oracle uses disk partitions as 
data storage containers. Compared to CFS container files, disk partitions are 
inflexible to configure and resize, typically requiring coordination between 
the database administrator and a storage or system administrator. With CFS, 
files, and indeed entire file systems can be resized dynamically as 
requirements dictate 

■ Less susceptibility to administrator error. System administrators cannot 
readily determine that partitions are being used by Oracle, and may therefore 
mistakenly format file systems over database data. Using CFS for database 
container file storage eliminates this possibility 

■ Flexible data protection options. Databases that use disk partitions for 
storage are limited to using the database management system vendor’s 
backup mechanism. Using CFS makes it possible to take snapshots of and 
back up database container files using tools and techniques that are used for 
non-database data elsewhere in the data center 

Cached ODM

When ODM is in use, CFS normally bypasses the file system cache and writes 
and reads directly to and from disk. The newest releases of CFS include a Cached 
ODM feature, which can improve ODM I/O performance. With Cached ODM, CFS 
caches data read by Oracle conditionally, based on hints given in I/O requests 
that indicate what use Oracle expects to make of the data. The CFS ODM library 
uses these hints to determine whether to enable caching and read ahead or to 
read directly into Oracle’s buffers, as would the non-cached ODM mount option. 

Administrators configure Cached ODM at two levels of granularity: 

■ File system. Using the vxtunefs command, an administrator can enable or 
disable Cached ODM for an entire file system 

■ Per-file. Using the odmadm command, an administrator can enable or 
disable Cached ODM for individual files within a file system, or alternatively, 
specify that I/O to the file should follow the current Cached ODM setting for 
the file system 

By default, Cached ODM is disabled when CFS file systems are mounted. Unless 
Cached ODM is enabled, CFS ignores cache hints that Oracle passes to it in I/O 
commands. Administrators enable or disable Cached ODM for an entire file 
system by using the vxtunefs command to set the odm_cache_enable advisory 
after the file system is mounted. 

Administrators set cached ODM options for individual files in a cachemap that 
CFS creates when Cached ODM is enabled for the file system in any form. The 
cachemap specifies caching advisories for file type and I/O type combinations. 
Administrators use the odmadm setcachefile command to specify Cached ODM 
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behavior for individual files: 

■ ON. When Cached ODM is set to ON for a file, CFS caches all I/O to the file 
regardless of Oracle’s hints. Disabling Cached ODM for the entire file system 
overrides this option 

■ OFF. When Cached ODM is set to OFF for a file, CFS does not cache any I/O to 
the file, even if Oracle I/O requests hint that it should do so 

■ DEF. The DEF (default) setting for a file causes CFS to follow the caching 
hints in Oracle’s I/O requests. Disabling Cached ODM for the entire file 
system overrides this option 

CFS cachemaps are not persistent 
across file system mounts. To 
make per-file Cached ODM 
behavior persistent, an 
administrator creates a file called 
odmadm in the /etc/vx directory 
created by the Common Product 
Installer containing the Cached 
ODM per-file settings. CFS searches for an /etc/vx/odmadm file when it mounts 
a file system, and if one is found, uses the advisories in it to populate the file 
system’s cachemap. 

Quick I/O for Databases 
The CFS Quick I/O for databases 
(QIO) feature provides advantages 
similar to those of ODM for any 
database management system 
that coordinates its I/O request 
synchronization and buffer usage 
internally. QIO pre-dates Oracle’s 
publication of the ODM 
specification, and while it 
continues to be supported, is 
gradually being supplanted by 
ODM in Oracle environments. It 
remains a viable option for other database management systems, however, the 
more modern Concurrent I/O (CIO) (page 189) option is generally preferable. 

With QIO, database management systems access preallocated CFS files as raw 
character devices, while operating system utilities and other applications move, 
copy, and back them up as files. The result is the administrative benefits of 
using files as database data containers without the performance degradation 
associated file systems designed for concurrent use by multiple applications. 

Administrative hint 26

Administrators should consult the man 
pages for the setcachemap and 
setcachefile commands for the syntax 
of specifications in the odmadm file.

 Administrative hint 27

Applications in which CFS is used as the 
storage substrate for Oracle databases 
should by upgraded from using Quick 
I/O to using the Oracle Disk Manager 
library, for improved integration with 
the Oracle database management 
system. 
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Quick I/O uses a special naming convention to identify files so that database 
managers can access them as raw character devices. 

Quick I/O provides higher database performance in the following ways:

■ Bypassing UNIX kernel serialization. Database managers schedule their I/O 
requests to avoid simultaneous I/O to overlapping data areas. This renders 
the file access locking done by UNIX and Linux kernels unnecessary. Quick 
I/O uses UNIX kernel asynchronous I/O (KAIO) to bypass kernel file locking 
and issue I/O requests directly to the raw Quick I/O device 

■ Bypassing data movement. Quick I/O uses the CFS direct I/O capability when 
it issues I/O requests to volumes. With direct I/O, CFS writes data directly 
from or reads it directly into application buffers, bypassing the usual copying 
from application buffers to kernel buffers. This works well for database 
managers, which typically coordinate access to large areas of memory 
dedicated as cache for the data they manage 

Kernel asynchronous I/O 

Some operating systems support asynchronous I/O to block-level devices, but 
not to files. On these platforms, the operating system kernel locks access to file 
while writes are outstanding to them. Database managers that use container 
files as storage cannot optimize performance by issuing asynchronous I/O 
requests to files on these platforms. Quick I/O bypasses these kernel locks and 
allows database managers to make asynchronous I/O requests to files accessed 
via the Quick I/O raw device interface. 

Kernel write lock avoidance 

Each POSIX write() system call to a file locks access to the file until the I/O is 
complete, thus blocking other writes, even if they are non-overlapping. Write 
serialization is unnecessary for database management systems, which 
coordinate I/O so that concurrent overlapping writes do not occur. The Quick 
I/O raw device interface bypasses file system locking so that database managers 
can issue concurrent writes to the same file. 

Direct I/O 

By default, file data read by means of POSIX read() system calls is read from 
disk into operating system page cache and copied to the caller’s buffer. 
Similarly, file data written using the write() system call is first copied from 
the caller’s buffer to operating system page cache and written to disk from 
there. Copying data between caller and kernel buffers consumes both CPU and 
memory resources. In contrast, raw device I/O is done directly to or from the 
caller’s buffers. By presenting a raw device interface, Quick I/O eliminates in-
memory copying overhead. 
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Using Quick I/O 

Quick I/O files behave differently from ordinary files in a few key respects: 

■ Simultaneous block and file I/O. A Quick I/O file can be accessed 
simultaneously as a raw device and a file. For example, a database manager 
can use a file through its Quick I/O interface, while a backup or other 
application accesses it via the normal POSIX interface simultaneously.

■ Contiguity requirement. Quick I/O must consist of contiguously located disk 
blocks. Quick I/O cannot be used with sparse files. I/O to a file’s Quick I/O 
interface fails if the request addresses blocks represented by a hole in the file 
block space. 

■ Appending. A Quick I/O file cannot be extended by an application I/O request 
that appends data to it. The qiomkfile administrative command must be used 
to change the size of a Quick I/O file

If the Quick I/O feature is installed, it is enabled by default when a file system is 
mounted. Files may be accessed by the following ways:

■ POSIX file I/O. Utility programs can move, extend, copy, and back up a Quick 
I/O file just as they would any other file

■ Character (raw) device I/O. Database managers and other applications can 
perceive a file as a raw character device, to which asynchronous, non-locking, 
direct I/O is possible 

The CFS qiomkfile utility creates 
a a file with preallocated, 
contiguous disk space, a raw 
character device whose name is 
the file name with the character 
string ::cdev::vxfs appended, and 
a symbolic link between the two 
so that the file can be accessed via 
the File Device Driver (FDD) built 
into CFS. The database 
management system or application does I/O to the character device; operating 
system and other utilities use the regular file. 

■ Legacy database management systems. Most 32-bit database management 
systems can run on 64-bit computers, but are limited to 4 gigabytes of 
memory addressability. Cached Quick I/O uses the larger memory capacity of 
a typical 64-bit computer as an extended cache 

■ Multi-database hosts. For computers that host multiple databases, Cached 
Quick I/O forms a pooled cache resource 

On 32-bit computers, for example, a database is limited to a maximum cache size 
of 4 gigabytes of physical memory (minus operating system, database manager, 

 Administrative hint 28

 Administrators of Oracle databases that 
continue to utilize Quick I/O should use 
the –h option with the qiomkfile utility 
to create Oracle container files with the 
correct header size and alignment.
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and application code and buffer requirements) because that’s all that 32 bits can 
address. For read operations, Cached Quick I/O stores blocks of database data in 
file system cache. This reduces the number of physical I/O operations required. 

On 64-bit systems, where memory addressability is less of a limitation, using the 
file system caching still increases performance by taking advantage of the read-
ahead functionality. To maintain the correct data in the buffer for write 
operations, Cached Quick I/O keeps the page cache in sync with data written to 
disk. 

The CFS Concurrent I/O feature 
For database management systems that do not provide API specifications, as 
well as for other applications that manage their own multi-threaded I/O, CFS 
includes a Concurrent I/O (CIO) feature. An administrator can specify CIO as a 
mount option to cause all files in a file system, except for those for which the 
option is specifically overridden, to be accessed directly and concurrently, 
bypassing file system data copying and write locking. Alternatively, software 
developers can use ioctl system calls specifying the VX_CONCURRENT cache 
advisory to enable and disable CIO for individual files. 

When CIO is enabled for a file, write requests cause CFS to acquire shared locks, 
rather than exclusive ones. This allows multiple application read and write 
requests to the file to execute concurrently. The presumption is that 
applications coordinate their accesses to data internally so that data is not 
corrupted by overlapping writes, and so that reads to not return the results of 
partial updates. As with other forms of direct I/O, CFS requires that application 

buffer memory addresses be aligned on disk sector-size boundaries.23 If 
application buffers are not sector size-aligned, CFS buffers the I/O. CIO applies 
only to application read and write requests; other requests obey the customary 
POSIX semantics.

23. For example, if disk sector size is 512 bytes, application I/O buffers’ starting memory 
byte addresses must be multiples of 512. 
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Chapter 12

Installing and configuring CFS

This chapter includes the following topics:

■ The Storage Foundation Common Product Installer

■ Best practices for installing Storage Foundation products

■ General installation considerations

■ Installation overview

■ Volume configuration

■ Cluster fencing configuration

■ File system creation

■ Mount configuration

■ Application preparation

CFS operates in conjunction with several other Storage Foundation software 
components: 

■ Cluster Volume Manager (CVM). CVM instantiates the shared volumes used 
for file storage 

■ Veritas Cluster Server (VCS). VCS provides monitoring and failover services 
for CFS. In the SFCFS-HA, SFSYBCE, SFRAC and SFCFSRAC bundles, VCS also 
provides failover services for database management systems and for 
applications that use shared file systems 

All three of these components must be installed and configured in order for 
applications and database managers to access shared file systems. Additional 
installations may be required, for example, if CFS is part of an SFRAC (Storage 
Foundation for Real Application Cluster) Oracle installation. Finally, installation 
of SFCFS, SFCFS-HA, SFSCE, or SFRAC may require coordination with other 
Symantec products, such as Symantec Security Services and Storage 
Foundation Manager, if those are in use in the data center. 
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The Storage Foundation Common Product Installer
Storage Foundation products generally consist of multiple installable packages. 
The interactive Common Product Installer included with all Storage Foundation 
products simplifies installation and initial configuration of products and 
bundles to the greatest extent possible. The Common Product Installer does the 
following: 

■ Identifies the task. Prompts the administrator to determine which Storage 
Foundation bundles or products are to be installed 

■ Gathers information. Prompts the administrator for information required to 
install the selected products or bundles 

■ Installs. Selects and installs the individual packages that make up the 
products or product bundles 

■ Configures. Creates and populates configuration files required by the 
installed products 

For the most part, administrators that install Storage Foundation products and 
bundle are not concerned with the details of individual product installation and 
integration.

Best practices for installing Storage Foundation 
products 

Observing a few simple best practices can expedite Storage Foundation 
installation and configuration. These practices generally fall into one of two 
areas:

■ Preparation. Making sure that the systems on which the software is to be 
installed and the surrounding hardware and software environment are 
properly prepared for installation 

■ Information gathering. Acquiring the information required during 
installation, so that installation can proceed uninterrupted from start to 
finish 

Preparing for installation: the Storage Foundation pre-check utility 

The Storage Foundation Common Product Installer includes a pre-check utility 
that can be run directly from the installation media. Given a list of the products 
to be installed, the utility produces a report of the operating system, patch level, 
and other requirements. 

In addition to running the pre-check utility, administrators should refer to the 
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Release Notes documents included with all Storage Foundation products. 
Release Notes contain information such as patch requirements and restrictions 
that is discovered after product content is frozen for release. Administrators 
should apply all required upgrades and patches for operating systems and other 
software prior to installing Storage Foundation products. 

Preparing for installation: the Veritas Installation Assessment 
Service 

Alternatively, administrators can access the free web-based VERITAS 
Installation Assessment Service (VIAS, found at https:// vias.symantec.com/
vias/vias/) to determine the readiness of a designated set of systems for 
installation of Storage Foundation products. 

To use the VIAS service, an administrator first downloads the VIAS Data 
Collector from the Symantec web site. The VIAS Data Collector runs on a single 
system. It collects hardware and software configuration information from a 
designated list of target systems and consolidates it into a file. The file is 
transmitted to Symantec, where its contents are compared against current 
hardware and software compatibility lists, and a report is generated listing 
requirements that must be met for a successful installation or upgrade of the 
designated Storage Foundation products or bundles. 

For installations whose operating policies prohibit communication of 
configuration information outside the organization, the VIAS service includes 
downloadable checklists that exhaustively specify the prerequisites for 
successful installation of Storage Foundation products. 

The free online VIAS service is the preferable means of verifying the readiness 
of systems for Storage Foundation product installation, in part because it is 
simple to operate, but most importantly because Symantec updates VIAS 
hardware and software compatibility lists dynamically, so the online service 
always evaluates configuration information against the latest known 
requirements for successful installation. 

Information gathering 

Certain information about the data center environment is required to install 
Storage Foundation products. For example, the Common Product Installer 
requires data center domain names, VCS cluster names and ID numbers, node 
names, a default CVM disk group name, and so forth, in order to create accurate 
configuration files. Some “information” is actually in the form of decisions, for 
example, which network interfaces are to be used as a cluster’s private network, 
or whether CVM enclosure-based naming is to be used to identify disk locations. 
These decisions should be made prior to starting installation to avoid the need 
for hasty “in-flight” data center policy decisions. 

https://vias.symantec.com/vias/vias/
https://vias.symantec.com/vias/vias/
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To assure a smooth installation process, administrators should read the 
installation guides for the products to be installed to determine what 
information and decisions are required (for the most part, the Common Product 
Installer Guide is adequate for this purpose). Storage Foundation product 
installation guides can be found on: 

■ Distribution media. All Storage Foundation distribution media contain 
installation guides for the products on them 

■ Symantec Web site. Installation guides and other documentation are 
available from http://www.symantec.com/business/support/index.jsp 

Downloading documentation is useful for pre-purchase product evaluation, as 
well as in preparing for installation prior to product delivery. 

General installation considerations 
Observing a few general installation practices for CFS-related Storage 
Foundation products simplifies installation and results in reliable and trouble-
free cluster operation: 

■ Remote installation. Storage Foundation products can be directly installed 
on the systems on which they are to run, or they can be installed remotely 
using secure shell (ssh) or remote shell (rsh) connections. All Storage 
Foundation bundles that include CFS (SFCFS, SFHA, SFSCE, and SFRAC) also 
include VCS, for which ssh or rsh is an installation requirement. Remote 
console shells must be configured to operate without passwords during 
installation. Administrators must be authorized to run ssh or rsh on the 
systems from which they install, and must have superuser (root) access to the 
systems on which they install Storage Foundation products 

■ Time synchronization. Both CFS and VCS require that all cluster nodes have 
a synchronized notion of time. Symantec does not recommend manual time 
synchronization, because it is difficult to accomplish, fragile, and error-
prone. A cluster-wide or data center-wide Network Time Protocol (NTP) 
service is preferable for this purpose. NTP should be installed in the data 
center and operating prior to Storage Foundation product installation 

■ Cluster and data disk fencing. VCS requires at least three coordinator disks 
that support SCSI-3 Persistent Group Reservations (PGR) to resolve cluster 
partitions that result from failures of the private network. (Alternatively, a 
coordinator server can be configured in place of one of the disks.) If a cluser’s 
data disks are PGR-capable, CVM uses data disk fencing (“Feature 1: Cluster 
and data disk fencing” on page 33) to protect against data corruption when a 
partition occurs. Volumes for CFS file systems can be configured from non-
PGR disks, but PGR-based data disk fencing is the most trustworthy 
mechanism for avoiding data corruption if a cluster partitions. If a cluster’s 

http://www.symantec.com/business/support/index.jsp
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disks are PGR-capable, Symantec strongly recommends that Storage 
Foundation products be installed with data disk fencing enabled 

■ Response files. During installation, the Common Product Installer generates 
several files, among them a response file, in which all administrator 
responses to installer queries are captured. An administrator can edit the 
response file from an installation to change system-specific information and 
use it as a script to drive subsequent installations. Response files are 
particularly useful in larger clusters and in data centers with a number of 
similar clusters 

■ Event notifications. Administrators can configure Storage Foundation 
products to deliver event notifications to electronic mail accounts, to one or 
more Simple Network Management Protocol (SNMP) consoles, or to a 
combination of the two. During installation, administrators supply 
configuration information for whichever of these services are to be employed 
(server names or IP addresses, port numbers, electronic mail addresses, and 
so forth) 

■ Symantec Security Services. In data centers that use Symantec Security 
Services, administrators can configure Storage Foundation products to use 
their services for central user authentication and to encrypt inter-system 
communication traffic. Symantec Security Services must be operating during 
Storage Foundation installation in order for this option to be elected 

Installation overview 
The Storage Foundation Common Product Installer insulates administrators 
from most details of component product installation and basic configuration. 
When the Common Product Installer completes installation of one of the CFS 
products (SFCFS, SFHA, SFSCE, and SFRAC), it has configured and verified a 
cluster, and created service groups for CVM and CFS. When product installation 
is complete, the administrator next executes the system and application-specific 
configuration steps: 

■ Volume configuration. Adding the disks or LUNs that make up the cluster’s 
pool of shared storage to the CVM default volume group, and create the 
needed volumes 

■ Cluster fencing configuration. Creating a volume group to contain the LUNs 
used as cluster fencing coordinator disks and adding three or more suitable 
LUNs to it (alternatively, coordinator servers can be configured in place of 
one or more of the coordinator disks) 

■ File system creation. Creating the file systems required by applications that 
will run on the cluster’s nodes with the parameters most suitable to the 
applications they will serve 
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■ Mount configuration. Specifying the mount configuration, volumes that 
contain shared file systems, the mount points at which they are to be 
mounted, and the mount parameters (for example, sharing and writability) 

■ Application preparation. Installing applications, configuring them as VCS 
service groups if necessary, and specifying any required configuration 
parameters 

While the Storage Foundation Common Product Installer does insulate the 
administrator from most VCS and CVM details, a working knowledge of both 
products is helpful during initial configuration of a CFS cluster. Similarly, a 
working knowledge of applications that will co-reside with CFS on cluster nodes 
helps make their installation and initial configuration trouble-free, particularly 
if they are to be configured as VCS service groups. 

Volume configuration 
CFS shared file systems use CVM volumes to store data. 
Architecturally, CVM volumes are organized 
identically to those managed by Symantec’s (single-
host) VxVM volume manager. Each volume is a layered 
structure built up from plexes, which in turn consist of 
subdisks, or subdivisions of the block address spaces 
presented by physical disks or LUNs. 

The Common Product Installer runs the cfscluster 
utility to perform initial configuration of the CVM 
cluster service. Once CVM is configured, the 
administrator uses CVM commands to create the 
default disk group and any additional disk groups 
required. For each disk group, the administrator uses 
the cfsdgadm command configure it as a cluster 
resource. The administrator then scans each node’s 
disk I/O interfaces to discover disks and LUNs, and 
adds each one to a disk group. Disks are added to the 
default disk group phase if no alternate group is 
specified; 

CVM disk groups are either shared among all cluster nodes or private to a single 
node. In order for a CFS file system to be shared among cluster nodes, the 
volumes it occupies must be allocated from a shared disk group. An 
administrator can use the cfsdgadm command to specify different disk group 
activation modes for different cluster nodes. A cluster node can activate a disk 
group to share read or write access with other nodes, to be the exclusive writer 
of volumes in the disk group, or to become a reader and deny all other nodes 
ability to write to the disk group’s volumes. Volume activation modes apply to 
all volumes in a disk group, and can therefore be used to regulate cluster nodes’ 
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access to all file systems whose volumes are in the disk group. 

Once disks and LUNs have been assigned to disk groups, the administrator uses 
CVM administrative commands to create volumes in anticipation of file system 
requirements. Best practices for shared volumes are essentially the same as for 
single-host volumes: 

■ Disk grouping. It is usually advantageous to place all of an application’s 
disks in the same disk group to simplify administration and especially, 
migration to another system 

■ Similar disk types. For consistent performance and reliability, volumes 
should normally consist of disks or LUNs of the same, or at least closely 
similar, type in terms of raw I/O performance and reliability. An exception 
might be made for solid state disks, which can be mirrored with rotating 
disks using the CVM preferred plex option to direct read requests to the 
higher performing device 

■ Mirrored volume allocation. While they do offer performance benefits for 
certain I/O loads, in most cases mirroring and RAID are employed to protect 
against data loss due to disk failure. For many applications’ data, the 
mirroring or RAID protection provided by disk arrays is adequate. If disk 
array mirroring is not available, or if the criticality of data warrants 
protection beyond that offered by a single disk array, CVM can mirror data 
between two or more disks or LUNs. For maximum protection, the disks that 
make up a mirrored volume should utilize different physical resources—disks 
at a minimum, but in addition, separate I/O paths and, in cases where 
multiple disk arrays are employed, LUNs from different disk arrays 

■ Thin provisioning. If the disk arrays used to store CFS file system data are 
capable of thin provisioning, they should be configured to make use of the 
feature. CFS space allocation algorithms are “thin provisioning-friendly” in 
the sense that they reuse storage space that has been used previously and 
then deallocated in preference to allocating space that has never been used 
before. For thin-provisioned disk arrays, this results in fewer provisioning 
operations and less physical storage consumption. 

■ DST storage classes. When 
Dynamic Storage Tiering is 
configured for a file system, 
CFS transparently moves files 
between different storage tiers 
based on criteria like recent 
activity, location in the name 
space, owner and group, and so 
forth. The primary benefit of 
DST is reduction of overall 
storage cost with minimal 
impact on application performance, although its use may also be justified 
based on other criteria. When creating and tagging volumes that will become 

Administrative hint 29

Administrators can use the DST 
analyzer tool, available at no cost from 
the Symantec web site, to determine the 
cost impact of different multi-tier 
storage strategies on overall file system 
storage cost. 
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members of multi-volume file system VSETs, the administrator should 
ensure that volumes meet the cost, data availability, and I/O performance 
requirements of the storage tiers of which they will become part 

Cluster fencing configuration 
VCS requires three or more coordinator disks or 
coordination servers to enable a single cluster node to 
unambiguously gain control of a majority in the event 
of a cluster partition. Three or any higher odd number 
of coordinator disks or servers are required; all disks 
must be directly visible to all cluster nodes. For 
maximum resiliency, each coordinator disk should be 
presented by a different disk array. CVM does not use 
coordinator disks to store data, so storage 
administrators should configure LUNs of the minimum 
capacity supported by the disk array. LUNs to be used 
as VCS coordinator disks must support SCSI-3 
Persistent Group Reservations (PGR).

The administrator uses an option of the CVM vxdg 
command to create a dedicated disk group for a 
cluster’s coordinator disks, and adds the coordinator 
disks to it. 

 Administrative hint 30

Administrators can use the Storage 
Foundation vxfentsthdw utility to 
determine whether a given disk or LUN 
supports SCSI-3 Persistent Group 
Reservations. 
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File system creation 
An administrator uses the UNIX mkfs command, or 
alternatively the CFS-specific mkfs.vxfs command to 
create a CFS file system, specifying certain options that 
can affect the file system’s performance. Some creation 
time options cannot be changed, so administrators 
should choose them carefully: 

■ File system block size. The atomic unit of CFS space 
management. CFS supports file system’s block sizes 
of 1, 2, 4, or 8 kilobytes. File systems with larger 
block sizes can allocate space for large files faster; 
file systems with smaller block sizes utilize space 
more efficiently when storing small files. The block 
size chosen for a file system that will contain 
database table space files should be the same as the 
database block size 

■ inode size. CFS persistent inodes are either 256 or 
512 bytes in size. The main benefit of larger inodes 
is that they can hold more access control list entries 
(But inherited access control lists are stored in separate inodes and linked to 
files’ inodes. Administrators should almost always accept the default 256 
byte inode size 

■ First volume. To make storage tiering (Chapter 10) possible, a CFS file system 
must occupy more than one volume. An administrator can add volumes to or 
remove them from a file system’s volume set (VSET), except for the volume 
on which the file system is originally created. CFS storage tiering best 
practice is to create the file system on a resilient, high-performing volume, 
and specify file placement policy rules that limit it to storing metadata 

In addition to these parameters that cannot be changed, an administrator can 
override the default size of the intent log. A larger intent log can be useful in file 
systems that are expected to be subject to high frequency metadata activity. 
Both of these parameters can be changed after file system creation, so they are 
not as critical as file system block size, inode size, and first volume, which are 
fixed at file system creation. 

During file system creation, CFS queries CVM to determine the geometry of its 
volume (volume 0), and uses the response to set default values for alignment and 
sequential read-ahead and write-behind parameters (read_pref_io, 
read_nstream, write_pref_io, and write_nstream, “Sequential read-ahead and 
write-behind ” on page 220). The defaults set by CFS are based on the geometry 
that CVM reports for the file system’s first volume. The administrator can use 
the vxtunefs utility to change these parameter values to optimize for other 
volumes. 
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Mount configuration 
An administrator mounts each CFS file system either 
for shared or local access. File systems mounted in 
shared mode must use shared CVM volumes for storage 
(local file systems can use private volumes, or indeed, 
operating system raw devices, for storage). While 
mounted as local, a file system cannot be mounted on 
other cluster nodes. 

File systems that are initially mounted for shared 
access can be mounted by some or all of a cluster’s 
nodes. A shared file system can be mounted for read-
write access on its primary node can be mounted either 
for read-write or read-only access on other cluster 

nodes, provided that the crw mount option is specified when it is first mounted. 
A file system mounted for read-only access on its primary node can only be 
mounted for read-only access on other nodes. File system mounts whose write 
access option differs from node to node are called asymmetric mounts. 

The CFS instance on the first 
cluster node to mount a shared 
file system becomes the file 
system’s primary instance. Other 
instances that mount the file 
system become its secondary 
instances. 

Most CFS file system 
management functions, including 
intent logging, space allocation, 
and lock management are 
performed by both primary and 
secondary instances. Certain key 
functions, including delegation of 
allocation unit control and 
Storage Checkpoint creation and 
deletion, are performed only by a file system’s primary instance. In clusters that 
support multiple CFS file systems, therefore, it is usually advisable to distribute 
the file systems’ primary instance roles among nodes by issuing mount 

 Administrative hint 31

If a file system is to be mounted with 
different read-write access on different 
cluster nodes, the primary mount must 
include the crw option.

 Administrative hint 32

CFS reserves the CVM volumes used by 
shared file systems, and thus protects 
them from inappropriate access by 
Storage Foundation administrative 
commands. There is no similar 
protection against operating system 
commands, however. Administrators 
should use caution with UNIX 
commands such as dd on shared 
volumes, to avoid corrupting data in 
shared file systems.
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commands on different nodes. 

Obviously, a CFS file system must 
have a primary instance at all 
times. If a file system’s primary 
instance fails (for example, 
because the node on which it is 
running fails), CFS elects one of 
the secondaries as the file 
system’s new primary instance. 

Administrators run the 
cfsmntadm command, installed 
during CFS installation, prior to 
mounting a shared file system. 
The cfsmntadm command 
configures the required VCS 
resources and service groups for 
the file system, and sets up 
automatic file system mounting 
and unmounting as nodes join 
and leave a cluster. Using options of the cfsmntadm command, an administrator 
can specify which cluster nodes are eligible to mount a file system, the nodes on 
which the file system should be mounted automatically, the preferred primary 
node (another node takes on the primary role if the preferred primary node is 
not running at mount time), and the file system’s mount options. 

 Administrative hint 33

After initial configuration of CFS and 
shared file systems, administrators use 
the cfsdgadm and cfsmntadm 
commands for on-going administration 
of shared disk groups and file systems.

 Administrative hint 34

Administrators can use an option of the 
fsclustadm command to learn which 
node is hosting the primary CFS 
instance of a given file system and to 
change the node hosting the primary 
instance. 
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Application preparation 
In general, applications running on nodes of a CFS 
cluster use file systems just as they would if they were 
running on individual non-clustered systems. 
Cluster-specific preparation is necessary for an 
application to run as a failover or parallel service 
group. 

To prepare an application to operate as a VCS service, 
a developer defines the resources it requires and the 
dependencies among them. To be part of a service 
group, a resource requires a VCS type definition and 
an agent that can start, stop, and monitor it. VCS 
includes type definitions and agents for the most 
common types of resources, such as network 
interfaces, virtual IP addresses, CVM disk groups and 
volumes, and some popular applications such as the 
Apache web server. 

The administrator uses either command line or 
graphical VCS configuration tools to create a VCS 
service group definition for the application. The service group specifies the 
application’s resources and dependencies among them, as well as any inter-
service group dependencies, and is inserted into the cluster’s main.cf file. 

The cfsdgadm and cfsmntadm utilities structure CVM volumes and CFS file 
systems as parallel VCS service groups; applications that use them are normally 
structured as failover service groups, and should have group dependencies on 
the file systems and volumes they require. The VCS service group names of file 
systems and volume groups can be found in the cluster’s main.cf file after the 
utilities run. 



Chapter 13

Tuning CFS file systems

This chapter includes the following topics:

■ To tune or not to tune 

■ An overview of CFS tuning 

■ Hardware configuration: tuning the CFS environment 

■ Tuning CFS file systems 

■ File system creation time tuning considerations 

■ Mount-time file system tuning considerations

■ Tuning CFS during daily operation: the vxtunefs command 

■ Tuning CFS during daily operation: the fsadm utility 

■ Application development tuning considerations 

■ Tuning CFS for space efficiency 

■ Tuning CFS for performance 

■ Tuning CFS for sequential I/O with disk arrays 

■ Tradeoffs in designing CFS-based applications and systems
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The process of adjusting the operating parameters of a file system to optimize 
space utilization and I/O performance is commonly called tuning. CFS has a 
number of parameters that an administrator can adjust to tune a file system to 
match the needs of different I/O workloads. 

CFS tunables are stored persistently in two locations: 

■ /etc/vx/tunefstab. CFS stores parameters specified by the vxtunefs 
administrative command in the /etc/vx/tunefstab file. Tunables may be file 
system-specific or may apply to all file systems in a cluster. CFS propagates 
changes in the tunefstab file to all cluster nodes 

■ Operating system configuration files. Certain CFS tunables are stored in 
operating system configuration files, such as /etc/system on Solaris 
platforms. An administrator modifies these by editing the file on the node for 
which the tunables are to be changed. Changes to driver-level tunable values 
take effect after driver reload; others take effect after node reboot 

This chapter presents general guidelines tuning CFS to optimize I/O 
performance and space efficiency for the most frequently-encountered file 
types and access patterns. For definitive information and detailed instructions 
about the use of tunables, mount options, and application program advisories, 
the reader is referred to the Veritas Storage Foundation Cluster File System 
Administrator’s Guide and the man pages for the applicable operating system. 

To tune or not to tune 
CFS file systems have been deployed in production applications for nearly a 
decade. During that time, much has been learned about optimizing storage space 
efficiency and I/O performance. As a result, the default values for most CFS 
tunables tend to provide optimal storage utilization and I/O performance for 
workloads that contain a balance of: 

■ File I/O types. Random and sequential, small and large, and read and write 
I/O requests 

■ Data and metadata operations. Metadata (file creation, deletion, renaming, 
permission changes, and so forth) and data (reading and writing) operations 

■ File sharing. Single-client and shared file access 

If a file system’s I/O load includes all of these, leaving tunables at the default 
values (set when a file system is created) generally results in near-optimal 
performance. For example, CFS tunable default values usually provide good 
performance for file systems that contain the home directories (personal files) 
of large numbers of users. Default tunables are also usually acceptable for 
Oracle transactional databases for a different reason: the Oracle database 
management system uses the ODM APIs to do its own “tuning.” 

Many CFS file systems are deployed in applications with specific file sizes, I/O 
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loads, and data consistency needs. File systems used as storage containers for 
databases of business transactions are a good example. Once an initial set of 
database container files has been created, these file systems experience 
relatively few file system metadata operations—files are opened when a 
database starts up and usually remain open indefinitely. Occasionally, a 
database administrator creates new container files, or extends existing ones. I/O 
requests are addressed to random database blocks; their sizes are typically a 
small multiple of the database block size. Thus, a CFS file system that will be 
used for transactional database container storage should be tuned to handle 
many small random I/O operations, and relatively few file creations and 
deletions. 

File systems that provide workstation backing storage for groups of media 
artists or product designers would typically have somewhat different I/O loads. 
Metadata operations would be more frequent, but not greatly so. I/O requests 
would typically be large (multiple megabytes) and sequential, as users “check 
out” entire files to work on, and check them in again when they finish. File 
systems used in these applications should be tuned for large sequential I/O 
operations, and strong consideration should be given to minimizing 
fragmentation. 

CFS file systems are deployed in a wide variety of applications with a wide 
variety of file storage requirements and I/O characteristics. Especially popular 
are seven classes of applications, each of which makes unique demands on a file 
system: 

■ Transactional databases. Applications that keep records of sales, product 
and service deliveries, registrations, and so forth, fall into this category, 
whether they use relational database management systems or other indexing 

techniques24 to organize their data. Transaction records are typically small 
in size (a few kilobytes of data), and are read and written in random order, 
with read activity dominating in most cases. I/O load tends to be “bursty,” 
characterized by busy peaks whose timing is not always predictable, followed 
by idle periods. The nature of transaction processing is such that I/O 
resources must be provisioned to handle peak activity with little or no 
increase in latency 

■ Data mining. Applications that analyze large bodies of records fall into this 
category. They process thousands or millions of records at a time, searching 
for trends or patterns, or simply accumulating statistics. Their I/O usually 
consists predominantly of large sequential reads—they typically scan data 
sets from beginning to end—with very little writing 

■ Personal file serving. Most enterprises provide some form of managed 
central storage for data created and used by their employees. The nature of 
personal business data varies from industry to industry, but in general 

24. For example, see the discussion on page 50 about using sparse files to simplify data 
organization for large index spaces. 
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personal file serving is characterized by large numbers of clients and 
frequent metadata activity. Individual file accesses tend to be sequential, but 
the number of clients results in random I/O to the file system. Because clients 
tend to read files, work with them, and return them to the data store, overall 
I/O to the file system is usually balanced between reading and writing 

■ Media. Audio-visual media are usually stored centrally on high-capacity file 
servers, and downloaded to workstations for editing or to “server farms” for 
transformation and rendering. I/O workloads are dominated by high-
bandwidth sequential transfers of multi-gigabyte files. As with personal file 
serving, media workloads have a balance of reading and writing. Distribution 
of the finished product, however, is dominated by reading from the file server 

■ Extract, Transform, and Load (ETL) As enterprises seek to derive value from 
their digital assets, applications that extract data from transactional 
databases, transform it for analysis, and load it into specialized databases, 
are becoming popular. CFS is particularly suitable for applications of this 
type, because different phases of an application can run on different cluster 
nodes and share access to data, either simultaneously or sequentially. The 
extraction phase of a typical ETL application writes somewhat less data than 
it reads, because it preserves only those data elements needed for later 
analysis. The loading phase tends to be dominated by large sequential writes 
as the application lays out data for efficient analysis 

■ Build server. Enterprises that develop software, either for their own use or 
for sale, often dedicate servers to compiling and building complete packages 
on a daily basis. Compiling and linking software is “bursty”—periods of 
intense I/O activity are interspersed with lulls as computations are 
performed. Data (source code files, temporary files, and binary module 
images) is accessed randomly, with a balance of reads and writes 

■ Messaging. Many enterprises use dedicated messaging servers to integrate 
disparate applications into a cohesive information processing whole. 
Applications communicate with each other by sending messages to the 
messaging server, which queues them for processing by their destination 
application servers. Messages may indicate major events (e.g., close of 
business day), or may be as simple as a single online transaction that triggers 
shipping, billing, accounting, and customer relationship management 
processes. As the central coordination point for all IT, messaging servers 
must be absolutely reliable. Driven by external events, I/O is typically 
random, and the request load can be heavy during active periods. Messages 
themselves are typically small 

Each of these seven classes of application places unique demands on a file 
system. Table 13-1 summarizes the seven applications’ relative characteristics 
as a backdrop for the discussion of tuning CFS file systems for efficient space 
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utilization and optimal I/O performance. 

The sections that follow describe how CFS can be tuned to utilize storage 
efficiently, provide appropriate data integrity guarantees, and perform 
optimally for these and other workloads. 

Table 13-1 Typical properties of common CFS application I/O workloads

Property Database 
(transaction)

Database 
(mining)

File 
serving 

Media 
Extract, 
Transform, 
Load 

Build 
server

Messaging

Typical 
file size 

Large Large Mixed Very large Mixed Small Small

Typical 
number of 
files 

Small Small Very 
large

Tens of 
thousands 

Moderate Thou-
sands 

Tens of 
thousands

Metadata 
I/O load

Negligible Negligible Very 
heavy 

Moderate Moderate Heavy Small

Read-
write load 

Heavy Heavy Heavy Moderate Heavy Heavy Heavy

Typical 
I/O size

Small Large Mixed Very large Mixed Small Small

I/O type Random Sequential Random Sequential Sequential Random Random

Read-
write mix 

70%-30% 95%-5% 50%-50% 50%-50% 40%-60% 50%50% 80%-20%

Example Oracle Sybase NFS, CIFS NFS, CIFS Informatica Various Tibco EMS
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An overview of CFS tuning 
A few CFS tuning considerations 
are not specific to data types or 
application workloads, but are 
applicable in all situations. Chief 
among them is distribution of the 
file system primary role in 
clusters that host multiple file 
systems. While CFS is largely 
symmetric, in the sense that all 
instances can perform most 
functions, a few key functions, 
such as file system resizing and 
online layout upgrades, are 
performed only by a file system’s 
primary CFS instance. By default, 
a file system’s primary instance is 
the one that mounts it first. Administrators may override this, however, and 
designate specific cluster nodes to fill the primary role for specific file systems. 

In clusters that host multiple file systems, administrators may wish to distribute 
file systems’ primary instance roles among nodes to distribute primary instance 
processing load evenly.

CFS tuning points 

Administrators and developers can affect CFS file system tuning in six areas: 

■ Hardware configuration. While CFS and CVM can be configured for greater 
or lesser I/O performance and resiliency to failures, it is also true that for a 
given software configuration, higher performing or more resilient hardware 
components will out-perform or outlast lesser ones 

■ CVM volume creation. The number of columns and mirrors in a volume can 
affect both business transaction (random access) and sequential streaming 
I/O performance 

■ File system creation. Administrators specify file system options such as file 
system block size, inode size, and intent log size, at file system creation time. 
Some of these are irreversible choices that cannot be altered during a file 
system’s lifetime 

■ File system mounting. Administrators can specify options that affect I/O 
performance and data integrity guarantees when they mount file systems. 
These include Quick I/O and concurrent I/O (discussed in Chapter 11 on 
page 182), data and metadata logging guarantees, and caching behavior. 
Some mount options override default behaviors that are assumed by or 

Administrative hint 35

An administrator can use the setpolicy 
option of the cfsmntadm console 
command to permanently designate the 
order in which cluster nodes assume the 
mastership of a file system. The 
setpolicy option of the fsclustadm 
command can also be used for this 
purpose, but it operates only on the 
running cluster; it does not change the 
VCS main.cf configuration file 
permanently. 
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programmed into applications, and so should be used only with full 
knowledge of the consequences on application behavior 

■ Ongoing operation. An administrator can use the CFS vxtunefs utility 
program to alter the values of certain file system performance parameters, 
particularly those that affect sequential I/O performance and File Change 
Log behavior, while a file system is mounted and in use. In addition, the 
fsadm utility can be used to reorganize (defragment) files and directories, 
resize and move intent logs, and enable or disable large file support 

■ Application development. Application developers can include CFS libraries 
in their applications. These libraries allow them to program advisories that 
affect CFS behavior into their applications. Advisories include both those 
that control file system cache behavior and those that affect storage 
allocation for individual files 

The sections that follow discuss CFS tuning in each of these areas.

Hardware configuration: tuning the CFS 
environment 

Tuning a CFS file system starts with its storage. Different types of disks, disk 
array logical units, I/O interfaces, access paths, volume configurations, and 
other factors can affect file system performance. The two primary factors in 
tuning the CFS environment are the hardware components and configuration 
and the CVM volume configuration. 

Hardware configuration tuning considerations

Choosing and configuring the hardware that provides persistent storage for a 
CFS file system is a classic three-way balance between cost, resiliency to 
failures, and I/O performance requirements. 

Beginning with disks, the choice has conventionally been between high-RPM 
disks of moderate capacity (200-400 gigabytes) and lower-RPM, high-capacity 
(1-2 terabytes) ones. Disk drive vendors claim greater reliability for high-RPM 
disks, but this distinction is blurring as the increasing amounts of online data 
drive the market toward high-capacity disks, which motivates vendors to 
enhance their quality. 

Recently, solid-state disks (SSDs) have matured to the point where they can 
realistically be considered for enterprise-class file storage. But aside from their 
cost per byte, which can be an order of magnitude greater than that of rotating 
disks, SSDs perform relatively better with workloads consisting primarily of 
random reads. 

Most CFS file systems store their data on disk array logical units (LUNs), and 
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most disk arrays can be configured with a mixture of disk types. This flexibility 
enables a file system designer to choose the most appropriate disk type for each 
application. Generally, this means high-RPM disks for transactional 
applications, SSDs for smaller data sets where data criticality justifies the cost, 
and high-capacity disks for other data.

CFS Dynamic Storage Tiering makes it possible to distribute a file system across 
several CVM volumes, each consisting of disks of a different type. 
Administrators can define file relocation policies that cause CFS to relocate files 
between different types of storage as their states or usage changes.

Disk arrays organize disks into mirror or RAID groups that provide a first line of 
protection against disk failure. File system designers can choose among disk 
array resiliency options, realizing that CVM can provide a second layer of 
protection by mirroring LUNs, even those presented by different disk arrays. 
The main performance-related choices are the number of columns (disks) across 
which the disk array stripes data, and the number of access paths for 
communicating with LUNs (the latter is also a resiliency concern). 

The final hardware configuration choice is the amount of memory in each 
cluster node. CFS instances use dedicated cache memory to hold active inodes 
and directory entries, but the greatest usage is for data cached in operating 
system page cache. When configuring memory, file system designers should 
consider the expected demands on each node, both those of file systems and 
those of applications and the operating system itself. 

Volume configuration tuning considerations

CFS requires CVM volumes for persistent storage, even if no CVM mirroring, 
striping, or multi-path capabilities are configured. File system designers can 
configure multi-LUN CVM volumes to increase flexibility, resiliency, and I/O 
performance in the following ways: 

■ Flexibility. During operation, mirrors can be split from CVM volumes, and 
deported to other systems for backup, data analysis, or testing, while the 
main volumes remain in production use. Using the Portable Data Container 
facility (PDC, page 43), volumes formed from split mirrors can even be 
imported and used on platforms of different types 

■ Resiliency. CVM can mirror LUNs presented by different disk arrays, and 
support multiple access paths to a LUN to increase resiliency above and 
beyond what a disk array can provide. CVM can take either full-size or space-
optimized snapshots of volume contents to protect against data corruption. 
Finally, its volume replication (VVR) facility, can replicate the contents of a 
set of volumes across long distances for recoverability from site disasters 

■ I/O performance. CVM can configure volumes in which data is striped across 
multiple columns (LUNs). Striping tends to improve performance beyond 
that of a single LUN, both for sequential streaming applications and for 
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transactional applications that access data randomly. File system designers 
should coordinate hardware and CVM configuration choices with CFS tuning 
parameters so that the two interact synergistically 

Tuning CFS file systems 
Both the file system designer, the administrator, and the application developer 
have access to tuning parameters that can affect CFS file system performance, 
in some cases in conflicting or overriding ways. To appreciate the effects of 
tuning parameters, it may be helpful to review the sequence of individual events 
and actions that make up a simple CFS I/O operation. Figure 13-1, which repeats 
Figure 9-2 for convenience, summarizes the sequence of actions that CFS 
performs to append data to a file. Some details, such as resource locking, are 
omitted, because the purpose of the figure is to illustrate how I/O performance 
can be affected by tuning parameter values.

Figure 13-1 A representative CFS I/O operation 

As Figure 13-1 suggests, CFS starts executing the operation by creating a 
transaction, allocating storage for the new data, and committing the 
transaction. If the file system is configured to write intent log transactions 
immediately (mounted with the log mount option), CFS writes the intent log 
record for the transaction at this point. Otherwise, writing can be delayed.

Next, if either of the VX_DIRECT or VX_UNBUFFERED tuning options that 
cause data to be written directly from application buffers is in effect, CFS 
schedules the data to be written directly from application buffers. Otherwise, it 
allocates operating system cache pages and copies the data into them before 
writing. 

Next, CFS creates a transaction for updating the file’s inode (to reflect the new 
file size, data location, and access time) and the allocation unit’s space map (to 
reflect the storage allocated to the file). For recoverability, the order of 
operations is important. The data must be written and the transaction must be 
committed before the inode and allocation unit metadata are updated. 
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The upward-pointing vertical arrows in the figure indicate points in the 
sequence of actions at which I/O completion can be signaled to the application 
requesting the append, depending on which of the tuning options discussed in 
the sections that follow are in effect. 

File system creation time tuning considerations 
When using the mkfs.vxfs console command to create CFS file systems, 
administrator specify (either explicitly or implicitly by allowing them to default) 
options that can affect the file system’s performance. Some of these cannot be 
changed once a file system has been created, so they should be chosen carefully. 
The immutable parameters chosen at file system creation time are: 

■ File system block size. The file system block size is the unit in which CFS 
manages the space assigned to it. A file system’s block size can be specified as 
1, 2, 4, or 8 kilobytes. File system block size determines the largest file system 
that can be created (32 terabytes with 1 kilobyte file system blocks; 256 
terabytes with 8 kilobyte file system blocks) and the efficiency of space 
utilization (all files occupy at least one file system block, no matter how little 
data they contain) 

■ inode size. As stored on disk, a CFS file system’s inodes are either 256 or 512 
bytes in size (When CFS caches inodes in memory, it appends additional 
metadata to them). The primary use for larger inodes is to store more unique 
access control list entries (Access control lists that are common to multiple 
files are stored in separate inodes that are linked to files’ inodes.) Under most 
circumstances, administrators should accept the CFS default inode size of 
256 bytes, particularly if system memory is limited, or if the file system is 
expected to host multiple Storage Checkpoints 

■ Volume zero. A CFS file system can occupy multiple CVM volumes, for 
example to support storage tiering. With the exception of the first volume 
assigned when a file system is created (Volume 0), volumes can be added to 
and removed from a file systems volume set (VSET) at any time. When a file 
system is expected to occupy multiple volumes, a best practice is to choose a 
highly resilient, high-performing Volume 0, and specify file placement policy 
rules that limit Volume 0 to storing file system metadata 

Two other parameters that affect file system tuning can be specified at file 
creation:

■ Large file support. Limiting a file systems to file sizes of 2 gigabytes or less 
simplifies data structures and manipulation, and is primarily useful for 
platforms with very limited memory. Large file support is enabled by default 
for all platforms supported by CFS 

■ Intent log size. An administrator may specify the size of a file system’s intent 
log (between 256 kilobytes and 256 megabytes, with a default of 16 
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megabytes) when creating it. Each CFS instance’s intent log can be sized 
separately. When a node mounts a file system for the first time, its CFS 
instance creates an intent log with a size equal to that of the primary 
instance’s log. In file systems subject to heavy metadata activity, larger 
intent log sizes may improve performance, because they reduce the chance 
that a full intent log will cause application requests to stall until transactions 
have been made persistent in the on-disk log 

Both of these parameters can be changed during a file system’s lifetime, so they 
are not so critical to define correctly at creation time as are the immutable ones. 

Mount-time file system tuning considerations
Administrators can affect application I/O performance through the options they 
specify when mounting file systems. Mount options remain in effect only until a 
file system is unmounted by all CFS instances. They can affect file system tuning 
in three important ways: 

■ Database I/O acceleration. Either Quick I/O or Concurrent I/O (CIO) database 
I/O acceleration (Chapter 11 on page 182), but not both, can be enabled by 
mount options. Quick I/O and CIO improve database management system I/O 
performance by bypassing kernel write locking and in-memory data copying 
and by making it possible for database management systems to issue 
asynchronous I/O requests 

■ Cache advisory overrides. File data and metadata caching advisories 
encoded in applications can be overridden by specifying the convosync and 
mincache mount options 

■ Intent log behavior. Mount options can be used to alter the time at which the 
intent log is written as well as suppress logging of atime and mtime metadata 
updates 

POSIX data and metadata persistence guarantees 

By default, CFS signals applications that their write requests are complete when 
both data and any consequent metadata updates are in page or buffer cache. It 
performs disk writes after the completion signal. The POSIX standard includes 
two cache advisories that enable applications to direct CFS to persist data and 
metadata before signaling write request completion: 

■ O_SYNC. Both data and any metadata updates implied by the request have 
been stored persistently when request completion is signaled 

■ O_DSYNC. Data, but not necessarily implied metadata updates have been 
stored persistently when request completion is signaled 
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CFS data and metadata persistence guarantees 

The CFS mount command includes two options that affect cache behavior: 

■ convosync. The convosync (convert O_SYNC) mount option overrides file 
system cache behavior for application write requests that specify the 
O_SYNC or O_DSYNC advisories 

■ mincache. The mincache mount option overrides file system cache behavior 
for application read and write requests that do not specify the O_SYNC or 
O_DSYNC advisories 

Table 13-2 lists the values that can be specified for these mount options and the 
resulting modifications in caching behavior. The convosync option affects 
metadata caching for write requests; mincache can affect both reads and writes. 

Specifying the convosync mount option causes CFS to override all O_SYNC and 
O_DSYNC advisories attached to application I/O requests. This option is 
generally used to improve overall I/O performance, but can affect data integrity 
if a system fails with unwritten data from O_SYNC or O_DSYNC requests in 
cache. Application recovery procedures might assume that data reported as 
having been written is in the file system’s disk image. Administrators should 
therefore use the convosync mount option carefully, in full consultation with 
application developers and support engineers. 

Specifying the mincache mount option causes CFS to treat application I/O that 
do not explicitly specify a cache advisory as indicated in Table 13-2. In general, it 
applies more stringent persistence guarantees to writes, but in the case of the 
unbuffered option, applications must leave I/O buffers untouched until CFS 
reports I/O completion to ensure that the data in them at the time of an I/O 
request is what is actually written. 

Table 13-2 Effect of mount options on CFS cache advisories

Mount option 
value ↓

convosync option
(effect on application write requests that 
specify O_SYNC or O_DSYNC)

mincache option 
(effect on application I/O requests 
without O_SYNC or O_DSYNC)

direct Transfers data directly from application buf-
fers 
When CFS signals write completion, file data, 
but not metadata, is guaranteed to be persis-
tent 

Transfers data directly to and from applica-
tion buffers 
When CFS signals I/O completion, file data, 
but not metadata, is guaranteed to be persis-
tent

dsync Converts O_SYNC requests to VX_DSYNC 
(equivalent to O_DSYNC)
When CFS signals I/O completion, file data, 
but not metadata, is guaranteed to be persis-
tent 

Treats all application I/O requests as though 
they had specified the VX_DSYNC advisory
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Other mount options that affect file system tuning 

Other ways in which mount options can affect I/O performance include: 

■ Suppressing time stamp updates. The POSIX standard specifies that the 
access (atime) and modification (mtime) times recorded in a file’s inode 
should be updated each time the file is accessed and modified respectively. 
Inode update transactions can result in substantial I/O overhead, however. 
Because many applications do not require accurate atime and mtime, CFS 
provides noatime and nomtime mount options. The noatime option 
suppresses atime-only inode updates. The nomtime option causes CFS to 
update mtime only at fixed intervals 

■ Erase on allocate. CFS provides a blkclear mount option to prevent 
scavenging (allocating storage and reading its contents to discover what had 
previously been written). The blkclear causes CFS to return zeros when 
blocks that have not previously been written are read 

■ Datainlog. Normally, the CFS intent log records metadata updates. The 
datainlog mount option causes the data from small (less than 8 kilobyte) 
writes be written in the log as well. This option can reduce disk seeking in 
high-frequency random access update scenarios, especially when the same 
file system blocks are updated repeatedly 

unbuffered Transfers data directly from application buf-
fers 
Neither file data nor metadata are guaranteed 
to be persistent when CFS signals write com-
pletion 

Transfers data directly to and from applica-
tion buffers 
Neither file data nor metadata are guaran-
teed to be persistent when CFS signals I/O 
completion

closesync Nullifies applications’ O_SYNC and O_DSYNC 
advisories
Writes file data persistently only when the 
last application to have a file open closes it 

Same behavior as 
convosync=closesync

delay Nullifies applications’ O_SYNC and O_DSYNC 
advisories. 
Neither file data nor metadata are guaranteed 
to be persistent when CFS signals I/O comple-
tion

n/a

tmpcache n/a Does not specify when file data and meta-
data are persistent 

Table 13-2 Effect of mount options on CFS cache advisories (Continued)

Mount option 
value ↓

convosync option
(effect on application write requests that 
specify O_SYNC or O_DSYNC)

mincache option 
(effect on application I/O requests 
without O_SYNC or O_DSYNC)
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Finally, the log, delaylog, and tmplog mount options described in Table 13-3 
affect performance by altering the time at which CFS writes intent log entries. 

The log, delaylog, and tmplog mount options are cluster node-specific. To 
enforce consistent log behavior throughout a cluster, the mount option must be 
specified for all nodes. 

Tuning CFS during daily operation: the vxtunefs 
command 

Administrators can use the vxtunefs command to make immediate adjustments 
to tunable I/O parameters for mounted file systems. The vxtunefs command can 
affect: 

■ Treatment of I/O requests. Parameters that specify how CFS buffers, 
throttles, and schedules application I/O requests 

■ Extent allocation. Parameters that control file system extent allocation 
policy 

■ File change log. Parameters that affect the behavior of file change logs 

The vxtunefs command operates 
either on a list of mount points 
specified in the command line, or 
on all mounted file systems listed 
in the /etc/vx/tunefstab file. File 
system parameters that are 
altered through the vxtunefs 
command take effect immediately 

Table 13-3 Effect of mount options on CFS intent logging

Mount 
option ↓

Intent log update time 

log CFS writes intent log entries that pertain to an application I/O request 
persistently before signaling the application that its request is com-
plete. 

delaylog CFS delays most intent log writes for about 3 seconds after signaling 
completion to the application, and coalesces multiple entries into a sin-
gle write if possible. File deletion records are guaranteed to be persis-
tent. 
delaylog is the default logging mode. 

tmplog CFS delays all intent log writing for an indeterminate period, and 
coalesces multiple entries into a single write if possible. 

 Administrative hint 36

An administrator can specify an 
alternate location for the tunefstab file 
by setting the value of the 
VXTUNEFSTAB environment variable. 
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when the command is issued, and are propagated to all nodes in a cluster. 

Buffered and direct I/O 

An administrator can mount a CFS file system with the option to transfer data 
for large I/O requests directly from application buffers, even for applications 
that do not specify the VX_DIRECT or VX_UNBUFFERED cache advisories. 
Table 13-4 lists the vxtunefs tunable parameters that affect application I/O 
requests buffering.

CFS treats buffered read and write requests for more than 
discovered_direct_iosz bytes as though the VX_UNBUFFERED cache advisory 
were in effect. This is particularly significant with large I/O requests because it 
conserves system memory and processing by eliminating copying of data 
between application buffers and page cache. 

The max_direct_iosz tunable specifies the largest non-buffered (subject to the 
VX_DIRECT or VX_UNBUFFERED cache advisory, or specifying more than 
discovered_direct_iosz bytes) I/O request CFS issues to a CVM volume. CFS 
breaks larger non-buffered requests into requests of no more than 
max_direct_iosz bytes, and issues them in sequence. 

In addition to these, the CVM vol_maxio CVM parameter limits the size of I/O 
requests that CVM issues to volumes’ member disks. If a CFS I/O request to a 
volume would require CVM to issue a disk request of more than vol_maxio 
bytes, CVM breaks it into smaller disk requests of vol_maxio-or fewer bytes. 

Table 13-4 Parameters affecting direct and discovered direct I/O

vxtunefs parameter ↓ Effect/comments 

discovered_direct_iosz
(default: 256 kilobytes)

I/O request size above which CFS transfers data directly 
to and from application buffers, without copying to page 
cache. 

max_direct_iosz Maximum size for non-buffered I/O request that CFS 
issues to a volume. CFS breaks larger application I/O 
requests into multiple requests of max_direct_iosz or 
fewer bytes. 

In addition: 
vol_maxio
(default: 2,048 sectors)

Maximum I/O request size that CVM issues to a disk. 
CVM breaks larger requests into requests for vol_maxio 
or fewer sectors, and issues them synchronously in 
sequence 
(Not set with vxtunefs)
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Write throttling 

By default, CFS flushes file data from operating system page cache at regular 
intervals. Administrators can limit the amount of operating system page cache 
that CFS will allow a single file’s data to occupy in two ways. Table 13-5 
describes how the max_diskq and write_throttle tunables affect CFS’s periodic 
flushing of page cache.

If the number of bytes in page cache waiting to be written to a single file reaches 
max_diskq, CFS delays execution of further I/O requests for the file until the 
amount of cached data drops below max_diskq. 

If the number of pages cached for a single file exceeds write_throttle, CFS 
schedules pages to be written until the number of pages cached for the file drops 
below write_throttle, even if it has not reached its cache flush interval. 

Sequential read-ahead and write-behind 

Administrators can tune CFS to discover sequential buffered read and write 
patterns and pre-read or post-write data in anticipation of application I/O 
requests. Table 13-6 describes how the read_ahead, read_nstream, 
read_pref_io, write_nstream, and write_pref_io tunables control CFS’s read-
ahead and write-behind behavior.

Table 13-5 vxtunefs parameters affecting buffered write throttling

vxtunefs parameter ↓ Effect/comments 

max_diskq
(default: 1 megabyte)

Maximum number of bytes of data that CFS will hold in 
page cache for a single file. CFS delays execution of I/O 
requests to the file until its cached data drops below 
max_diskq bytes 

write_throttle
(default: 0)
(implying no limit)

Maximum number of write-cached pages per file that 
CFS accumulates before flushing, independent of its 
cache flush timer

Table 13-6 vxtunefs parameters affecting read-ahead and write-behind 
caching I/O

vxtunefs parameter ↓ Effect/comments 

read_ahead
(default: 1—detect 
sequential read-ahead)

Disables read-ahead, or enables either single-stream or 
multi-threaded sequential read detection 
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An administrator can set the read_ahead tunable either to disable CFS read-
ahead entirely, to detect a single stream of sequential reads, or to detect 
sequential reads from multiple sources. 

When CFS detects that a file is being read sequentially, it allocates cache pages 
and issues read_nstream sequential read requests, each for the next 
read_pref_io bytes in the file, in anticipation of application read requests. 
Similarly, when it detects that a file is being written sequentially, it coalesces up 
to write_pref_io bytes of data in cache before issuing a write request. It allows 
up to write_nstream sequential write requests to be in progress concurrently. 
CFS sets default values for all four of these tunables by querying CVM when a 
file system is mounted to determine the volume’s geometry (in particular, 
number of columns and stripe unit size), so administrators typically need not be 
concerned with them. 

Controlling storage allocation and deallocation 

Table 13-7 lists the vxtunefs tunable parameters that affect how CFS allocates 
storage space when applications create or append data to files. The 
initial_extent_size and max_seqio_extent_size tunables control the amount of 
storage CFS allocates for files as they are written. By default, when an 
application first writes data to a file, CFS allocates the larger of: 

■ Calculated minimum. the smallest number of file system blocks that is larger 
than the amount of data written by the application 

■ Specified minimum. 8 kilobytes 

An administrator can raise the default value by setting the initial_extent_size 
tunable. Larger initial_extent_size is useful for file systems that predominantly 
contain large files, because it tends to reduce the number of extents across 
which file data is distributed. 

Each time CFS allocates additional storage for an extending sequential write to a 

read_nstream
(default: 1) and
read_pref_io
(default: 64 kilobytes)

read_nstream is the maximum number of read-ahead 
requests of size read_pref_io that CFS will allow to be 
outstanding simultaneously 

write_nstream
(default: 1) and
write_pref_io
(default: 64 kilobytes)

write_nstream is the maximum number of coalesced 
write requests of size write_pref_io that CFS will allow to 
be outstanding simultaneously 

Table 13-6 vxtunefs parameters affecting read-ahead and write-behind 
caching I/O (Continued) (Continued)

vxtunefs parameter ↓ Effect/comments 



222 Tuning CFS file systems
Tuning CFS during daily operation: the vxtunefs command 

file, it doubles the amount of its preceding allocation, until 
max_seqio_extent_size is reached, at which point it continues to allocate 
max_seqio_extent_size-size extents when additional space is required. This 
again tends to minimize the number of extents across which a large file’s data is 
distributed. 

The inode_aging_size and inode_aging_count tunables control CFS treatment 
of deleted files’ inodes and data. When files larger than inode_aging_size are 
deleted, CFS saves their inodes in an age-ordered list of up to 
inode_aging_count inodes, and does not immediately delete their data. As 
applications delete additional qualifying files, CFS removes the oldest entries 
from the list. If Storage Checkpoints are active, files deleted from the primary 
fileset whose inodes are still on the aging list can be recovered (effectively 
“undeleted”) quickly by copying them back to the active fileset, along with their 
data. 

Tuning the File Change Log

The CFS File Change Log is useful for applications that depend on knowledge of 
which files in a file system have changed, but for certain types of activity, the 
overhead it imposes can be significant. Table 13-8 describes vxtunefs 
parameters that can be adjusted to reduce FCL activity. 

The fcl_keeptime and fcl_maxalloc tunables control the retention of FCL 
records. To limit the amount of space used by the FCL, CFS discards records that 
are older than fcl_keeptime and frees the space they occupy. If the size of an 
FCL reaches fcl_maxalloc before any records have aged to fcl_keeptime, CFS 
“punches a hole” in the FCL by discarding the oldest records. Thus, for file 

Table 13-7 vxtunefs parameters affecting storage allocation

vxtunefs parameter ↓ Effect/comments

initial_extent_size Minimum size of the first extent that CFS allocates to 
files whose storage space is not preallocated

inode_aging_count
(default: 2,048)

Maximum number of inodes to retain in an aging list 
after their files are deleted (data extents linked to aged 
inodes are also aged). Aged inodes and extents accelerate 
restoration of deleted files from Storage Checkpoints 

inode_aging_size Minimum size of a deleted file to qualify its inode for 
aging rather than immediate deallocation when its file is 
deleted 

max_seqio_extent_size Maximum extent size that CFS will allocate to sequen-
tially written files
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systems subject to heavy update loads, it is advisable to increase fcl_maxalloc, 
particularly if applications use FCL entries for auditing or other purposes. 

The fcl_ointerval and fcl_winterval tunables limit the number of FCL entries that 
CFS writes for files that are subject to repetitive activity. If the same file is 
opened repeatedly, for example, by an NFS server in a CNFS configuration, CFS 
suppresses the writing of all open-related FCL records within fcl_ointerval 
seconds of the last such record. Similarly, if a file is written repeatedly, as for 
example an application log might be, CFS suppresses write-related records 
within fcl_winterval seconds of the last FCL record. 

Tuning CFS during daily operation: the fsadm utility 
Administrators can use the fsadm command to tune certain properties of file 
systems while they are mounted, or if they have been cleanly unmounted. The 
principal uses of fsadm are: 

■ Defragmentation. Reorganizing file extents and directories to reduce 
fragmentation, and thereby improve performance 

■ Resizing. Increasing or reducing the storage space allocated to a file system, 
and the size of its intent log 

■ Space reclamation. Reclaiming storage space in disk arrays that support thin 
provisioning 

Table 13-8 vxtunefs parameters that affect the file change log 

vxtunefs parameter ↓ Effect/comments 

fcl_keeptime Number of seconds, that the File Change Log (FCL) 
retains records. CFS purges FCL records that are older 
than fcl_keeptime and frees the extents they occupy 

fcl_maxalloc Maximum amount of space that CFS can allocate to the 
FCL. When space allocated to the FCL file reaches 
fcl_maxalloc, CFS purges the oldest FCL records and frees 
the extents they occupy 

fcl_ointerval
(default: 600 seconds)

Minimum interval between open-related FCL records for 
a single file. CFS suppresses FCL records that result from 
opening a file within fcl_ointerval seconds of the preced-
ing open. 

fcl_winterval
(default: 3,600 seconds)

Minimum interval between write, extend, and truncate-
related FCL records for a single file. CFS suppresses FCL 
records of these types that occur within fcl_winterval 
seconds of the preceding operation of one of these types. 
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In an empty file system, CFS allocates space to files in an order that tends to 
optimize I/O performance. Over time, as files are created, extended, and deleted, 
free space tends to become fragmented into a large number of small extents. 
Fragmentation tends to degrade file system performance, both because CFS 
must search harder to find free space to allocate to files, and because files that 
occupy many non-contiguous extents cannot be accessed with large I/O requests 
that use hardware resources efficiently. 

CFS defragmentation 

The fsadm utility defragments a mounted file system in three ways: 

■ File reorganization. Wherever possible, fsadm allocates contiguous extents 
of file system blocks and moves files to them to reduce the number of extents 
they occupy. CFS reorganizes files while a file system is in use; fsadm locks 
each file while it is reorganizing it 

■ Free space consolidation. In the course of reorganizing files, fsadm 
consolidates free space into as few extents as possible. Free space 
consolidation simplifies future space allocation because it enables CFS to 
allocate larger extents 

■ Directory compaction. When files are deleted, their directory entries remain 
in place, flagged so that they are invisible to users. fsadm compacts directory 
files by removing entries for deleted files and freeing any unused space that 
results from compaction 

Fragmentation generally occurs sooner in file systems with high “churn”—rate 
of file creation, resizing, and deletion. Administrators should therefore schedule 
fsadm reorganizations regularly, for example, weekly for active file systems, 
and monthly for less active ones. 

Because defragmentation is I/O 
intensive, administrators should 
ideally schedule it to correspond 
with periods of low or non-critical 
I/O activity. To help determine 
the need for defragmentation, 
fsadm can produce a report that 
summarizes the level of free space 
fragmentation. The percentage of 
file system free space that is in very small and very large extents can be a guide 
to whether a file system should be defragmented. For example, if less than 1% of 
a file system’s free space is in extents of 8 file system blocks or fewer, the file 
system is probably not excessively fragmented. If the number grows to 5% or 
more, then defragmentation is probably warranted. 

 Administrative hint 37

Administrators can experiment with 
defragmentation frequency, increasing 
the interval if it does not result in much 
change in free space distribution, and 
decreasing it if the opposite is true. 
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Resizing CFS file systems and their volumes 

One possible cause of fragmentation, and of lengthy fsadm defragmentation 
runs is lack of free space. If 90% or more of a file system’s storage space is 
allocated to files, defragmentation may have little effect, primarily because 
there is little free space to reorganize. If this is the case, file system resizing may 
be warranted. 

Administrators can increase or 
decrease a file system’s size while 
it is in use, provided that the 
volumes it occupies have 
sufficient unallocated space to 
support an increase. CFS 
defragments a file system if 
necessary before decreasing its 
size. Decreasing a file system’s 
size does not change the size of 
the volume it occupies. 

An administrator can increase or 
decrease a file system’s intent log 
size from the default of 16 megabytes when creating the file system. Larger 
intent log sizes may be desirable, for example, in file systems that provide NFS 
service, or those subject to write-intensive workloads. While they can improve 
performance by allowing more file system transactions to be buffered, larger 
intent logs use more memory, and may increase recovery time after system 
crashes, because there may be more logged transactions to replay. 

Large files 

By default, a CFS file system can host files larger than 2 gigabytes. An 
administrator can disable largefiles support when creating a file system, or can 
use the fsadm utility to disable or re-enable support while the file system is 
mounted. If a file system actually contains one or more files larger than 2 
gigabytes, largefiles support cannot be disabled. 

Reclaiming unused space in thin-provisioned disk arrays 

For disk arrays that support thin provisioning, an administrator can use the 
fsadm thin reclamation feature to release physical storage occupied by unused 
file system blocks. The thin reclamation feature uses special APIs to 
communicate unused disk (LUN) block ranges to supported disk arrays. The disk 
arrays free the physical storage that backs the unused blocks. An administrator 
can optionally specify aggressive reclamation, which causes CFS to compact 
files prior to instructing disk arrays to reclaim space. Aggressive reclamation 
generally reclaims more space, but the compaction phase takes longer and 

 Administrative hint 38

Administrators use a combination of the 
vxassist and fsadm commands to 
change the size of a CFS file system 
along with that of any of its underlying 
volumes. Alternatively, the CVM 
vxresize command can be used to resize 
both a volume and the file system that 
occupies space on it in the same 
operation. 
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consumes more I/O resources. CFS supports APIs that enable applications and 
utility programs to initiate physical storage reclamation. 

Application development tuning considerations 
Using a library supplied as part of CFS, application programs can issue I/O 
control calls (ioctls) to specify advisories that control how CFS uses cache on a 
file-by-file basis. Applications can specify: 

■ Buffering. The VX_DIRECT and VX_UNBUFFERED advisories direct CFS to 
read and write data directly into and from application buffers, rather than 
copying it to page cache before writing, or reading it into page cache before 
copying to application buffers. Direct I/O improves performance by 
eliminating the CPU time and memory consumed by copying, but 
applications must ensure that buffer contents remain intact until I/O 
operations complete. The VX_DIRECT advisory delays I/O completion until 
any metadata updates implied by writes have been written to disk; specifying 
VX_UNBUFFERED does not. Both advisories require page aligned 
application buffers; if they are not, CFS buffers the I/O 

■ Metadata persistence. By default, CFS signals I/O request completion before 
file metadata updates are persistent. This improves performance from the 
application’s point of view. Applications that require absolute disk image 
consistency, can use the POSIX O_SYNC advisory to force CFS to delay 
signaling completion of I/O requests until metadata changes have been 
written to disk. Alternatively, specifying the POSIX O_DSYNC advisory (or its 
VX_DSYNC equivalent) delays request completion signals until data (but not 
necessarily metadata) has been persistently stored 

■ Read-ahead behavior. To accelerate sequential read performance, CFS 
detects sequential buffered reads from applications, and reads file data ahead 
in anticipation of application requests. Single-stream applications can 
specify the VX_SEQ advisory to instruct CFS to read ahead in the file by the 
maximum allowable amount. Multi-threaded applications that read several 
sequential streams in a file simultaneously can specify the VX_ERA advisory 
to cause CFS to maintain multiple read-ahead streams. Applications that read 
file data randomly can suppress read-ahead by specifying the VX_RANDOM 
advisory 

■ Concurrent I/O. Applications that manage their threads’ file I/O requests so 
that concurrent requests do not corrupt data or cause incorrect behavior can 
specify the VX_CONCURRENT advisory to cause CFS to both bypass file 
write locking and to read and write directly into and from the application’s 
buffers. The VX_CONCURRENT advisory provides the same accelerations 
for individual files that the cio mount option (page 189) provides for entire 
file systems 

For these advisories and others, applications can determine the file system-wide 
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setting by issuing the VX_GETFSOPT ioctl. 

In addition to these, other ioctl functions allow applications to control space 
allocation on a file-by-file basis. Applications can reserve space, trim reserved 
but unused space, specify a file’s extent size, and specify alignment for newly 
allocated extents. Of these, the ones that affect I/O performance most directly 
are reservations that can allocate contiguous space for a file, and alignment, 
that can meet the constraints of the VX_DIRECT and VX_UNBUFFERED 
advisories. The VX_TRIM advisory, which deallocates unused space allocated to 
a file, promotes efficient space utilization. 

Tuning CFS for space efficiency 
The smallest unit of space that CFS can independently allocate is a file system 
block. As applications append data to a file, CFS allocates sufficient file system 
blocks to hold it. If the amount of data in a file is not a multiple of the file system 
block size, storage space is allocated but not used. 

For example, a file that contains only one byte of data consumes a file system 
block whose size is between one and eight kilobytes. Table 13-9 illustrates the 
space efficiency (ratio of space occupied by data to space allocated) for a file 
containing 2,500 bytes of data (roughly comparable to a page of text in this 
document) and one ten times as large. 

Table 13-9 Small and large file space efficiency for different file system block 
sizes  

File 
system 
block size

Space allocated 
to a 2,500 byte 
file

Data:space 
ratio (%)

Space 
allocated to a 
25,000 byte 
file

Data:space 
ratio (%)

1,024 bytes 3,072 bytes 
(3 file system 
blocks)

81% 25,600
(25 file system 
blocks)

98%

2,048 bytes 4,096 bytes
(2 file system 
blocks)

61% 26,624 bytes
(13 file system 
blocks)

94%

4,096 bytes 4,096 bytes
(1 file system 
block)

61% 28,672 bytes
(7 file system 
blocks)

87%

8,192 bytes 8,192 bytes
(1 file system 
block)

30% 32,768 bytes
(4 file system 
blocks)

76%



228 Tuning CFS file systems
Tuning CFS for space efficiency 

Table 13-9 represents a “best case” scenario, in the sense that no more file 
system blocks are allocated to the file than are required to hold its data. Thus, 
the maximum “wasted” (allocated but not used to store file data) space is one file 
system block. The table underscores the point that for small files, this can be a 
significant percentage of file size. 

As the second and third columns of Table 13-9 suggest, smaller file system block 
sizes result in greater space efficiency (greater percentage of storage space 
occupied by actual data) for file systems that hold mostly small files. This 
suggests that if the average size of files that a file system will contain is known 
to be small when the file system is created, a smaller file system block size 
should be specified to optimize storage utilization. For example, if file sizes are 
expected to cluster between zero and 1.5 kilobytes, the administrator creating 
the file system should choose one kilobyte as a file system block size. For file 
sizes between 1.5 and 2 kilobytes, a file system block size of 2,048 is likely to be 
optimal, and so forth. This decision should be tempered by an awareness that 
the maximum size of a CFS file system is determined by its file system block 
size, because of the way free space data structures are organized. For example, 
the maximum size of a file system with a 1 kilobyte file system block size is 32 
terabytes. 

For larger files, storage space efficiency is less of a consideration, as the fourth 
and fifth columns of Table 13-9 suggest. Maximum “wasted” space for a file is 
again one file system block, but this is a much smaller percentage of file size, 
even for the relatively modest sized 25 kilobyte file size in the example. 

For larger file sizes, another consideration may be more important than space 
efficiency—allocation efficiency. When files are extended, CFS allocates 
contiguous space from within a single allocation unit if possible. But when a file 
system becomes fragmented, it may not be possible to allocate large blocks of 
contiguous space. CFS must create an extent descriptor for each non-contiguous 
range of file system blocks it allocates to a file. Larger file system block sizes 
result in fewer extent descriptors than smaller block sizes. Files can grow larger 
before indirect extent descriptors are required, leading to better I/O 
performance for two reasons: 

■ Larger disk reads and writes. Because each extent is a contiguous range of 
block addresses on a single disk, an internal CFS I/O request can read or write 
as much as the size of an entire extent 

■ Fewer accesses to indirect extent descriptors. In file systems with larger file 
system block sizes, a file’s inode can map more data than with smaller ones. 
Therefore, it becomes less likely that CFS will have to refer to an indirect 
extent descriptor to retrieve or store data at the end of a large file 
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Tuning CFS for performance 
Typically, CFS tuning delivers the greatest benefit for data streaming 
applications that access large files sequentially. 

Tuning for sequential access 

An administrator can further enhance storage utilization and I/O performance 
in file systems that create and access large files sequentially through the use of 
two other CFS tunables, initial_extent_size and max_seqio_extent_size. CFS 
allocates a single extent large enough to hold the data in an application’s first 
write to a file. If CFS detects that the application is continuing to write data 
sequentially, it doubles the size of each subsequent allocation up to a default 
maximum of 2,048 file system blocks. If if no writes are issued to a file for a 
period of 60-90 seconds, CFS deallocates unused file system blocks. 

Figure 13-2 CFS file system block allocation for sequential files 

By raising the value of initial_extent_size, an administrator can cause large, 
sequentially written files to be more contiguous on disk. This reduces the 
number of times CFS must allocate storage for a large file, and at the same time, 
improves subsequent read performance because more data can be read with 
each disk request. 

The value of max_seqio_extent_size limits the amount of storage that CFS will 
allocate to a sequentially written file at one time. Administrators can use this 
tunable to reduce allocation failures caused by files occupying excessively large 
contiguous ranges of file system blocks. CFS prevents the value of 
max_seqio_extent_size from falling below 2,048 file system blocks. 

Tuning CFS for sequential I/O with disk arrays 
Figure 13-3 illustrates the path taken by a sequential I/O request issued by CFS. 
The CFS I/O request is either the direct result of a request made by an 
application, or, if an application request specifies more than max_direct_iosz 
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bytes, one of the smaller requests for max_direct_iosz or fewer bytes into which 
CFS breaks it. 

Figure 13-3 Stages in sequential I/O operations 

If the CFS request specifies more than vol_maxio bytes, CVM breaks it into 
multiple requests. Figure 13-3 assumes that the request is not for more than 
vol_maxio bytes, and therefore is not broken down further. 

CVM supports striped, mirrored, and striped mirrored volumes. If the volume 
has any of these configurations, CVM decomposes CFS I/O requests into stripe 
unit-size read and write commands to its member LUNs (➊).

Each LUN is associated with one or more host bus adapters (HBAs). If the LUNs 
that make up a volume are associated with different HBAs, they can process 
read and write commands and transfer data concurrently (➋). Likewise, if the 
LUNs are associated with different disk array ports, commands can be processed 
and data transferred on them concurrently (➌). 

When CVM writes to a disk array, the data is typically absorbed by the array’s 
non-volatile cache (➍), and written to disk media at some time after the array 
has signaled completion of the write. Client read commands may be satisfied 
from disk array cache, and indeed often are, because some disk arrays are able to 
detect sequential read patterns and “read ahead” in anticipation of client 
requests. For random reads, however, cache hit rates are typically low, 
especially if the application’s working set of data is much larger than the disk 
array’s cache. 

Ultimately, the disk array transfers data to or from the disks that make up the 
LUNs to which commands are addressed (➎). In most cases, LUNs are striped, 
mirrored, or RAID-protected, so they present further opportunities for parallel 
execution. 

The makeup of CVM volumes can be exploited to maximize sequential I/O 
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performance. If the LUNs that make up a volume have separate paths to the disk 
array, then all can transfer data concurrently. 

Thus, for example for a volume striped across four LUNs, the ideal I/O size is 
four times the stripe unit size. CVM splits such an I/O request into four smaller 
requests that execute concurrently (assuming the buffers are properly aligned). 
Figure 13-4 illustrates how this might work in the case of read-ahead. 

If CFS detects that an application is reading from a file sequentially, and if the 
file’s read_ahead (described in Table 13-6 on page 220) tunable parameter 
allows read-ahead detection, CFS allocates read_nstream buffers of 
read_pref_io bytes each, and issues read commands to CVM to read sequential 
file blocks into them. 

Figure 13-4 Optimizing read-ahead performance 

CFS aligns read-ahead buffers with volume stripe units, so that, as Figure 13-4 
suggests, CVM is able to split the read-ahead request into four commands, each 
of which it issues to one of the volume’s LUNs. As long as there is a separate 
path to each LUN (or alternatively, the paths to the LUNs have sufficient 
bandwidth to carry concurrent data transfers for all of them) the four 
commands execute concurrently, and data is ready for the anticipated 
application read request in a little more than a quarter of the time that would be 
required to read it in a single stream. 

CVM Dynamic Multipathing (DMP) can simplify read-ahead optimization as 
well. For disk arrays that support concurrent multi-path LUN access, CVM can 
schedule I/O on different paths (For example, if the administrator selects 
shortest queue scheduling, CVM will usually issue a sequence of near-
simultaneous requests such as that illustrated in Figure 13-4 to different paths.) 
Using DMP with supported disk arrays can provide the performance advantage 
of parallel I/O scheduling along with protection against I/O path failure. 
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Tradeoffs in designing CFS-based applications and 
systems

While for the most part, CFS can be considered to be “pre-tuned” for all except 
the most homogeneous workloads, designers should be aware of a few obvious 
factors as they develop applications and plan for deployment. The sections that 
follow present some guidelines for designing applications and configuring CFS-
based clusters for high performance and optimal recoverability. 

Performance consideration: sharing file systems, files, and 
directories 

One of the primary advantages of CFS is that it enables applications running on 
different cluster nodes to simultaneously access shared data at all levels of 
granularity including concurrent write access to individual files. CFS uses its 
Global Lock Manager, described in Chapter 8, to maintain structural and content 
integrity of directories and files as applications create, manipulate, and delete 
files. 

While the GLM design minimizes inter-node locking traffic, exchanging lock 
messages over a cluster’s private network inherently takes longer than locking 
access to resources within a single node. As designers determine the cluster 
nodes on which applications that share data will run, they must be aware of the 
tradeoff between the benefits of aggregating CPU power, cache, and network 
bandwidth by running applications on separate nodes, and the “cost” of 
increased I/O latency due to lock messaging as applications on different nodes 
access shared files concurrently. 

Performance consideration: using directories to organize data 

CFS implements the common UNIX hierarchical directory model by structuring 
each directory as a file. A CFS directory file is essentially a list of file (or 
subdirectory) names along with their corresponding inode numbers. As 
designers structure the data for their applications, they can choose between 
“flat” structures with few levels, and “deep” structures containing multiple 
levels of subdirectories. 

In applications that involve a high frequency of directory operations, designers 
should be cognizant of the implications of different directory hierarchy designs. 
Because directories tend to grow in small increments, they often become 
fragmented in dynamic file systems that experience large numbers of file 
creations and deletions. Moreover, as files are deleted, directory blocks are not 
fully utilized (until directories are compacted administratively). Lookups in a 
large flat directory therefore tend to require a non-contiguous disk read for each 
extent, and may therefore be time-consuming, at least until frequently accessed 
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entries are cached. Deeper directory structures, with an average of fewer files 
per directory may have less tendency to fragment, but initial lookups in such a 
structure must traverse each level in the hierarchy. 

Performance consideration: monitoring resources 

CVM can be configured to monitor virtual volumes by accessing their disks 
periodically, and raising alerts if it encounters exception conditions. Application 
I/O to volumes also causes alerts to be raised when exceptional conditions are 
encountered, but volume monitoring can detect problems with idle volumes so 
that administrators can take remedial action before failures become critical, but 
in clusters with hundreds or thousands of disks, can result in considerable I/O 
activity that can have a discernible impact on application I/O. When CVM 
volumes provide the storage for CFS, however, there is sufficient background 
I/O activity that exceptions can usually be detected in the course of CFS I/O 
operations, so volume monitoring is unnecessary. 

VCS monitors mount and volume resources for each file system and volume so it 
can take action (for example, failover) if it detects abnormalities. In clusters that 
host a large number of file systems, the number of resources that VCS must 
monitor is correspondingly large, and may consume noticeable processing and 
network resources. Designers should be cognizant of resource monitoring 
overhead as they specify virtual volume makeup and file system name spaces.

Recoverability consideration: file system sizing and Storage Check-
points 

CFS supports up to a billion files in a single file system. Data structures, caching, 
resource locking, and buffer management, are all designed to accommodate file 
systems on this scale. Moreover, CFS supports Storage Checkpoints within the 
context of a file system. Storage Checkpoints are extraordinarily useful for 
several purposes-for establishing application-consistent baselines for backup or 
data analysis, for testing applications against live data, for training developers, 
users, and administrators, and for enabling users to recover their own deleted or 
corrupted files. For the latter purpose especially, some administrators keep 
large numbers (dozens to hundreds) of active Storage Checkpoints of a file 
system. Again, CFS data structures and algorithms are designed to cope with the 
large amount of metadata that Storage Checkpoints necessarily entail. 

When a UNIX system that crashes with mounted file systems recovers from the 
crash, it is generally necessary to verify file system structural integrity before 
remounting and making files accessible to applications. Verifying the integrity 
of a file system containing hundreds of millions of inodes could take days, and is 
clearly impractical if any reasonable service level agreement is to be met. 

CFS overcomes this deficiency in almost all cases because it is a journaling file 
system that performs structural modifications transactionally and logs all 
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metadata updates in its intent logs before executing them. To recover from a 
system crash, CFS “replays” crashed nodes’ intent logs, which contain a precise 
record of which file system metadata structures might be at risk. As a result, 
recovery time is related to the number of transactions in progress at the time of 
a failure rather than to the size of a file system or the number of files it contains. 

On rare occasions, however, such as when disk media or memory failures 
corrupt file system structural data, it may become necessary for CFS to perform 
a full file system integrity check (“full fsck”) during recovery. The most time 
consuming part of full file system checking consists of verifying that extent 
descriptors are consistent with the data structures that the file system uses to 
manage storage space. This time is proportional to both the number of files in 
the file system, the number of active Storage Checkpoints, and the degree of file 
fragmentation (average number of extents per file). While it is very rare that full 
file system checking is required, designers should be cognizant of the recovery 
time implication of file systems that contain very large numbers of files, have 
hundreds of active Storage Checkpoints, or are allowed to become very 
fragmented. Configuring more file systems with fewer files in each and limiting 
the number of active Storage Checkpoints can reduce recovery times in these 
rare instances, but at the expense of managing multiple name spaces. 

Recoverability consideration: CFS primary and CVM master 
placement 

While CFS and CVM are largely symmetric in the sense that any instance can 
perform nearly any function, each architecture incorporates the concept of a 
special instance that is the only one able to perform certain key operations. 
CVM’s master instance manages all volume configuration changes, while each 
CFS file system’s primary instance is responsible for allocation unit delegations 
and other administrative tasks. Both the CVM master instance and CFS file 
system primary instances do slightly more work than other instances, and 
perhaps more importantly, are critical to uninterrupted volume and file system 
operation respectively. The critical roles they play suggest that designers should 
carefully consider their placement in clusters of non-identical nodes or nodes 
that run at significantly different resource saturation levels. The CVM master 
instance should generally be configured to run on the most powerful or least 
loaded cluster node. CFS file system primary instances should generally be 
distributed across a cluster, with a with a slight bias toward more powerful or 
lightly loaded nodes, to equalize the file system processing load, but more 
importantly, to minimize the time to recover from a node crash, which is longer 
if one or more CFS primary instances must be recovered. For the same reason, 
CFS instances should be biased toward nodes whose application loads are the 
most stable (least likely to crash the nodes on which they are executing).
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Checkpoints and snapshots 

With respect to frozen image technology, CFS enjoys the proverbial 
“embarrassment of riches.” File system Storage Checkpoints provide both read-
only and read-write space-optimized point-in-time images of file system 
contents. In addition, CVM snapshots provide both full-size and space-
optimized point-in-time images of administrator-selected groups of volumes 
that contain CFS file systems. Each of these frozen image techniques has its own 
advantages and limitations, and each is the optimal for certain scenarios. For 
example, Storage Checkpoints are simple to administer, because they occupy 
storage capacity within a file system’s volume set. No separate storage 
administration tasks are required to create or remove a Storage Checkpoint. 

Because they are space-optimized, Storage Checkpoints typically consume 
relatively little space compared to the file systems whose images they capture. 
This tends to motivate administrators to keep large numbers of them active. 
When this is the case, it becomes necessary to monitor file system space 
occupancy regularly, and to specify a strategy for handling out of space 
conditions should they arise, for example by making Storage Checkpoints 
automatically removable. 

In addition to their other uses, Storage Checkpoints are an important 
mechanism for recovering from file loss or corruption; Deleted or corrupted 
files can be recovered by copying them from a Storage Checkpoint to the live file 
system. By themselves, however, they do not protect against data loss due to 
storage device failure, because they do not contain full file system images. 
Volumes mirrored by CVM or based on failure-tolerant disk array LUNs should 
be configured to protect against physical data destruction. 

Administrators must explicitly designate the devices storage to be used by 
volume-level snapshots. They are useful for creating snapshots of multiple file 
systems at the same point in time. Full-size file system snapshots require 
storage space equivalent to that of the snapped file system, but can be used to 
take frozen file system images “off-host”, for example to other cluster nodes, 
where they can be mounted privately and processed without interfering with 
live production I/O performance. As with Storage Checkpoints, space-optimized 
volume snapshots do not contain full images of their parent volumes contents, 
and so must be used by cluster nodes that are connected to the parent volumes. 
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Afterword

CFS: meeting the technical 
challenge

For the past 4 years, it has been my privilege to lead Symantec’s File System 
Solutions development team, the group responsible for creating and evolving 
CFS. When I commissioned this book, I did so in the hope of giving the 
enterprise IT user community an appreciation for what goes into the 
architecture, development, and effective deployment of the robust, scalable 
distributed file system that manages some of the most critical data on the planet 
and takes on some of the most demanding workloads in enterprise computing. 

Reviewing the manuscript has led me to reflect on the team that has built this 
software to run on several operating systems and hardware platforms, and that 
continues to develop it apace with increasing customer demands and changing 
hardware and software platforms. The single-host VxFS file system that is the 
foundation for CFS has been developed over the past two decades by a team of 
several dozen engineers who work from three major locations: Symantec’s 
Mountain View, California headquarters, Pune, India, and Green Park (Reading), 
England. 

The on-going challenge of CFS attracts the best and the brightest. An average 
CFS engineer has nearly ten years of file system development experience; some 
of the most senior have over a decade of experience on CFS alone. CFS engineers 
have “earned their spurs” at some of the industry’s leading companies, 
including Microsoft, Hewlett-Packard, IBM Corporation, Oracle, Cisco, Amdahl, 
Novell, and others, before joining the CFS team. Over a dozen have earned the 
rank of Technical Director at Symantec during or after tenure on the CFS team. 
Several CFS developers have gone on to successful careers, including a handful 
who are CEOs of startup companies and several others who are architects in 
firms developing storage products. 

CFS has been developed by some of the most talented individuals in the field, but 
the real secret to success has been how they function as a disciplined 
development team, and integrate with other Symantec product teams to 
produce high-quality releases in synchronization with VCS, CVM, and other 
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Symantec software with which there are mutual dependencies. Each release 
starts with negotiation of a prioritized list of product requirements driven by 
product management. Once requirements are agreed upon, a regular series of 
File System Steering Committee meetings gives all stakeholders an opportunity 
to discuss and review designs and evaluate dependencies. Development occurs 
in a number of “sprints,” each with well-defined outcomes and measurement 
criteria that include customer feedback, so that managers have a real-time 
picture of progress, both for CFS itself, and for related Storage Foundation 
components, throughout the cycle. 

Fairly early in the development process, Quality Assurance begins testing new 
capabilities against an expanding repertoire of regression tests, to ensure that 
new features do not “break” existing functionality on which our customers 
depend. Later in the cycle come targeted beta tests, often with the very 
customers who have helped motivate new features and capabilities. Finally, CFS 
and all the other products that make up the various Storage Foundation bundles 
come together in release form for delivery to customers. And for engineering, 
the cycle begins again. Enthusiastic customers continually press for more, and 
the CFS team continues to develop CFS to meet the requirements they articulate. 

Symantec puts customers first. Responsiveness to customer needs is a primary 
driver for CFS, and indeed, for the entire Symantec file system development 
team. All development managers, and most engineers regularly accompany 
product managers on customer visits. The first-hand exposure to users’ 
concerns gained during these visits becomes a strong motivator to excel. 
Developers work extra hard on a feature when they’ve sat across the table from 
someone who wants it. Because CFS manages so many enterprises’ most critical 
data, any customer problem that escalates to engineering becomes a top 
priority. Engineers interleave development with problem resolution, working 
round the clock if necessary.

I describe all of this in the hope that the reader will come to appreciate the 
complexity of our task, and the dedication and enthusiasm we bring to it. The 
CFS team takes its role as custodian of some of the world’s most important data 
very seriously, and expends every effort to deliver the highest quality file 
system products in the industry, release after release. I am truly proud to 
manage this team of skilled, talented, and motivated people who bring you the 
best there is in enterprise file systems. 

Bala Kumaresan
Bala Kumaresan

Director, Symantec File System Solutions Team
Mountain View, California

December 2009



Appendix

CFS cache organization

To understand CFS performance, it is helpful to understand the internal actions 
required to execute client requests. Like most UNIX file systems, CFS relies 
extensively on cache memory to maximize performance, particularly in highly 
concurrent environments. Both data and metadata are held in cache at times 
during and after I/O request execution. File system mount options and 
application program cache advisories give both the administrator and the 
developer a degree of control over when and how data is cached and when in the 
I/O operation life cycle it is made persistent by writing it to disk storage. 
Chapter 13 discusses mount options and cache advisories and their interactions. 
This appendix discusses the five types of cache that CFS uses to optimize 
performance.

CFS internal cache 
CFS uses five separately managed cache memories to hold metadata and data at 
various times throughout the I/O operation life cycle:

■ inode cache (i-cache). CFS instances keep file inodes and related data struc-
tures in this dedicated cache while the files they represent are in use, and 
indefinitely thereafter, until it must reclaim space for the inodes of other 
active files 

■ Quota cache. CFS instances keep records of changes to file systems’ quota 
files in this dedicated cache for rapid reconciliation and accurate response to 
requests that are subject to quotas (for example, a user or group with an 
assigned quota appending data to a file) 

■ DNLC. A file system directory is itself a file containing a list of data struc-
tures, each of which includes a [file name, inode number] pair. Given a path 
name, for example, in a file open request, CFS looks up the corresponding 
inode number by traversing the hierarchy of directories in the name. Because 
traversal can be time-consuming, CFS stores lookup results in a Directory 
Name Lookup Cache (DNLC) for future references. CFS instances’ DNLCs are 
independent of each other; CFS does not reconcile them, but does manage 
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them so that inconsistencies between instances do not arise. Enterprise UNIX 
versions of CFS allocate and manage DNLCs; Linux versions use the operating 
system’s dcache, which serves the same purpose 

The CFS i-cache, quota cache, and DNLC are each dedicated to a single type of 
frequently used metadata, which simplifies both content management and 
searching. For other, less homogeneous, types of metadata and application data, 
CFS manages two other cache pools: 

■ Buffer cache. CFS instances use their own buffer cache to hold metadata that 
is not kept in the i-cache, quota cache, or DNLC 

■ Page cache. CFS instances use host operating system page cache to hold file 
and snapshot data 

A CFS instance allocates memory 
for inode cache, quota cache, 
DNLC, and buffer cache when 
mounting a file system. It 
calculates the amount of memory 
allocated for each based on the 
memory size of the system in 
which it is running. Thus, in a 
cluster whose nodes have 
different memory capacities, 
different CFS instances may 
allocate larger or smaller 
amounts of cache. 

CFS uses operating system page 
cache memory “greedily,” relying 
on the operating system to 
regulate the amount of memory it 
is consuming relative to other 
processes in its hosting system. 

In some cases, an administrator 
can adjust individual cache sizes by manipulating CFS parameters (“tunables”) 
directly. For example, changing the value of the vxfs_ninode tunable causes CFS 
to override its computed size of the i-cache with the supplied value. 

As Chapter 8 discusses, CFS implements several mechanisms by which instances 
synchronize access to critical metadata structures that are held in cache in 
various cluster nodes. 

Administrative hint 12

The vxfs_ninode tunable parameter is 
available on all platforms that CFS 
supports, but is manipulated differently 
on each. In Solaris systems, for example, 
it appears in the /etc/system file, 
whereas on RedHat Linux platforms it is 
specified in a configuration file in the 
/etc/modprobe.d directory.
Administrators should consult the 
Veritas Storage Foundation Cluster File 
System Administrator’s Guide for the 
platform and file system version in use 
to determine the location of the 
vxfs_ninode parameter.
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