Title:

RMC Design Document

Author:
Jeff Tofano

Date:

08/06/03

Rev

0.1

Change History:

	Date
	Revision
	Description

	08/06/03
	0.1
	Initial Draft – major design issues covered


1.0 Overview

This document describes the design and usage of the Reliable Management Communications (RMC) modules. RMC is a reliable messaging transport implemented on top of UDP. 

RMC modules exist in both Unix and EEE environments and currently run on the SSC, TXRX and FP. The SSC version of RMC exists as a loadable user-level library. The EEE version of RMC is special purpose intermediary application similar in concept to TPL.

RMC defines a simplistic on-the-wire protocol for transporting messages. This protocol is the basis of the RMC reliability model and supports three types of transfers, namely reliable sends, reliable RPCs and standard (unreliable) sends.

RMC exports a simple but powerful API to clients. This API is largely common between the Unix and EEE variants, although the SSC version supports several more primitives. 

2.0 Requirements

The following describes the requirements for the RMC design.

1. Provide a relatively easy to use, reliable transport between filer modules over the internal UDP backplanes.

2. Provide the reliability of TCP while maintaining most of the lightweight virtues of the UDP datagram model.

3. Allow high-speed streaming transfers with as little performance impact as possible. Related, keep the latency for RPCs and simple send/ACK sequences as small as possible.

4. Provide overlapped send function and simplistic send pressure throttling.

5. Support multiple sessions per EEE or Unix applications.

6. Support a wide variety of transfer’s models ranging from classic RPC to overlapped streaming sends. 

7. Support asynchronous only primitives in the EEE environment. Support async and sync operations on the SSC.

8. Support third party forwarding without requiring N-squared connection setup.

9. Provide a general-purpose messaging facility that allows all existing daemons and related EEE modules to be migrated to a common communication model over time.

3.0 Design Overview

The core RMC design principle is to support reliable cross-module messaging though the implementation of a “reliable send” model. A “reliable send” is defined as a send that either succeeds or fails with no application ambiguity. Any application built on top of “reliable send” model is shielded from transient failures and messy retry logic and is guaranteed to have it’s send delivered to the destination OR to receive a notification that it’s message have failed. Related, reliable sends guarantee in-order, at-most-once delivery semantics.

RMC supports the reliable send model. RMC handles all typical failure conditions including packet drops, duplicate packet delivery and out-of-order transfers.

RMC Sessions

RMC supports the reliable send model thought application session structures that track the sequence and state of all transfers. Although RMC sessions appear to be a lightweight version of TCP connections, they’re best thought of as a pair of connected queue structures. For two applications to communicate, two session structures are created, one per side. These structures are “linked” together by RMC (I use the word “linked” rather than connected to avoid confusion with connection oriented protocols). Send operations move messages from the local queue to a remote queue. Receive operations wait for messages to arrive at a local queue.

RMC session structures maintain all the state need to guarantee reliable, ordered, at-most-one message transfers. This includes the following:


Ordered outgoing message transfer queue 


Ordered completed message queue


Outgoing and incoming sequencing state

Applications link local and remote session via the rmc_open call. Applications can advertise they’re session for linking via the rmc_listen call. Linked sessions can be broken via the rmc_close call. Session remain linked until closed, or until failures happened. Failure affects on linked 

All session are named by specific address – the format of the address can be either INET ip/port pairs or EEE slot/cpu/appid tuples. Session linked via the rmc_open call must both be from the same address domain

(and will typically be EEE addresses). 

Applications that want to send messages to a destination place their message on the “linked” local outgoing queue via the RMC rmc_send_msg primitive. Send messages on this queue are “pending” until RMC has delivered the message to the remote queue. When the message has been successfully delivered to the remote session (or failed), a notification is provided on the local completed message queue so the sending application knows the deliver has been accomplished. All buffers used in the message transfer are pinned until the completion notification is received.

Applications that want to receive data wait for incoming messages to arrive at their “linked” complete message queue. Application synchronizes with this queue via the RMC rmc_get_completed_msg and rmc_waitfor_msg primitives. Applications can use these primitives to remove the next arriving item (in-order) or to select a particular item from the completed queue.

Session maintain critical sequence information. All messages moved between linked sessions are stamped with sequence numbers. These sequence numbers are the basis for ordering guarantees, dup detection and drop detection. 

RMC Messages

Message structures are the second major RMC building block. These structures encapsulate one or more chunks of data that are transferred between sessions. Messages are composed of headers and segmented data payloads. The message header is typed according to the mode of transfer desired. Messages also contain sequence numbers, unique message id’s used for replies and ACKs, payload descriptions, application tag data and source/destination session address information.

Messages are linked on the various session queues depending on the state of transfer. Send messages start life on the session outgoing transfer queue and end up on the completed message queue when the transfer has been completed. Received messages are simpler: they’re created on-demand when incoming data is arrives and placed upon the completed queue waiting to be picked up by applications.

RMC Transfer Types

RMC supports three types of transfers. The first type, “reliable send”, is implemented internally as send/ACK sequences. Each send is tracked, and periodically resent until an ACK receipt is received. Messages that are sent reliably are said to be pending from the point of first transfer until the ACK is received. Each pending send message is tracked by RMC. If an ACK is not received in a reasonable period of time, the message is resent (with the original sequence number). Multiple send retries are performed: if an ACK is not received after the full number of retries is accomplished the message is aborted and an error is returned to the application. The interval between retires is not fixed: the interval between each retry is doubled providing a simplistic back-off implementation.

The second type of transfer is a reliable RPC. Reliable RPCs are composed on a request, a response, and a response ACK. RPC requests are pending until the RPC reply has been received – the reply is essentially an ACK that carries data. Similar to send/ACK, the request is periodically retransmitted until the reply arrives. On the reply side, the reply is pending until an ACK is received assuring the reply has been received. RPC transfers are provided to avoid the extra hop that occurs when send/ACK are used for requests and replies. 

The third type of transfer is an unreliable send. These are provided primarily for backward compatibility, testing and the rare case of discretionary sends. 

RMC On-the-Wire Protocol

RMC supports a simplistic protocol that governs all transfers. This protocol is defined by the format of the on-the-wire message headers, the various transfer types and phases, and by the additional session addressing information.

All message transfers are preceded by the “linking” of sessions. This linking is accomplished by and open request that flows from an initiating session to a listening session. The listening session accepts the link request by replying with an ACK that carries session identification and sequence setup information. Open requests are said to be pending while this simple negotiation takes place. 

Once two sessions have been linked via open negotiations, message transfers flow following the guidelines for each type of transfer. As covered above, reliable messages follow a send/ACK sequence or a request/response/response-ACK sequence. Unreliable messages are simple one-way sends.

Each message, regardless of type, that flows between linked sessions contains a fixed format header. This header defines the phase of transfer (and expectations for follow-up phases), session addressing information and sequence information. Any incoming data not pre-pended with an appropriate header is discarded.

When message transfer is not longer needed between two session endpoints, the link is broken by a close request. The close requests flows from the initiators session (typically opener) to the linked session. When received, the session is closed on the receiver side and a close ACK is returned allowing the imitator to close its session.

Reliable close notification around failures is difficult on filers because of the lack of any application level monitoring agents. Given this, failures (i.e.: SSC daemons crashes) can destroy one side of a linked session without the other-side knowing in a timely fashion (if we’re lucky, they’re pending messages so we can figure it out). To address this situation, a simple scheme is used to reclaim orphaned sessions. When a one side goes down, the orphaned session remains “open” until the crashed session is restarted: the open calls is interpreted as a “reopen” and is mated with the orphaned session – both are then synch so that transfers can occur.

(JTOF NOTE: this really sucks but is good enough for now and tends to match the loose reliability architecture of many other components. However, this should be addressed by cross-session monitoring messages in the next release).

RMC Synchronization

All RMC transfer operations are inherently asynchronous. Although some synchronous convenience routines are provided on the SSC, these routines are implemented on top of their asynchronous counterparts. 

All asynchronous transfers routines return after initiating a transfer: they do not wait until the transfer is complete. This allows overlapped transfers to be performed.

RMC applications need to know when one of two events has occurred: when a send message has completed AND when an incoming message has been received and is ready to be consumed. RMC handles both events by placing the corresponding message on the completed queue. Applications can slave to these queues, picking off messages as they arrive. The message contents indicate the type of completion and location of the payload. Two RMC primitives are provided on the SSC for completed message synchronization: rmc_waitfor_msg() and rmc_get_completed_msg(). The first routine is a blocking routine, and the second is a polled routine.

RMC API Overview

The following lists the available API routines for the SSC and EEE environments.

Calls Available on SSC


Calls Available on EEE

rmc_open




rmc_open

rmc_open_ex

rmc_listen




rmc_listen

rmc_close




rmc_close

rmc_send_msg




rmc_send_msg

rmc_send_msg_ex

rmc_waitfor_msg

rmc_get_completed_msg


rmc_get_completed_msg

rmc_get_session_socks

rmc_get_session



rmc_get_session

rmc_get_session_addrs


rmc_get_session_addrs







rmc_alloc_msg







rmc_free_msg
4.0 SSC Design Details

RMC Message Lifecycle

In general, messages spend most of their lives on queues. Send messages are created, packed and placed on session outgoing queues. The actual send operation is typically done prior to placement on the queue (by the rmc_send_msg internals). The message remains on the outgoing queue (and an internal resend queue) until the receipt of an ACK from the remote destination. On receipt of the ACK, the rmc routines move the routine from the outgoing queues to the completed queue – at this point it’s ready to be grabbed by the application. Receive messages are a bit different: when incoming data is detected by the RMC layer a message is created to encapsulate the receive data. This message is then immediately placed on the complete queue for application retrieval.

In general, all messages transit at least the session complete message queue – this queue is the ONLY way applications retrieve completed messages.

Session Details

The most complex portion of the RMC implementation on either SSC or EEE side is the management of session. From an external point of view, sessions are seen as “linked” queues. Internally, sessions are really set of state information that simulates a lightweight connection. In addition, session impose a application addressing layer on top of the existing INET or EEE addressing model – specifically, all RMC messages are directed to sessions, so session address always include ip/port information AND session information.

From an application point of view, only one type of session exists. Applications create session implicitly via the rmc_open() or rmc_listen() calls and pass reference to all other calls – pretty simple.

Internal to RMC things are far more complex. RMC manages three types of session: OPEN sessions, LISTEN sessions and ACCEPT session. OPEN session are client-side session created via the rmc_open() call. LISTEN session are server-side session created by the rmc_listen() call. ACCEPT session is session internally created and linked to a parent LISTEN session when open requests are received by remote session. OPEN sessions encapsulate source and destination address information and send/receive sequence information. All data transfer operations can be initiated on OPEN session. LISTEN session is a bit different: they exist solely to advertise a session to remote endpoints and to root the list of “linked” accept session. The LISTEN session contains only local address information and no sequence information. Transfers (except open negotiations) never occur on LISTEN sessions. (Externally, rmc_send() calls against the LISTEN session are silently redirected to the proper ACCEPT session so don’t get confused when they work). ACCEPT sessions are created dynamically when open requests arrive at the LISTEN session. The ACCEPT session contain full source and destination address and sequence information and are the primary session used for server-side transfer requests. 

Applications really don’t need to know about ACCEPT sessions. Simple applications can send messages by simply creating messages with a copy of an incoming messages sess_id and then target the send at the LISTEN session. Alternatively, session can retrieve a pointer to the internal accept session from a incoming message by using the rmc_get_session() call. This handle to the accept session can then be passed to the transfer calls. 

All message completion events for a OPEN session are retrieved from the OPEN sessions completed message queue. All message completions for ACCEPT sessions are retrieved from the LISTEN message completion queue – this done for obvious reasons: applications have not way to access an ACCEPT session until the first message comes in. Related, this feature allows a unified service endpoint for all “linked” session, avoiding the need to wait on multiple “accept session”. For folks looking at the code, remember the following rules: 

· All transfers (i.e: sends/recvs) happen against OPEN/ACCEPT session. 

· All completions are posted against OPEN or LISTEN sessions – NEVER accept session (so the accept session completed queue is unused!)

SSC Overview

The SSC side of RMC is implemented over UDP sockets and supports INET and EEE domain transfers. The SSC RMC module exists as a library – there is no special purpose RMC daemon or related applications. 

The RMC SSC library is designed to support all the above features and replaces the sm-anpssc module. There is no shared code between these modules. 

The SSC RMC module supports scatter/gather transfers up the configured local socket buffer size (usually 64K). There are no hardwire limits – if the buffers are enlarged, RMC can transfer larger single messages.

The internal RMC data structures are setup to allow multiple chained sends from the SSC (in-order to support potentially large transfers on the order of many MBs), but the current code doesn’t currently support compound messages (i.e. message composed of multiple send fragments).

SSC Namespace

The SSC RMC library performs simple service name resolution similar to the sm-anpssc module. Base on mode flags passed into the RMC calls, address names are converted to either INET port numbers or EEE application ids. The actual name to value lookup is similar for INET and EEE – all “registered” names, or names that resolve to valid values must exist in the SSC /etc/services database. 

The rmc_open call supports a specialize rmc_open_t structure hat allows callers to specify slot, cpu and bplane values in addition to the application name. All values except the application name are ignored when RMC is used in INET mode.

The SSC side of RMC allows “unnamed” address to be used. Unnamed addresses are created with NULL application names. RMC will bind the local port number assigned by either INET or EEE.

The use of the /etc/services file for name resolution follows the existing namespace conventions for filers. Although RMC uses this method internally, it’s encapsulated in the APIs such that more powerful dynamic schemes can be implemented in the future if needed.

Managing SSC Memory

Because RMC is implement as a library, the key RMC data structures are allocated and managed from application host memory. Specifically, the SSC RMC API force clients to allocate all structures and pass them into the RMC routines – RMC does almost no allocation by itself.

The two major data structures that clients need to allocate frequently are the rmc_session_t and rmc_msg_t structures. Both are relatively small structures. For simple applications, one session structure is created per destination (which for the vast majority of our daemons means there is never more than one session structure). The session structures exist as long as connectivity to the destination endpoint session are required for transfers. Applications can free the memory used by session only after the session has been closed. A small number of RMC routines are provided to manage sessions: these include rmc_open(), rmc_listen(), rmc_get_session(), rmc_get_session_address() and rmc_get_session_sock(). Simple client-side applications will typically use only rmc_open(). Simple server-side applications will typically use only rmc_listen() and rmc_get_session(). More complex applications may use most of all of the above calls. Specifically, complex applications may support client-side and server-side operation simultaneously. 

The rmc_session_t structure can be allocated from any application memory pool (i.e.: static, bss, stack) as long as the chosen memory is available to all required RMC calls. Applications should normally clear the memory used by the rmc_session_t before passing it to RMC.

The other major structure SSC applications must manage in their memory is the rmc_msg_t structure. One rmc_msg_t exists for each transfer operation. The rmc send operations are completely described by the rmc_msg_t structure and the session the call is invoked against. Similarly, incoming data is always wrapped in the rmc_msg_t structure and passed to the application – the receive data is completely described by the rmc_msg_t structure. The rmc_msg_t structure can be allocated from any application pool. Similar to rmc_session_t structures, the rmc_msg_t structure can be allocated from any application pool as long as the memory is accessible to the necessary RMC routines. Applications must take care to preserver the memory (and contents) of messages across rmc calls. Messages are considered under control of the RMC library from until removed from the completed message queue – applications that change of free a pending messages will cause failures.

RMC messages have three components: the message body, the message header and the message payload. Only the message header and payload are transferred to remote sessions. The message body is a local bookkeeping structure. The message payload is described by a scatter/gather list. Applications are responsible for managing this sg_list (i.e: allocating the payload buffers and linking them to the message structure). The

The RMC layer mostly manages message header. The only exception is for RPC transfers: clients need to copy the incoming message tag and rpc_id to the reply message. Macros are provided to make this extremely easy.

Much care has gone into designing the RMC APIs such that the rmc_msg_t structures required to pickup incoming data can be created “on-demand”. Specifically, the rmc_waitfor_msg() and rmc_completed_msg() routines support callbacks that allow applications to created message structures and specifically linked payload buffers when needed. Although applications are free to malloc this space on demand, high performance applications should pre-create lists of msg structures and grab one from the list on each callback (avoid the cost of the allocs).

SSC Convenience Routines

Several RMC convenience routines are provided on the SSC. In general, these routines call their more powerful counterparts, attempting to manage the message packing and synchronization activities. An example is rmc_send_msg() – this routine is implemented over the rmc_send_msg_ex() routine and supports a simplistic buffer/buffer_len synchronous API.

SSC Message Synchronization

Because the SSC RMC implementation is sockets based, the major message synchronization routine is always the select call. Applications use select explicitly or implicitly. Implicit use occurs when either rmc_waitfor_msg() or another synchronous call is made. Simple applications will typically use the implicit mechanism and little needs to be described. More complex applications, specifically those that need to wait on RMC sockets and non-RMC sockets use select explicitly.

When explicit calls to select are made, RMC imposes some simple rules that must be followed for proper operation. Given that RMC session is really a set of message queues (outgoing and completed), a specific RMC routine must be run after a select event fires on an RMC socket. The rmc_get_completed_msg() routine is used after a select event to retrieve RMC messages. This routine should be called at least once with the pullup flag set, and multiple times with the flag clear (until the RMC_NOMSG return is encountered). The reason the call must be repeated is that there is no one-to-one relation between a select event and a single message reception. In fact, most select events will result in multiple messages being place on the message completion queue and all need to be retrieved. For example, the arrival of an RPC reply deposits two messages on the session complete queue – one that describes the incoming reply payload and one the describes the completed request. Both need to be picked up. Note that the rmc_get_completed_msg() with the pullup flags set will not block if used AFTER select. However, this routine WILL block if used with the pullup flags outside the scope of select. Calls to rmc_get_completed_msg() with the pullup flag clear will NEVER block: in this mode, the routine simply checks the session complete queue, returning the next message or RMC_NOMSG if the queue is empty. 

The rmc_waitfor_msg() and get_completed_msg() routines can be used to retrieve the next available message OR a specified message. Care should be taken when retrieving specific messages: receive order is explicitly maintained by the complete queue, and when specific messages are grabbed, they may NOT be from the head of the queue. There are some simple rules that govern the order of queued completed sends that keep things simple:

· For RPC’s send complete message is always queued before the reply message that signaled the send’s completion.

· Send completions are ordered against each other.

· Incoming receive completion are ordered against each other.

Given these rules, an application can grab all send completions from a queue without affecting the order of receives messages and visa-versa.

Simple applications should always grab the next message in the complete queue – by doing so, things appear, as they should: send completion occur before reply data.

For more complex operations, specifically streaming applications items can be picked up in any order. For example, lets say 32 streaming sends are performed in overlapped fashion: 

The RMC sockets can be retrieved from any session via the rmc_get_session_sock() call. 

SSC Signals and RMC

The RMC library use timers to manage the resend logic. These timers generate SIGALRM and so the RMC library must catch SIGALRM. Applications that also use timers can coexist with RMC simply: applications should grab the registered RMC signal handler (via the signal calls) and replace the handler with theirs: when their handlers fire, they must make a call to the RMC handler – failure to do so will disable ALL RETRIES. 

RMC doesn’t handle any other signals. Application must be aware that the arrival of ANY signal, including SIGALRM will break select waits. The RMC library provides explicit notification of this when rmc_waitfor_msg() is used by returning RMC_INTR. Complex applications that manage select themselves must deal with interrupted calls.

5.0 EEE Overview

The RMC EEE implementation is designed similar to the SSC implementation and most of the internal session and message-handling code is common. However, significant differences exists that application writers need to be aware of. A quick glance of support RMC API’s indicate the EEE model is a bit simpler than it’s SSC counterpart. 

Internally, several major differences exist between the SSC and EEE implementations. The most significant design difference is that unlike the SSC version, the EEE RMC implementation is structured as a transport layer rather than a library. All messages sent to an EEE RMC application are really targeted to the EEE RMC application: this application inspects the message, checks sequence numbers, sessions id etc…and performs the related retries and ACKs. This RMC application passes completed messages for a session onto the appropriate target EEE application through registered callbacks and the session completed message queue. 

The transfer of messages between the RMC application and target EEE application is accomplished via the RMC session structure and RMC APIs. When an EEE application performs the rmc_open() or rmc_listen() call, they are implicitly registering a message receive function that is called whenever a incoming data is received or a send operation is completed. Under this model, there is no reason for a RMC EEE application to register the traditional EEE receive handler unless the application needs to receive both standard EEE messages and RMC messages.

Another major difference between the SSC and EEE implementation is the structure of the rmc_msg_t. Similar to the SSC implementation all messages have three components: the message header, the message body and the message payload. The message header is identical to the SSC version (and needs to be because it defined by the on-the-wire protocol). The message body and payload are quite different. On the EEE-side, the message body consists simply of queue entry items, an EEE edesc, and pointers to the header and data in the first edesc buffer.

In essence, the message body is a simple encapsulation of the header and the edesc. The message payload is described by the edesc.

Managing EEE Memory

Another difference between the SSC and EEE implementation is the way memory for rmc_session_t and rmc_msg_t structures are handled. In the EEE version, all RMC structures are owned by the RMC application. The session structures are allocated from local RMC memory, and all calls pass references to them. The message body is also allocated from the RMC local application memory, but the message header and payload are allocated from global shared memory. Given this, EEE RMC applications are not free to allocate/deallocate session and messages. The session memory is implicitly handled by the rmc_open(), rmc_listen() and rmc_close() routines. RMC messages memory must be managed by the rmc_alloc_msg() and rmc_free_msg() routines. The rmc_alloc_msg() will allocate complete messages, including edesc (even chained if necessary). The rmc_free_msg() routine release all parts of the message including the edesc. It’s important for application writers to know that the RMC layer marks ALL edesc with the NO_DEALLOC flags: it owns the edesc completely. If an application needs to “steal” the edesc from the RMC layer, it must be sure to NULL the msg->edesc field BEFORE calling the rmc_free_msg() routine – from that point on the edesc must be managed by the application.

The lifecycle of messages is common between the SSC and EEE layer. Applications should assume that messages, and the related edesc’s are pinned as long as the message is pending. 

EEE Session Details

The EEE session structure and organization is pretty much identical to the SSC version. All three types of session are support and follow the same rules. The only difference is the memory used to host the session structures as desribed above.

EEE Addressing

Session address in the EEE environment are actually simpler that the SSC counterparts. In general, all addressing information is contained in the OPEN and ACCEPT session and the actual messages by virtue of the edesc. However, application writers should be aware that the RMC transfer primitives always “correct” the edesc ports with the proper stashed session values before invoking eee_forwardPacket() – this frees the application writer from any EEE descriptor management other than accessing or setting up the data payload. Applications that want to chain RMC transfers with EEE transfers can alter the edesc values at will – correction will be applied when the next RMC transfer occurs.

EEE Message Synchronization

For EEE applications, message synchronization is simple, and only one RMC routine is supported, namely the rmc_get_completed_msg(). When the message received routine registered via the rmc_open() and rmc_listen() calls is called, one or more messages exist on the indicated sessions message completed queue. The rmc_get_completed_msg() routine MUST be used to retrieve these messages. Simiar to the SSC discussion on select, each call the the message receive function indicates one or multiple messages on the queue: consequently, the rmc_get_completed_msg() routine should be called multiple times until the RMC_NOMSG return is encountered before returning from the message receive function.

The rmc_get_completed_msg() routine NEVER blocks. Similar is true for the rmc_send_msg() routine. Given this, the typical structure of a message receive routine is that of a dispatcher: each call to rmc_get_completed_msg() that returns a valid message dispatches the message to handlers that may or may not respond by issuing rmc_send_msg() calls.

